

Configuration Manual

MSc Research Project Programme Name

Lucky Shrivastava Student ID: x21198594

School of Computing National College of Ireland

Supervisor:

Christian Horn

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Lucky Shrivastava
Student ID:	x21198594
Programme:	Programme Name
Year:	2023
Module:	MSc Research Project
Supervisor:	Christian Horn
Submission Due Date:	14/12/2023
Project Title:	Configuration Manual
Word Count:	594
Page Count:	7

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).□Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).□You must ensure that you retain a HARD COPY of the project, both for□

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Lucky Shrivastava x21198594

1 Introduction

The Configuration manual explains step by step process involved in the implementation of this research Real-time Pedestrian Detection using YOLO-NAS algorithm. The prerequisite configuration of Hardware and Software for this research has been mentioned in this Configuration Manual. The aim of this research is to identify and detect Pedestrian using the YOLO-NAS technique. It is a Single Stage Detection (SSD) technique which uses the Neural Architecture Search for finding the best architecture for detection. It is versatile, robust and fast enough to be implemented for real-time implementation. The Caltech dtatset ¹ has been explored in this research for detecting Pedestrians.

2 System Specification

The research project was conducted using the open-source software Jupyter Notebook and Google Colab which is an effective tool with pre-loaded work environment for easy installation and use of libraries. The Hardware and Software configuration required for this research are listed below.

2.1 Hardware

The hardware parts consist of the CPU (central processing unit), memory, storage, network cards, motherboards, and other important components. The specifics employed in this project are outlined in Figure 1. During the project's initial phase, a local environment was utilized for data sorting, visualization, and processing. Additionally, the system incorporates a storage space of 512 GB. System Specification:

Google Colab Specifications:

- RAM 12 GB
- GPU NVIDIA T4
- Disk Space : 100 GB

¹https://www.kaggle.com/datasets/kalvinquackenbush/caltechpedestriandataset/data

í	Device specifications				
	Device name	Lucky			
	Processor	11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz			
	Installed RAM	16.0 GB (15.8 GB usable)			
	Device ID	11AFD37C-289C-4FB0-8FC3-6BA63DB673E1			
	Product ID	00342-42597-85708-AAOEM			
	System type	64-bit operating system, x64-based processor			
	Pen and touch	No pen or touch input is available for this display			

Figure 1: Local System Hardware Specification

2.2 Software

This research was executed using Python Programming Language. All the processes from Importing libraries, data extraction, data Pre-processing, Exploratory Data Analysis, Model Building and Evaluation metrics are done through the python on Jupyter Notebook and Google colab. The Local environment is used in the initial phase for Data Preprocessing and then Google Colab is used for setting the training parameters and Model Building.

- Programming Language Python 3.10.12
- Cloud IDE Google Colab
- \bullet Annotation File Provided with the dataset and used the recommended github notebook for converting it to YOLO format 2

Run this command to check the GPU specification in your system as shown in figure 2

3 Importing Libraries

The first step in this research is to import all the necessary libraries required like numpy, pandas, torch vision, super-gradients, pycocotools, matplotlib, scikit learn, etc as shown in Figure 3. If any other libraries are required they can be imported later.

3.1 Generating Annotation File

Now, the annotation files are generated for the video sequences of the data as shown in Figure 4. to index it with Bounding Boxes later.

3.2 Generating Image Files from Video Sequences

The Video sequences are converted into images for detecting the pedestrians using the Bounding Box as shown in Figure 5 and Figure 6

 $^{^{2}} https://github.com/simonzachau/caltech-pedestrian-dataset-to-yolo-format-converter$

