

Configuration Manual

A Machine Learning Framework for Predicting Crop Production in Support of SDG13 Climate Action

> MSc Research Project Data Analytics

Amrit Laxmanasa Shidling Student ID: x21198951@student.ncirl.ie

School of Computing National College of Ireland

Supervisor: Dr. Paul Stynes

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Amrit Laxmanasa Shidling
Student ID:	x21198951@student.ncirl.ie
Programme:	Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Dr. Paul Stynes
Submission Due Date:	14/12/2023
Project Title:	Configuration Manual
Word Count:	961
Page Count:	11

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> Internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use another author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Amrit Laxmanasa Shidling
Date:	31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).			
Attach a Moodle submission receipt of the online project submission, to			
each project (including multiple copies).	Í Í		
You must ensure that you retain a HARD COPY of the project, both for			
your own reference and in case a project is lost or mislaid. It is not sufficient to keep	Í Í		
a copy on computer.	(

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only					
Signature:					
Date:					
Penalty Applied (if applicable):					

Configuration Manual

Amrit Laxmanasa Shidling x21198951@student.ncirl.ie

1 Introduction

This configuration manual provides thorough information about hardware, and software requirements to run the project "A Machine Learning Framework for Predicting Crop Production in Support of SDG13 Climate Action". The documents also provide the step by step instructions on how to execute the project code.

2 System Requirement

The following section lists the minimum requirements for hardware and software. The local configuration of the development system is shown in 1.

2.1 Hardware Requirement

()	Device specificati	ions	Сору	^
	Device name Processor Installed RAM Device ID Product ID System type Pen and touch	Amrit AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz 8.00 GB (7.35 GB usable) C0E8ABA8-F80A-421E-AAC7-5C6E8D870D97 00342-20931-70963-AAOEM 64-bit operating system, x64-based processor No pen or touch input is available for this display		
Relat	ed links Domair	n or workgroup System protection Advanced system settings		
	Windows specific	ations	Сору	^
	Edition Version Installed on OS build Experience Microsoft Service Microsoft Softwa			

Figure 1: System Specification

- Processor: AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz or Intel
- Installed RAM: 8.00 GB
- System type: 64-bitoperating system, x64-based processor
- Storage: 500 GB HDD

2.2 Software Requirement

- **Microsoft Excel:** The datasets are downloaded and stored as comma separated value(csv) files.
- **Tableau:** Tableau ¹ version 2023.1 is used for the extraction of data from pdf files (as shown in Figure 2), especially the crop production information which is downloaded from the USDA website.

ile Data Server Window Help												
$\ast \leftarrow \rightarrow \multimap \cdot \blacksquare \bigcirc$	0.P	age 21	Table 2 (crop	an22)					Connecti Live	on O Extract		ilters
Connections Add									© Live	Extract		1 Auu
cropan22 PDF file		L Table 2										
Tables o	Page 2.	L Table 2	View Data: Page 2	7 Table 1					×			
Use Data Interpreter			new butu. Fuge E						~			
Data Interpreter might be able to clean your PDF file workbook.			Tables <	Page 27 Table 1 43 rows 7 fields								
Page 18 Table 1			Page 27 Table 1	Abc	Abc	Abc	Abc	Abc				
Page 19 Table 1				Page 27 Table 1	Page 27 Table 1	Page 27 Table 1	Page 27 Tabl		1			
III Page 19 Table 2				2019-2021 (continued)	F2	F3	F4	F5				
III Page 20 Table 1									*			
I Page 21 Table 1				Arkansas	52.0	55.0	58.0	2,600				
I Page 21 Table 2				California	50.0	75.0	82.0	5,000				
I Page 22 Table 1				Colorado	49.0	27.0	37.0	98,000	_			
I Page 23 Table 1	Page 211	fable 2		Delaware	72.0	73.0	70.0	3,600			5 → rows	<u>ه</u> ~
I Page 24 Table 1				Georgia	56.0	55.0	56.0	2.800				
I Page 25 Table 1				-					e 21 Table 2	Abc Page 21 Table 2	Abc Page 21 Table 2	Abc Page 21
I Page 26 Table 1	Name			Idaho	87.0	101.0	71.0	59,160	9 21 1009 2	F6	Production	F8
I Page 27 Table 1	Page 21	Table 2		Illinois	67.0	68.0	79.0	36,850				
I Page 28 Table 1				Indiana	62.0	70.0	85.0	16,120	null	null	null	1
I Page 29 Table 1	Fields			Kansas	52.0	45.0	52.0	348,400	21	2019	2020	2021
Page 30 Table 1	Type	Field Name		Kentucky	76.0	63.0	87.0	25,080	ishels)	(1,000 bushels)	(1,000 bushels)	(1,000)
III Page 31 Table 1			10,000 → rows	4	70.0	03.0	07.0		+ .0	210	320	540
문 New Union	Abc	F1	Page 21 Table 2	*1	California	null 60	0 7	5.0	65.0	120	300	325
Sob New Table E Go to Worksheet	× Abc	F2	Page 21 Table 2	F2					10.0	220	- 30	010
do to worksheet		6.0	Page 21 Table 2	F3								
Data Source Sheet 1 🖳 🗒 🛛	ri.											

