~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Vaibhav Sonia
Student ID: 22136860

School of Computing
National College of Ireland

Supervisor: Taimur Hafeez

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Vaibhav Sonia
Student ID: 22136860
Programme: Data Analytics
Year: 2018
Module: MSc Research Project
Supervisor: Taimur Hafeez
Submission Due Date: 20/12/2018
Project Title: Configuration Manual
Word Count: 591
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Vaibhav Sonia
22136860

1 Introduction

The following configuration manual illustrates the study of machine learning models and
finding the best model that is fit for recommendations by using sentiment analysis and
machine learning. Further, a manual will explain the software and hardware requirements
that were used for the successful implementation of the project.

2 System Configuration

Below are the hardware and software attributes that were used for successful implement-
ation of the project.

2.0.1 Hardware requirement

Table 1: Laptop Hardware Configurations

System LAPTOP: NLR8QSUO

Operating System | Windows 11 Home Single Language
RAM 8 GB

Hard Disk 476.94 GB

Graphics Card Intel(R) UHD Graphics

Processor Intel(R) Core i5-10210U

System > About

LAPTOP-NLR8QSUO

Mi NoteBook 14

@ Devic

Figure 1: Operating System Configurations

2.0.2 Software requirement

The software configurations used for implementations are as follows:
Software : Version Python : 3.9.13 (64 bits)

2.1 Project Implementation

2.1.1 Data Summary

The list below contains the data column summary and the data description of cosmetic

brand Sephora.

Column
product_id
product_name
brand_id
brand_name
rating
reviews
price_usd

Table 2: Product Data Content
Description

Unique identifier for the product from the site

Full name of the product

Unique identifier for the product brand from the site
Full name of the product brand

Average rating of the product based on user reviews
Number of user reviews for the product

Price of the product in US dollars

2.1.2 Data Preparation

After loading the csv files, the data had many unwanted elements. Figure 2 illustrates

the extraction.

Table 3: Reviews Window

Column Description
author_id Unique identifier for the author of the review on the website
rating Rating given by the author for the product on a scale of 1 to 5

is_recommended
review_text
review_title
skin_tone
eye_color
skin_type
hair_color
product_id

Indicates if the author recommends the product or not (1-true, 0-false)

Main text of the review written by the author
Title of the review written by the author
Author’s skin tone (e.g., fair, tan, etc.)
Author’s eye color (e.g., brown, green, etc.)
Author’s skin type (e.g., combination, oily, etc.)
Author’s hair color (e.g., brown, auburn, etc.)
Unique identifier for the product on the website

Extracting columns

1: import pandas as pd

Selecting specific columns
selected_columns = ['rating’, 'is_recommended', 'review_text', 'product_name', ‘brand_name®, ‘price usd']

Creating a new DataFrame with only the selected columns
filtered_review df = review df[selected columns]

Display the filtered DataFrame
print(filtered_review_df)

rating is_recommended \
5 1.0

BWN RO
Lt

cw
B e e
o®o®

49972
49973
49974
49975
49976

[CRURVRCRY]
el
oo oo

review_text \
I absolutely L-O-V-E this oil. I have acne pro...
I gave this 3 stars because it give me tiny 1i...
Works well as soon as I wash my face and pat d...
this 0il helped with hydration and breakouts, ...
This is my first product review ever so that s...

PwuNRr®

Figure 2: Extracting the required columns

2.1.3 Data Pre-processing

The dataset has many unwanted entries; hence, they are removed. Figure 3 illustrates
the pre processing part of removing unwanted entries

The data has values which had different dataframes.They were corrected to perform
further computations. Figure 4 illustrates the dataframe arrangement.

The sentiment value of review texts were extracted in order to understand the senti-
ment approach of dataset. Figure 5 represents assigning of sentiment value.

As it can be observed , there were entries in negative which is not the best fit for
further computation or modeling. Hence the entries were scaled from 1-10 and drawn for
computation. Figure 6 shows the scaling of entries.