!nvidia-smi						
executed in 125	ms, finished	00:40:25 2023-1	2-12			
Tue Dec 12	00:40:2	5 2023				
+	II 512.7	8 Dri	ver V	ersion: 512.78	CUDA Versio	n: 11.6
GPU Name Fan Temp	e) Perf	TCC/WD Pwr:Usage/	DM Cap	Bus-Id Disp.A Memory-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
0 NVIC N/A 380	DIA GeFo P8	rce WDD 2W / N	===+= M /A 	00000000:01:00.0 Off 0MiB / 4096MiB	+======== 0%	N/A Default N/A
+ Processes GPU GI	: : :	PID	 Tvpe	Process name		+ GPU Memory
п) ID		21			Usage
0 N/ 0 N/	 A A<	2404 9260 10084 12612 13608 13652 14048 14788 23312	C+G C+G C+G C+G C+G C+G C+G C+G C+G	<pre>cw5n1h2txyewy\LuartMenuExperienystemEventUtiliser\Application4vj0pshhgkwm\Te2txyewy\TextInpv10z8vjag6ke6\H8bbwe\WindowsTen1h2txyewy\Sear</pre>	ockApp.exe ceHost.exe tyHost.exe \brave.exe legram.exe utHost.exe P.myHP.exe rminal.exe chHost.exe	N/A N/A

Figure 2: Checking GPU Specification

4 Data Exploration

In this section, the bounding boxes are converted from YOLO to COCO format as shown in Figure 7 The 'convert_yolo_to_coco' function is designed to switch bounding box coordinates from YOLO style to COCO format. In YOLO, a bounding box is characterized by its midpoint (x, y) and size (w, h). This function transforms these YOLO coordinates into COCO format by considering the image width and height (set to 640x480). The result is a bounding box specified by its minimum and maximum x and y values. This conversion is handy for adapting bounding box information between different formats when working on object detection tasks.

5 Mounting Google Drive with Google Colab

After data exploration, a small section of dataset is taken and uplaaded in Google Drive so that to use that in Google colab and the directories are set as shown in Figure 7

6 Preparing data for training

The Trainer modules are set for setting up the training environment. The training parameters for this model are configured to ensure optimal performance and accuracy. Key settings include the use of the Adam optimizer with specified weight decay, a cosine learning rate schedule, and mixed precision training for improved efficiency. Exponential Moving Average (EMA) is employed to stabilize training, and specific metrics, such as mAP at different IoU thresholds, are monitored during validation. The loss function utilized is PPYoloELoss, tailored for object detection tasks, with considerations for class

Figure 3: Importing Libraries

count and regularization. The model is trained for a defined number of epochs, and the training process includes warm-up epochs to gradually adjust the learning rate as shown in figure 8. Overall, these configurations aim to facilitate effective training and evaluation of the model for object detection tasks.

7 Model Training

This research required multiple iterations of training our model using different and epochs as shown in figure 8, The model is trained for 4 set training epochs which 25,50,75 and 100. The training time for 25 epochs was half an hour and it took much time for running 100 epochs.

```
# Generate Annotations
def convertBoxFormat(box):
    (box_x_left, box_y_top, box_w, box_h) = box
    (image_w, image_h) = (640, 480)
    dw = 1./image_w
   dh = 1./image_h
    x = (box_x_left + box_w / 2.0) * dw
   y = (box_y_top + box_h / 2.0) * dh
    w = box_w * dw
    h = box_h * dh
    return (x, y, w, h)
annotation_dir = 'C:/Users/lucks/RIC/caltech/annotations/annotations/*'
classes = ['person']
number_of_truth_boxes = 0
img_id_list = []
label_list = []
split_list = []
num_annot_list = []
# Sets
for sets in tqdm(sorted(glob.glob(annotation_dir))):
    set_id = os.path.basename(sets)
    set_number = int(set_id.replace('set', ''))
    split_dataset = "train" if set_number <=5 else "val"</pre>
    # Videos
    for vid_annotations in sorted(glob.glob(sets + "/*.vbb")):
        video_id = os.path.splitext(os.path.basename(vid_annotations))[0] # Video ID
        vbb = loadmat(vid_annotations) # Read VBB File
        obj_lists = vbb['A'][0][0][1][0] # Annotation List
        obj_lbl = [str(v[0]) for v in vbb['A'][0][0][4][0]] # Label List
```