Figure 2: Tableau for extracting crop data from PDF

• Jupyter Notebook: Anaconda3² Navigator which provides different software to perform project execution. Jupyter Notebook is installed through Anaconda and It is used as an IDE for the project implementation.

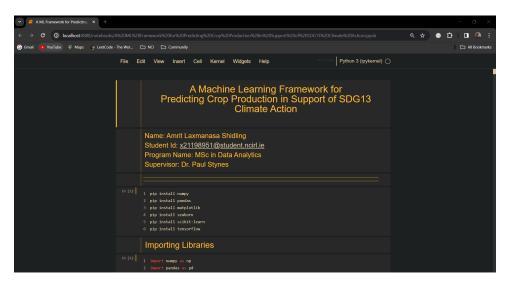


Figure 3: Jupyter notebook for project code

¹https://www.tableau.com/

²https://www.anaconda.com/

• **Python:** Python version 3.11.0 (as shown in Figure 4 is used throughout the project including Exploratory Data Analysis(EDA), Data Preprocessing, Model Training and Evaluation.

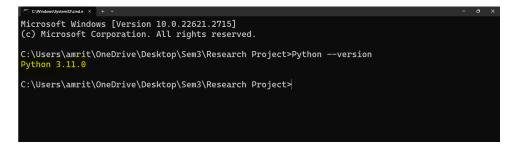


Figure 4: Python Version

3 Package Requirement

The Python packages were installed using pip in Jupyter Notebook. The packages required are listed below:

- Pandas: Data manipulation and analysis
- NumPy: Numerical operations and handling arrays
- Matplotlib: Visualisation Library
- Seaborn: Data visualization library based on Matplotlib.
- scikit-learn: Machine Learning tasks, including data splitting, preprocessing, model evaluation, and ensemble methods.
- Tensorflow: Building and training deep learning models, particularly a Sequential model.

The packages can be installed using the following commands:

!pip install numpy
!pip install pandas
!pip install matplotlib
!pip install seaborn
!pip install scikit—learn
!pip install tensorflow

4 Dataset Description

There are 3 different datasets are used in the project.

1. Soil Moisture and Drought Dataset: This dataset is obtained from obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program and published in Kaggle ³

³https://www.kaggle.com/datasets/cdminix/us-drought-meteorological-data

Variable	Description	Units
WS10M_MIN	Minimum Wind Speed at 10 Meters	m/s
QV2M	Specific Humidity at 2 Meters	g/kg
T2M_RANGE	Temperature Range at 2 Meters	°C
WS10M	Wind Speed at 10 Meters	m/s
T2M	Temperature at 2 Meters	°Ć
WS50M_MIN	Minimum Wind Speed at 50 Meters	m/s
T2M_MAX	Maximum Temperature at 2 Meters	°Ć
WS50M	Wind Speed at 50 Meters	m/s
TS	Earth Skin Temperature	°Ć
WS50M_RANGE	Wind Speed Range at 50 Meters	m/s
WS50M_MAX	Maximum Wind Speed at 50 Meters	m/s
WS10M_MAX	Maximum Wind Speed at 10 Meters	m/s
WS10M_RANGE	Wind Speed Range at 10 Meters	m/s
PS	Surface Pressure	kPa
T2MDEW	Dew/Frost Point at 2 Meters	°C
T2M_MIN	Minimum Temperature at 2 Meters	°C
T2MWET	Wet Bulb Temperature at 2 Meters	°C
PRECTOT	Precipitation	mm day ⁻¹
state_name	State Name	_
production	Crop Production	in 1,000 bushels

Figure 5: Data Description of Soil Moisture and Drought Dataset

2. Crop Production Dataset: This dataset is obtained from the United States Department of Agriculture website ⁴. The description of the dataset is as shown in 1

Column	Description
state_name	State name
yield_per_acre_2019	Yield per acre in 2019
yield_per_acre_2020	Yield per acre in 2020
yield_per_acre_2021	Yield per acre in 2021
production_2019	Production in 2019
$production_2020$	Production in 2020
$production_2021$	Production in 2021

Table 1. Detect Deceminti

3. Fips code dataset: This dataset is obtained from the GitHub repository ⁵. The description of this dataset is shown in 2.

