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Enhancing Safety in Construction: A Computer
Vision Approach for Personal Protective Equipment
Detection

Dhrumil Nanji Sidapara
X21241210

1 Introduction

The configuration manual offers concise details regarding the hardware and software
prerequisites for this research. The program will additionally offer a detailed roadmap for
completing the analysis project successfully. The manual is divided into various sections
for informational clarity and guidance.

2 System Requirement

2.1 Hardware Requirements

1- Model Name: Acer Aspire E15
2- Operating System: Windows 10 64-bi
3- Processor: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz

4- Memory: 8:00 GB Ram Storage

2.2 Software Requirements

Python was the computer programming language used. The basis for this project was
Google Colab PRO, a cloud resource from Google. The software was executed in the
background during execution using a Tesla T4 GPU, NVIDIA-SMI 525.105.17, Driver
Version: 525.105.17, and CUDA Version: 12.0. An overview of all the software needs
used in this study is given in Figure 1.

3 Importing Libraries

The 'pip’ statement must be used for installing in cases when particular libraries are not
already installed. To set up Roboflow, for example, in a Google Colab, use ”%pip install
Roboflow.” The commands that can be used for importing libraries are shown in Figure
2. All of these libraries combined offer the features required to handle a Deep Learning
Image Dataset effectively.
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Figure 1: Google Colab

(’ lgit clone https://github.com/ultralytics/yolovs

B comment

%cd yolovws

%pip install -gr requirements.txt # install

¥pip install -gq roboflow

import torch
import os

from IPython.display import Image, clear_output

from roboflow import Roboflow
from ultralytics import YOLO

import glod

Figure 2: Importing Libraries
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4 Dataset Exploration

The set of pictures was downloaded from the Roboflow website and contains 11,978 photos
divided into 6,473 training images, 3,570 validation images, and 1,935 test images. Figure
3 shows the data file loading procedure and the API key. The collection of data was
fetched into the Google Colab notebook using the Roboflow API.

[ 1 from roboflow import Roboflow

# Replace 'YOUR_API_KEY' with your actual Roboflow API key

api_key = 'ZXDuBkSpiroxA30cMzaM’

rf = Roboflow(api_key=api_key, model format="yolov:", notebook="ultralytics")
project = rf.workspace("personal-protective-equipment™).project("ppes-kaxsi”)

dataset = project.version(8).download{"yolov5")

loading Roboflow workspace...
loading Robofleow project...
Downloading Dataset Version Zip in /content/datasets/PPEs-2 to yolovspytorch:: 1ee¥|[NNEENNEEN sc36s0/283629 [ee:45<e0:ee, 19319.44it/s]

Extracting Dataset Version Zip to /content/datasets/PPEs-8 in yolovspytorch:: 1ee%|[NNEEEEEN 4ccse/4026e [06:e0<e0:e0, 5286.96it/5]

Figure 3: Importing Dataset

5 Evaluation

The YOLOV5S repository was extracted along with necessary prerequisites and library
imports before model analysis was started. This included installing the required de-
pendencies, the Ultralytics YOLOv5 model, the required Roboflow prerequisites, and
the indispensable packages. To display pictures in the final result, the 'IPython.display’
package was also loaded. The extensive configuration was designed to provide a smooth
and fully-equipped setting for the evaluation of the model and examination that followed
are shown in figure 4

" lgit clone https://github.com/ultralytics/yolovs # clone
%cd yolovs
%pip install -gr requirements.txt # install
%pip install -q roboflow
hmport torch
import os
from IPython.display import Image, clear_output

Cloning into "yolov5'...

remote: Enumerating objects: 16@88, done.

remote: Counting objects: 18e% (32/32), done.

remote: Compressing objects: 18e% (31/31), done.

remote: Total 16838 (delta 1@), reused 11 (delta 1), pack-reused 16856
Receiving objects: 1ee% (16088/16088), 14.65 MiB | 15.33 MiB/s, done.
Resolving deltas: 1@8% (11842/11842), done.