Figure 4: Generating Annotation File

```
# Generate Images from Video Files
def save_img(dir_path, fn, i, frame):
    cv2.imwrite('{}/{}_{}_{}_{}.png'.format(
         dir_path, os.path.basename(dir_path), os.path.basename(fn).split('.')[0], f"{i:04d}"),
          frame)
def convert_caltech(split, df):
    # Directory Path
     print(split)
     input_dir = r'C:\Users\lucks\RIC\caltech'
output_dir = 'datasets\images'
if(split=="Train"):
          output_dir = os.path.join(output_dir, "train")
     else:
         output_dir = os.path.join(output_dir, "val")
     output_dir = os.path.join(output_dir, "caltechpedestriandataset")
if(os.path.exists(output_dir)==False):
          os.mkdir(output_dir)
     # Sets
     sets_list = sorted(glob.glob(os.path.join(input_dir, split+"/*")))
     print("Total Sets:", len(sets_list))
for dname in sets_list:
          dname2 = dname.split("\\")[-1]
          output_dir2 = os.path.join(output_dir, dname2)
          if(os.path.exists(output_dir2)==False):
               os.mkdir(output_dir2)
          df_filtered = df[df["set_id"]==dname2].reset_index(drop=True)
          # Videos
          videos_list = list(df_filtered["video_id"].unique())
         print("Total Videos:", len(videos_list))
for i, vd in enumerate(videos_list):
               fn = os.path.join(dname, dname2, vd+".seq")
               print(fn)
```

Figure 5: Generating Image Files

	<pre>convert_caltech("Train", df_train_filtered)</pre>		
executed in 8m 42s, finished 00:50:09 2023-12-12			
	Train		
	Total Sets: 6		
	Total Videos: 12		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V001.seq		
	Total Frames: 299		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V002.seg		
	Total Frames: 226		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V004.seg		
	Total Frames: 76		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V006.seq		
	Total Frames: 634		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V007.seg		
	Total Frames: 494		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V008.seg		
	Total Frames: 425		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V009.seg		
	Total Frames: 526		
	C:\Users\lucks\RIC\caltech\Train\set00\set00\V010.seg		
	Total Frames: 517		

Figure 6: Cutting Video into frames

Figure 7: Mounting Google Drive

train_params = {
'silent_mode': False,
"average_best_models":True,
"warmup_mode": "linear_epoch_step",
"warmup_initial_lr": 1e-6,
"lr_warmup_epochs": 3,
"initial_lr": 5e-4,
"lr_mode": "cosine",
"cosine_final_lr_ratio": 0.1,
"optimizer": "Adam",
"optimizer_params": {"weight_decay": 0.0001},
"zero_weight_decay_on_bias_and_bn": True,
"ema": True,
"ema_params": {"decay": 0.9, "decay_type": "threshold"},
"max_epochs": EPOCHS,
"mixed_precision": True,
"loss": PPYoloELoss(
use_static_assigner=False,
<pre>num_classes=len(dataset_params['classes']),</pre>
reg_max=16
),
"valid_metrics_list": [
DetectionMetrics_050(
score_thres=0.1,
<pre>top_k_predictions=300,</pre>
num_cls=len(dataset_params['classes']),
normalize_targets=True,
post_prediction_callback=PPYoloEPostPredictionCallback(
score_threshold=0.01,
nms_top_k=1000,
max_predictions=300,

Figure 8: Preparing data for training

%cd /content/drive/MyDrive/train/ped_dataset

```
for model_to_train in models_to_train:
    trainer = Trainer(
        experiment_name=model_to_train,
        ckpt_root_dir=CHECKPOINT_DIR
)

model = models.get(
    model_to_train,
    num_classes=len(dataset_params['classes']),
    pretrained_weights="coco"
)

trainer.train(
    model=model,
    training_params=train_params,
    train_loader=train_data,
    valid_loader=val_data
)
```

Figure 9: Model Training