Table 2: Country Fips code dataset							
Column	Description						
fips	FIPS code						
$county_name$	County name						
$state_abbr$	State abbreviation						
$state_name$	State name						
long_name	Long name						

⁴https://www.usda.gov/

⁵https://github.com/kjhealy/fips- codes/blob/master/state and county fips master.csv

5 Folder Structure

This section explains the local folder structure for executing the project. The project is executed with 2 different .ipynb (Python Notebook) files. The first one with the name "experiment Drought Prediction Classfication.ipynb" contains code for state-of-the-art experiment execution. The second file named "Prediction of crop production.ipynb" contains the code for all other experiments.

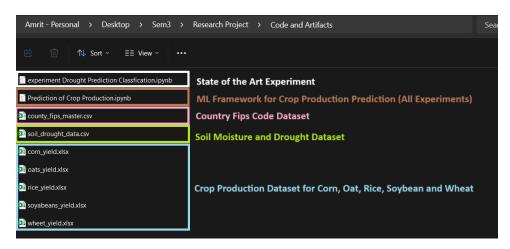


Figure 6: Filenames and Folder Structure

All the files should be in the same folder as the code reads these datafiles from the folder where code is present.

6 Downloading and Execution of code

As there is a restriction on the size of the artefact that can be uploaded (100MB), The dataset and code artefacts are uploaded to one drive.

Here is a link to code and data: ClickForCodeData.

If the previous link doesn't work due to an encoding issue, the short URL can be used: ClickForCodeData. Clicking on this link will open the folder as shown in the Figure 7

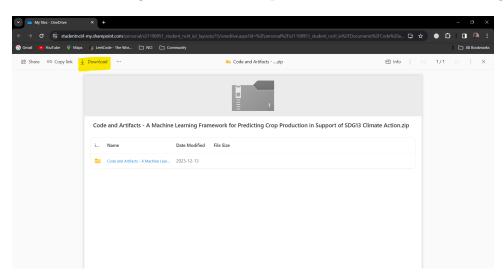


Figure 7: Zipped Folder Containing Code and Data Files

By clicking on the download as shown in Figure 7 the code and data will be downloaded. This is a zipped file, which needs to be unzipped.

To run the code the Jupyter Notebook should be started from either Anaconda or from the command prompt by navigating the folder - opening the cmd prompt - running command "Python -m notebook". It will open a new tab in the default browser as shown in Figure 8.

← → C O localhost.8888/tree	
🌀 Gmail 😐 YouTube 🍳 Maps 👍 LeetCode - The Wo 🗀 NCI 🗀 Communify	🗅 All Bookmarks
Files Running Clusters	Uplaad New- &
• •	Name ∳ Last Modified File size Running 13 minutes ago 1.44 MB Running 4 minutes ago 3.37 MB

Figure 8: Running the code

The next step is to open the file and run the code by using the option Kernal -i. Restart and Run All as shown in Figure 9. It will run all the code. The code covers all the sections from importing libraries to evaluating models. while running the code, some of the files are generated for storing intermediate results.

localhost:8888/notebooks/e	xperimen	t%20Droi	ught%20I	Prediction	%20Class	fication.ipyn	b						ବ୍	☆
ouTube 🎈 Maps 🔶 LeetCode -	The Wo			Communify										
	File		View	Insert	Cell		Widgets	Help			Python 3 (ipyl	(ernel) 🔿		
			rint(pca	.explain	ed_varia	Interrupt	Ι,Ι							
		[0.353	80925 0.23	710908 0.13	3101947 0.(Restart	0,0							
		LDA	A For Di	imensio	nality R	Restart & 0	Clear Output							
		LDA	A on Ne	ar Miss	Downs	Restart & F	Run All							
			_train_d	_compone res_nm_L LLDA_tra	DAreduce	Reconnect Shutdown		rain_dres_r	nm,y_train_dro	es_nm)				
						Change ke	ernel	•						
		• 1 pi 2 pi									_train_dres_nm sformed.shape)	_LDAred		

Figure 9: Running the code

The modular code is written for each of the functionality including Exploratory Data Analysis, Data Manipulation, Model Training and Evaluation. Each of the sections is highlighted with the details. For each crop type, 4 models are trained and there are 5 types of crops, a total of 20 models and each model evaluation is provided in the code.