After cleaning and scaling, the dataframe was ready for modeling. Feature selection
enabled the modeling to perform with high accuracy and computing. The features such
as ’scaled_sentiment_score’ ,'rating’ and 'recommended’. Figure 7 shows entries that are
observed to be computed.

gy e e e
print("\nNull values:")
print(null_values)

Missing values:

rating 2]
is_recommended 3817
review text 59
product_name =]
brand_name =]
price_usd 2]

dtype: intea

Null values:

rating [5]
is_recommended 3817
review_text 59
product_name =]
brand_name [5]
price_usd =]

dtype: intea

import pandas as pd

Drop rows with any null values
cleaned_review_df = filtered review_df.dropna()

Display the cleaned DataFrame
print(cleaned_review_df)

Figure 3: Eliminating null values

filtered_review df['rating'] = filtered review df['rating’].astype('int64")
filtered_review df['price_usd'] = filtered_review_df['price_usd'].astype('inte4")

data_types = filtered_review_df.dtypes
print(data_types)

rating inte4
is recommended floated
review_text object
product_name object
brand name object
price usd inte4

dtype: object

Figure 4: Enlisting the dataframe as per requirement

2.2 Model Building

2.2.1 Design specification

The design specification is drawn and shown in figure 8.

2.2.2 Linear regression

Figure 9 illustrates linear regression.

Sentiment scores

: import pandas as pd
from vadersentiment.vaderSentiment impert SentimentIntensityAnalyzer

Function to get sentiment scores

def get_sentiment_scores(text):
analyzer = SentimentIntensityAnalyzer()
sentiment_scores = analyzer.polarity_ scores(text)
return sentiment_scores

Apply the function to the ‘review text' column
cleaned_review_df[sentiment_scores'] = cleaned_review_df['review_text'].apply(get_sentiment_scores)

Extract compound scores
cleaned_review df["compound score’] = cleaned_review df['sentiment_scores’].apply(lambda x: x['compound’])

Display the pataFrame with sentiment scores
print(cleaned review_df[['review _text', 'compound_score']])

review_text compound_score

Q I absolutely L-0-V-E this oil. I have acne pro... 0.7959
1 I gave this 3 stars because it give me tiny 1i... -0.7088
2 Works well as soon as I wash my face and pat d... 0.7096
3 this oil helped with hydration and breakouts, ... 0.6988
4 This is my first product review ever so that s... -0.347@
49972 Consider salicylic acid your secret weapon for... -9.3182
49973 I’ve been using this as my only moisturizer fo... 0.9057
49974 1 got breakouts whenever it’s my time of month... 0.9201
49975 I love this!!! I don’t get actual acne just an... 0.7405
49976 I have never tried anything from Strivectin bu... 9.9940

Figure 5: Assigning sentiment value

2.2.3 Logistic Regression

Figure 10 illustrates the deployment of logistic regression.

2.2.4 Decision Trees

Figure 11 displays applying of decision trees.

2.2.5 Support Vector Classification

Figure 12 shows Support vector classification.

2.2.6 Naive Bayes

Figure 13 shows the execution of Naive Bayes.

3 Comparative Analysis

The performance of algorithm was observed and the models performed will be evaluated
by accuracy, precision , recall and F1- score.

The study made many inferences. The execution of linear regression did not meet any
expectations since the low mean square error of 0.0035 was not significant for a conclusion.
Logistic regression performed with an accuracy of 96.46%, indicating a good threshold.
The performance was supported by precision and recall scores, respectively. The decision

Function to get sentiment scores

def get_sentiment_scores(text):
analyzer = SentimentIntensityAnalyzer()
sentiment_scores = analyzer.polarity scores(text)
return sentiment_scores

Apply the function to the 'review_text' column
cleaned_review df['sentiment_scores'] = cleaned_review df['review_text'].apply(get_sentiment_scores)