/content/yolovs

190.6/198.6 kB 4.6 MB/s eta ©:00:80

3.6/3.6 MB 38.5 MB/s eta ©:00:88

654.8/654.8 kB 57.2 MB/s eta ©:00:08

62.7/62.7 kB B.4 MB/s eta ©:008:00

ERROR: pip's dependency resolver does not currently take into account all the packagss that are installed.
imageio 2.31.6 requires pillow<16.1.8,>=8.3.2, but you have pillow 18.1.8 which is incompatible.

68.5/68.5 kB 1.1 MB/s eta ©:00:00

158.3/158.3 kB 4.6 MB/s eta ©:00:80

178.7/178.7 kB 19.3 MB/s eta ©:00:88

58.8/58.8 kB 6.6 MB/s eta ©:08:00

Figure 4: YOLOVS5 repository



5.1 Ultralytics YOLOv5 Hyperparameter

Within Ultralytics YOLO, important parameters include things like learning rate and
structural information like neuron count and activation function kinds. As an example,
"Learning Rate Ir(’ establishes the step size in the direction of the loss function minimum.
"Number of Epochs epochs’ denotes a complete forward and backward processing pass
over all training examples, set here for 5 epochs. 'Batch Size batch’ refers to the num-
ber of pictures processed concurrently in a forward pass. The Tuner class was used in
the’'model.tune()’ function to parametric tune YOLOv5n on PPE-8 over five epochs. This
included implementing an AdamW optimizer and limiting confirmation, checkpointing,
and visualization to the last epoch in order to facilitate rapid tweaking. Using momentum
and stochastic gradient descent (SGD), the optimizer and weight decay coefficients set at
0.9209 and 0.0005, respectively. The YAML file encapsulates the optimally performing
hyperparameters discovered during the tuning process, as illustrated in Figure 6.

[ 1 from ultralytics import YOLO

# Initialize the YOLO model
model = YOLO( 'yolov5s.pt')

# Tune hyperparameters on PPE-8 for 5 epochs
model.tune(data="/content/datasets/PPEs-8/data.yaml’, epochs=5, iterations=5, optimizer='Adami', plots=False, save=False, val=False)

Figure 5: Hyperparameter

1r@: 8.21001

1rf: 2.2091%
momentum: @.920%
weight decay: 2.8885
warmup_epochs: 2.72434
warmup_momentum: @.73337
box: 7.37398

cls: 2.58774

dfl: 1.510a85

hsv_h: 2.081528
hsv_s: ©.693@84
hsv_w: ©.328952
degrees: 6.8
translate: @.89797
scale: ©.48178
shear: 2.0
perspective: 2.0
flipud: 8.@

fliplr: 8.58675
mosaic: ©.9757
mixup: @.@
copy_paste: 8.8

Figure 6: Results of Hyperparameter

5.2 Training YOLOv5 Detection

Multiple variables are given in this context: 'img’ indicates the dimensions of the source
picture, ’batch’ the batch size, ’epochs’ the number of simulated epochs, and ’data’ the
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path to the YAML file. ’Cache’ speeds up training by caching pictures, whereas 'nosave’
only save the final checkpoint. The PPE-8 the file from Roboflow was used to simulate
YOLOV5s in order to evaluate the model; this took about 5.282 hours for 50 epochs. The
analysis criteria, which utilizes an Intersection over Union (IoU) criterion with a score
threshold of 0.5, is calculating the percentage of overlap between the predicted and real
bounding boxes. Figure 7 illustrates this process.

!python train.py --img 416 --batch 16 --epochs 5@ --data {dataset.location}/data.yaml --weights yolovSs.pt --cache

2023-12-84 19:16:55.573168: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory f
2023-12-84 19:16:55.573219: E tensorflow/compiler/xla/stream_executor/cuda/cuda fft.cc:689] Unable to register cuFFT factory: Attempting to register factory fo
2023-12-04 19:16:55.573256: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory
train: weights=yolovSs.pt, cfg=, data=/content/datasets/PPEs-8/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=58, batch_size=16, imgsz=416, rect=False,
github: up to date with https://github.com/ultralytics/yolovs

YOLOvS g? v7.8-247-g3f02fde Python-3.1@.12 torch-2.1.8+cull8 CUDA:@ (Tesla T4, 15182MiB)

hyperparameters: 1r@=0.e1, lrf=0.061, momentum=8.937, weight_decay=0.0005, warmup_epochs=3.8, warmup_momentum=0.8, warmup_bias_lr=0.1, box=6.@5, cls=08.5, cls_pu
Comet: run 'pip install comet ml' to automatically track and visualize YOLOVS g7 runs in Comet

TensorBoard: Start with 'tensorboard --logdir runs/train’, view at http://localhost: 6806/

Downloading https://github.com/ultralytics/yolovs/releases/download/v7.8/yolovss.pt to yolovSs.pt...