7 Running Code

The below sections give an overview of some of the sample codes from the project.

• Importing Libraries: All required libraries are imported as shown in Figure 10

	mporting Libraries
In [1]: 1	import numpy as np
2	import pandas as pd
3	import matplotlib.pyplot as plt
4	import seaborn as sns
5	
6	<pre>from sklearn.model_selection import train_test_split, cross_val_score, KFold</pre>
7	from sklearn.preprocessing import StandardScaler, MinMaxScaler
8	<pre>from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score</pre>
9	from sklearn.linear_model import LinearRegression
10	<pre>from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor</pre>
11	<pre>from sklearn.inspection import permutation_importance</pre>
12	
13	import tensorflow as tf
14	from tensorflow.keras.models import Sequential
15	from tensorflow.keras.layers import LSTM, Dense

Figure 10: Importing Libraries

• Combining Dataset: The datasets are combined based on the state FIPs code and Date as shown in Figure 11

	Function for Combining Soil Moisture and Crop data
In [20]:	<pre>1 def prepare_data_for_model(drought_soil_df, crop_production_file_path): 2 yield_df = pd.read_csv(crop_production_file_path) 3</pre>
	<pre>4 melted_df = pd.melt(yield_df, id_vars=['state_name'], var_name='variable', value_name='value')</pre>
	<pre>5 melted_df['year'] = melted_df['variable'].str.extract(r'(\d+)')</pre>
	<pre>6 melted_df['type'] = melted_df['variable'].str.extract(r'(.+)_\d+')</pre>
	<pre>7 result_df = melted_df.pivot_table(index=['state_name', 'year'], columns=['type'], values='value', a</pre>
	<pre>8 result_df.columns = ['state_name', 'year', 'yield_per_acre', 'production']</pre>
	10 yield_df = result_df
	<pre>11 soil_drought_yield_df = drought_soil_df</pre>
	<pre>12 soil_drought_yield_df['date'] = pd.to_datetime(soil_drought_yield_df['date'])</pre>
	<pre>13 soil_drought_yield_df['year'] = soil_drought_yield_df['date'].dt.year</pre>
	<pre>14 yield_df['year'] = yield_df['year'].astype(int)</pre>
	<pre>15 soil_drought_yield_df = pd.merge(soil_drought_yield_df, yield_df, on=['state_name', 'year'], how='1</pre>
	16
	17 soil_drought_yield_df.head()
	<pre>18 soil_drought_yield_df[soil_drought_yield_df['production'].notnull()].head()</pre>
	<pre>19 soil_drought_yield_df['production'] = pd.to_numeric(soil_drought_yield_df['production'].replace('(N</pre>
	<pre>20 soil_drought_yield_df = soil_drought_yield_df[soil_drought_yield_df['production'].notnull()]</pre>
	21
	<pre>22 soil_drought_yield_df = soil_drought_yield_df[soil_drought_yield_df['score'].notnull()]</pre>
	23
	24 return soil_drought_yield_df

Figure 11: Combining Dataset

• Exploratory Data Analysis: The EDA is conducted on the data using modular function as shown in Figure 12

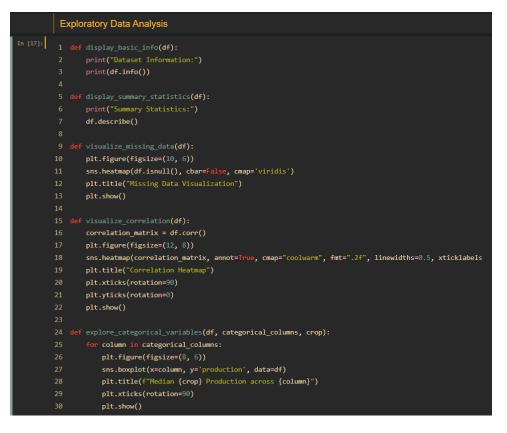


Figure 12: Modular Code for EDA

• Correlation Analysis: The Correlation Analysis is conducted on the data as shown in Figure 13