Extract compound scores
cleaned_review_df['compound_score'] = cleaned_review_df['sentiment_scores'].apply(lambda x: x['compound’])

Scale the compound scores to a 1-1@ range
cleaned_review_df['scaled score’'] = ((cleaned_review df['compound score'] + 1) / 2) * 9 + 1

Display the DataFrame with sentiment scores and scaled scores
print(cleaned_review_df[['review text', 'compound_score', 'scaled score']])

review_text compound_score \

[2] I absolutely L-0-V-E this oil. I have acne pro... 0.7959
1 I gave this 3 stars because it give me tiny 1i... -0.7088
2 wWorks well as soon as I wash my face and pat d... 0.7096
3 this oil helped with hydration and breakouts, ... 0.6988
4 This is my first product review ever so that s... -0.347@
49972 Consider salicylic acid your secret weapon for... -0.3182
49973 I’ve been using this as my only moisturizer fo... 0.9057
49974 I got breakouts whenever it’s my time of month... 0.9201
49975 I love thislll I don’t get actual acne just an... 0.7485
49976 I have never tried anything from Strivectin bu... 9.9940
scaled_score
e 9.08155
. ERETVVPY

Figure 6: Scaling sentiment value

Algorithm Accuracy (%) Precision Recall F1l-score
Logistic Regression 96.46 0.99 0.96 0.98
Decision Tree 95.33 0.95 0.95 0.95
Support Vector Classification 96.46 0.97 0.96 0.97
Naive Bayes 80.93 0.66 0.81 0.72

Table 4: Performance Metrics of Classification Algorithms

tree performed with 95.33% accuracy, which is a good interpretation for prediction, and
considering the ability to handle complex data and relationships, the decision tree per-
formed well. Support vector classification and Naive Bayes have performed well with
accuracy of 96.46%. Overall, the models performed well in predicting recommendations,
which have business as well as machine learning implications, with business implications
helping with revenue and machine learning implications helping as a guiding tool.

Creating a dataframe 'compute_df' which will be used to build and compute
models

compute_df = cleaned_review df[['scaled_score', ‘rating', ‘product name®, 'brand_name®,'is_recommended®]].copy()
print(compute_df)

scaled_score rating \

[} 9.08155 5
1 2.31e4e 3
2 8.69320 5
3 8.64460 5
4 3.93850 5
49972 4.06810 5
49973 9.57565 5
49974 9.64045 5
49975 8.83225 5
49976 9.97300 5
product_name brand_name \
Q Lotus Balancing & Hydrating Natural Face Treat... clarins
1 Lotus Balancing & Hydrating Natural Face Treat... clarins
2 Lotus Balancing & Hydrating Natural Face Treat Clarins
3 Lotus Balancing & Hydrating Natural Face Treat... clarins
4 Lotus Balancing & Hydrating Natural Face Treat... clarins
49972 Multi Action Clear Acne Clearing Treatment Lot Strivectin
49973 Multi Action Clear Acne Clearing Treatment Lot strivectin
49974 Multi Action Clear Acne Clearing Treatment Lot... Strivectin
49975 Multi Action Clear Acne Clearing Treatment Lot... Strivectin
49976 Multi Action Clear Acne Clearing Treatment Lot... StrivVectin

is_recommended

Q 1.0
Figure 7: Feature selection and displaying
P - . . . 7
[/ Address the | Data | C
\ reserach ’ | collection | | IData e
; Y
Sentiment | Data
E;f;z;idn | analysis prepreocessing
v
r"lr |
(. Modeling | >

Figure 8: Work flowchart

mport pandas as pd
from sklearn.model selection import train test split

Inport train_test_split
fron sklearn.linear_model import LinearRegression
from sklearn.metrics inport mean_squared_error

Prepare feat

(x) and target variable (y)
ompute_df[[B

ating’, ‘scaled score
recommended’

split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=a2)

Build a Linear regression model
model = LinearRegression()
model. Fit(x_train, y_train)