10@% 14.1M/14.1M [80:00<00:90, 280MB/s]

Figure 7: Train yolovhs on custom data for 50 epochs

Epoch GPU_mem  box_loss obj loss c¢ls_loss Instances Size
45/49 1.83G 6.82091 0.81172 ©.8886721 36 416: 1ee¥ 1214/1214 [86:@3<80:88, 3.34it/s]
Class Images Instances P R mAPS®  mAPS@-95: 1@6X% 112/112 [ee:27<e@:ee, 4.11it/s]
all 3578 7718 8.677 6.43 6.364 8.155

58 epochs completed in 5.282 hours.
Optimizer stripped from runs/train/exp/weights/last.pt, 14.4MB
Optimizer stripped from runs/train/exp/weights/best.pt, 14.4MB

Validating runs/train/exp/weights/best.pt...
Fusing layers...
Model summary: 157 layers, 784248% parameters, 8 gradients, 15.9 GFLOPs

Class Images Instances P R mAPS®  mAPS@-95: 1@eX 112/112 [ee:31<e@:ee, 3.57it/s]
all 3578 7718 8.665 8.458 8.311 8.158
glove 3578 Qa4 e8.712 8.937 B.91 B8.475
goggles 3578 1192 8.81 @.601 6.643 B.384
helmet 3578 283 1 a ] 8
mask 3578 253 1 a a 8
no-suit 3578 15 8.816 B.8 8.8386 6.8261
no_glove 3578 1548 @.553 8.731 8.6 0.277
no_goggles 3570 1384 B.782 8.600 8.702 §.338
no_helmet 357@ 229 1 a 2] 2
no_mask 357@ 648 1 <] <] 2
no_shoes 3578 525 8.157 8.169 8.184 6.8168
shoes 3578 639 0.992 @.556 8.599 9.231
suit 3578 12 G.8484 1 6.149 B.144

Results saved to runs/train/exp

Figure 8: Model Summary after running 50 epochs

5.3 Dectecting all the valid images

Using the best.pt weights file from the YOLOv5 model, 3570 valid photos (with a picture
size of 416) were analyzed, and all 12 classes from 1 to 12 were correctly detected and
numbered. Figure 9 displays the findings, together with the detection status, time frame
in milliseconds, and class numbering.

5.4 Printing the final results

A collection of legitimate photographs found in the PPE dataset are printed using the
code in image 10. It looks for folders that match a given pattern by using the glob
function. Furthermore, the pictures are displayed by the code using ”IPython.display
import Image”. The final result of valid labels is shown in Figure 11, while the end result
of valid predicted pictures is shown in Figure 12.



LT = I« O
!python detect.py --weights /content/yolov5/runs/train/exp/weights/best.pt --img 416 --conf @.1 --source {dataset.location}f‘valid/imagesl

image 3877/3578 /content/datasets/PPEs-8/valid/images/p65213195 jpg.rf.af45f2527316832360dddd3fb5@8dcbe. jpg: 416x416 (no detections), 6.9ms

image 3878/357@ /content/datasets/PPEs-8/valid/images/p65213198_jpg.rf.c4443d19353b694eb7723d5aecf48d5d. jpg: 416x416 (no detections), 5.6ms

image 3879/357@ /content/datasets/PPEs-8/valid/images/p65213199_jpg.rf.6c212f855bfdafb515bbb7d1a864a0fd. jpg: 416x416 (no detections), 7.1ms