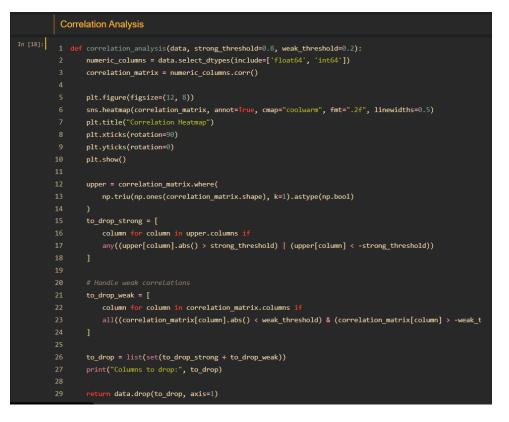


Figure 13: Correlation Analysis

• Applying Model: Function is written to accept the data and name of the model to be applied to perform training as shown in Figure 14

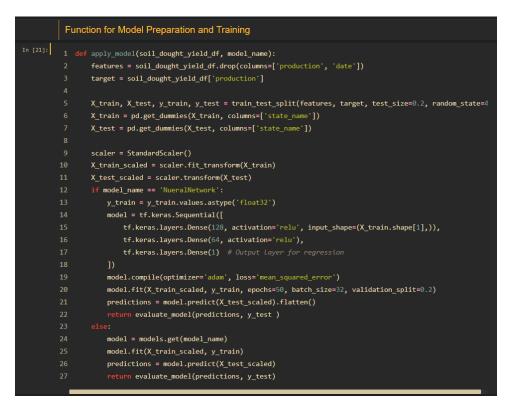


Figure 14: Model Training Method

• Model Evaluation: Methods are written to perform evaluation on of the model performance and plotting the visuals as shown in Figure 15

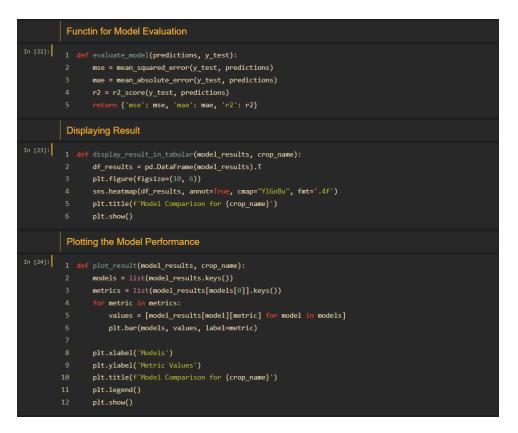


Figure 15: Model Evaluation

• Cross Validation: Methods are written to perform cross-validation on of the model performance as shown in Figure 16

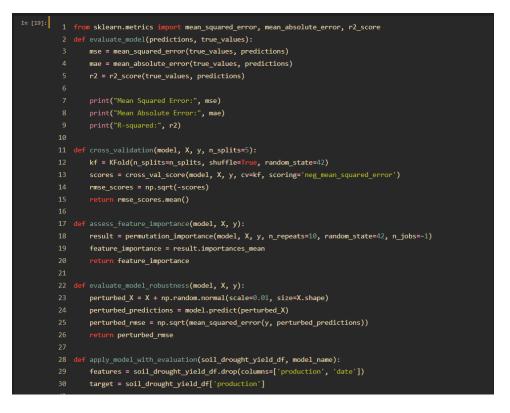
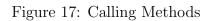



Figure 16: Cross Validation Methods

• Calling Model Training Methods: To perform model training the modular method apply_model is called as shown in Figure 17

	Training and Evaluating Linear Regression Model
In [65]:	<pre>1 corn_evaluation_result_lr = apply_model(corn_soil_drought_df, 'LinearRegresion') 2 corn_evaluation_result_lr 3</pre>
	{'mse': 2060104238.637036, 'mae': 27131.571965290033, 'r2': 0.9875402913965784}
	Training and Evaluating Gradient Boost Regression Model
In [66]:	<pre>1 corn_evaluation_results_gb = apply_model(corn_soil_drought_df, 'GradientBoostingRegressor') 2 corn_evaluation_results_gb 3</pre>
	{'mse': 1045506433.8708422, 'mae': 17504.58938481542, 'r2': 0.9936766765172759}
	Training and Evaluating Random Forest Regression Model
In [67]:	<pre>1 corn_evaluation_result_rf = apply_model(corn_soil_drought_df, 'RandomForestRegressor') 2 corn_evaluation_result_rf 3</pre>
	{'mse': 24.7918894164158, 'mae': 3.9740302462044492, 'r2': 0.9999999998500563}
	Training and Evaluating FeedForward Nueral Network
In [70]:	<pre>1 corn_evaluation_result_nn = apply_model(corn_soil_drought_df, 'NueralNetwork') 2 corn_evaluation_result_nn</pre>