Make predictions on the test set
y_pred = model..predict (X_test)
Evaluate the model. using squared error

nse = mean_squared_error(y_test, y pred
print(FHean Squared Error: (mse)”

You can aLso print the coefficients and intercept if needed
print("coefficients:", model.coef
T ey (TR

Mean Squared Error: .03594037656341403
Coefficients: [0.26164202 ©.01041377]
Intercept: -0.37928856806175837

Figure 9: Linear regression

Logistic regression

inport pandas as pd
#rom sklearn.nodel_selection inport train_test_split
#rom sklearn.Linear model import LogisticAegression
from sklearn.metrics import accuracy_score, confusion matrix, classification_report

prepare features (x) and target v
X = compute_df(['rating’, ‘scaled
¥ = conpute_df[*is_recomended’]

nto training and
y_train, y_test

split the da
X_train, Xt

e=0.2, randon_state=12)

- split(x, y, tes

Build a Logistic regression model
model. = Logisticregression(random_state=a2)
modeL. Fit(X_train, y_train

ake predictions on the test set
_pred = madel.predict(x_test)

Fualuate the model
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion matrix(y test, y_ pred)
class_report = classification_report(y_test, y_pred)

{accuracy * 100:.26)%")
ixi\n*, conf_matrix)
print("Classi fication Report:\n", class_report)

Accuracy: 96.46%
Confusion Matrix

Figure 10: Logistic Regression

Decision tree

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Prepare features (X) and target variable (y)
= compute_df[['rating', 'scaled_score']]
y = compute_df['is_recommended']

>

Split the data into training and testing sets
(_ train, X_test, y train, y_test = train_test_split(X, y, test size=0.2, random_state=42)

>

Build a decision tree model
model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train)

Make predictions on the test set
y_pred = model.predict(X test)

Evaluate the model

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy * 100:.2f}%")
print("Confusion Matrix:\n", conf_matrix)
print(“classification Report:\n", class_report)

Accuracy: 95.33%

Confusion Matrix:

Figure 11: Decision Trees

Support vector classification

import pandas as pd

from sklearn.model selection import train_test split

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

Prepare features (X) and target variable (y)
= compute_df[['rating', 'scaled_score']]
y = compute_df['is_recommended’]

>

Split the data into training and testing sets
(train, X _test, y_train, y test = train_test split(X, y, test size=8.2, random_state=42)

>

Build an swM model
model = SvC(random_state=42)
model.fit(X_ train, y train)

Make predictions on the test set
y_pred = model.predict(X_test)

Evaluate the model

accuracy = accuracy_score(y_test, y pred)
conf_matrix = confusion matrix(y_test, y pred)
class_report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy * 100:.2f}%")
print(“Confusion Matrix:\n", conf_matrix)
print(“classification Report:\n", class_report)

Accuracy: 96.46%

Figure 12: Support Vector Classification

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialhB

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import MultinomialhB

from sklearn.metrics impert accuracy_score, confusion_matrix, classification_report# split the data inte training and testing set
X_train, X_test, y_train, y test = train_test_split(X, y, test_size=6.2, random_state=42)

Build a Naive Bayes model
model = MultinomialNB()
model.fit(x_train, y_train)

Make predictions on the test set
y_pred = model.predict(X_test)

Evaluate the model

accuracy = accuracy_score(y_test, y pred)
conf_matrix = confusion_matrix(y_test, y_ pred)
class_report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy * 100:.2f}%")
print("confusion Matrix:\n", conf_matrix)
print("Classification Report:\n", class_report)

Accuracy: 80.93%
Confusion Matrix:
[[o 1758]

Figure 13: Naive Bayes

	Introduction
	System Configuration
	Hardware requirement
	Software requirement

	Project Implementation
	Data Summary
	Data Preparation
	Data Pre-processing

	Model Building
	Design specification
	Linear regression
	Logistic Regression
	Decision Trees
	Support Vector Classification
	Naive Bayes

	Comparative Analysis