image 388@/3578 /content/datasets/PPEs-8/valid/images/p656213163 jpg.rf.@cdf2820594e7ba5973dc3842428c5088. jpg: 416x416 2 no-suits, 1 no_glove, 7.6ms
image 3881/357@ /content/datasets/PPEs-8/valid/images/p656213189_jpg.rf.cc19c97002cd6bad41944b3fe73ebad6. jpg: 416x416 1 no-suit, 1 no_glove, 5.8ms
image 3882/3578 fcontent/datasets/PPEs-8/valid/images/p656213111 jpg.rf.feb19bo0sfb778f165f21cc2d9782421. jpg: 416x416 2 no-suits, 1 no_glove, 5.5ms
image 3883/357@ /content/datasets/PPEs-8/valid/images/p656213113_jpg.rf.888b64a22213f8F9327356caa29944a6.jpg: 416x416 1 no-suit, 1 no_glove, 5.4ms
image 3884/357@ /content/datasets/PPEs-8/valid/images/p656213117_jpg.rf.bf58d99d49458f6cb%5ad522b98a158d. jpg: 416x416 1 no-suit, 5.4ms
image 3885/357@ /content/datasets/PPEs-8/valid/images/p656213121 jpg.rf.9132d25402951609c4bfc45affe34315.jpg: 416x416 1 no-suit, 1 no_glove, 5.8ms
image 3886/357@ /content/datasets/PPEs-8/valid/images/p656213128_jpg.rf.bd4923bc5764374bde87cc86d1bblbeb. jpg: 416x416 1 no_glove, 7.4ms
image 3887/357@ /content/datasets/PPEs-8/valid/images/p656213131_jpg.rf.9725d7fa188766750a84ecth89c4ab28.jpg: 416x416 1 no_glove, 5.7ms
image 3888/3578 /content/datasets/PPEs-8/valid/images/p656213155_jpg.rf.@e7351220549c70d44fa710ad74feabb. jpg: 416x416 1 no_glove, 2.3ms

image 3889/357@ /content/datasets/PPEs-8/valid/images/p656213163_jpg.rf.4c4d8676@c18dacocefad7ba®ab59%e5a.jpg: 416x416 1 no-suit, 9.3ms

image 389@/357@ /content/datasets/PPEs-8/valid/images/p656213165_jpg.rf.669f8ac@fd14e8c27362b13733eb6575.jpg: 416x416 2 no-suits, 1 no_glove, 9.1ms
image 3891/3578 /content/datasets/PPEs-8/valid/images/p656213172_ jpg.rf.1676e58d797559af3d3685741d63946f. jpg: 416x416 1 no_glove, 9.9ms

image 3892/357@ /content/datasets/PPEs-8/valid/images/p656213173_jpg.rf.@72bebbc6949791b@db8f3be93191ae3.jpg: 416x416 1 no_glove, 7.5ms

image 3893/357@ /content/datasets/PPEs-8/valid/images/p65621336_jpg.rf.a18f5645c445c04df92716df78ef5514.jpg: 416x416 1 no_glove, 7.3ms

image 3894/357@ /fcontent/datasets/PPEs-8/valid/images/p65621348 jpg.rf.@04bfe71ea7c4386d65c@c7be3fcbdfe.jpg: 416x416 1 no-suit, 1 no_glove, 8.9ms
image 3895/3578 /content/datasets/PPEs-8/valid/images/p65621348 jpg.rf.@efeadcc8c26b7337031e14988228295.jpg: 416x416 1 no-suit, 2 no_gloves, 9.1ms
image 3896/357@ /content/datasets/PPEs-8/valid/images/p65621356_jpg.rf.f38475f6144bc44376282c825478c256.jpg: 416x416 2 no_gloves, 7.1ms

image 3897/3578 /content/datasets/PPEs-8/valid/images/p6562135 jpg.rf.d81451cldedc18@@5eed5@3elb74bc3a. jpg: 416x416 1 no-suit, 1 no_glove, 7.1ms

Figure 9: Valid set

import glob
from IPython.display import Image, display

i=o
for imageName in glob.glob('/content/yolovs/runs/train/exp/™.jpg’):
i+=1

if 1 ¢ 8:
display({Image(filename=
print{™\n™)

Figure 10: Printing final results
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