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Configuration Manual

Pratik Umesh Shetty
x21227578

1 Introduction

The subsequent manual on configuration presents an elucidation of the prerequisites for
the execution of the system that was devised for the purpose of generating a xG Model for
Player Analysis through the utilization of MLL models, namely Gradient Boosting Classi-
fier and Logistic Regression. Additionally, the manual will comprehensively explicate the
stipulated software and hardware requirements that were employed in the triumphant
execution of the undertaking.

2 System Configuration

Following are the hardware and software configuration which were used for the imple-
mentation of this Project.

The hardware configurations used for implementation are as follows shown in Table 1:

2.1 Hardware Requirement

System HP Pavilion Gaming Laptop 15-eclxxx
Operating System | Windows 11 (64 Bits) Home

RAM 8 GB

Hard Disk 1TB

Graphics Card ZV(;]])BI)A geforce GTX 1600 Ti

Processor AMD Ryzen 5 4600H with Radeon Graphics

Table 1: Hardware Configurations
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Figure 1: Hardware Configuration

2.2 Software Requirement

The software configurations used for implementation are as follows shown in Table 2:

Software Version | Architecture
Python 3.8 64 Bits
Jupyter Notebook 6.4.12 64 Bits
Anaconda Navigator | 2.3.1 64 Bits

Table 2: Software Versions
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Figure 2: Softwares Used




2.3 Python Libraries Used

e pandas

e numpy

e matplotlib
® scipy

e sklearn

e seaborn

e datetime

e hyperopt

3 Project Implementation

3.1 Dataset Summary
There are three files as shown below, whole dataset is downloaded from kaggle.com
1. events.csv File:
e Event Types: Identifies eleven event types from textual commentary, revealing

diverse in-game occurrences.

e Player Information: Extracts details about the primary and secondary players
involved, crucial for player-centric analysis.

e Game Details: Scrutinizes game-level data, providing context for events, in-
cluding league, season, and timestamp.
2. ginf.csv File:
e Metadata: Investigates game-related information like teams, venue, and out-
come.
e Market Odds: Explores odds from oddsportal.com, offering a quantitative
measure of market expectations.
3. dictionary.txt File:
e (Categorical Variables: Decodes integers into meaningful categories for en-
hanced dataset interpretability.

e Variable Descriptions: Comprehends textual descriptions to ensure accurate
interpretation in subsequent analyses.

3.2 Importing Libraries



import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import average_precision_score, roc_auc_score, fl_score, precision_score, \
recall_score, cohen_kappa_score, classification_report,confusion_matrix
from sklearn.model_selection import train_test_split

import seaborn as sns

from datetime import datetime

from sklearn.preprocessing import StandardScaler
pd.options.display.max_columns = 999

pd.options.display.max_rows = 5@

class color:
PURPLE = "\B33[95m’
CYAN = ‘\@33[96m’
DARKCYAN = "\@33[3ém’
BLUE = "\@33[%4m’

GREEN = "\@33[92m’
YELLOW = "\@33[%3m’
RED = "\@33[91m’
BOLD = "\@33[1m’
UNDERLINE = "\@33[4m
END = '\@33[em

Figure 3: Importing Libraries

3.3 Dataset Loading and Pre-Processing

events = pd.read_csv('D:/Project Fin/events.csv')
info = pd.read_csv('D:/Project Fin/ginf.csv')

Figure 4: Load the Dataset

We enhance the comprehensiveness of our events dataset by incorporating valuable
data extracted from the ginf.csv file. This dataset augmentation includes significant
details such as the league and country associated with the events, thereby providing a
more holistic understanding of the sporting context. Additionally, we also acquire the
precise date on which these events occur, enabling a comprehensive chronology of the
recorded information.

events = events.merge(info[[ "id_odsp', 'country', 'date’]], on="id odsp', how="left")
events.head()

Figure 5: Mergings the Dataset



extract_year - lambda x: datetime.strptime(x, "%Y-Em-%d").year
events['year'] = [extract_year(x) for key, x in enumerate(events['date'])]

shots = events[events.event_type==1]#Shots will contain everything related to this action of the game and exclude the rest
shots[ 'player'] = shots['player'].str.title()

shots[ 'player2'] = shots['player2'].str.title()
shots[ ‘country’] = shots['country’].str.title()

Figure 6: Eliminating all other events except 'Shot’

3.4 Exploratory Data Analysis

pie = shots[['shot_outcome', 'id_event']].groupby( 'shot_outcome').count().reset_index().rename(columns={"id_event': 'count'})

pie.shot_outcome = pie.shot_outcome.astype(int)
pie.shot_outcome = pie.shot_outcome.replace({l: "On Target', 2: 'Off Target’, 3: 'Blocked’, 4: 'Hit the Bar'})

fig, ax = plt.subplots(figsize=[2,8])

labels = pie['shot_outcome’]

colors = ['#ff9099", '#66b3Ff", #80ff99", "#ffcc99"]

plt.pie(x=pie[ 'count'], autopct="%.1f%%", labels=labels, explode=[@.86]*4, pctdistance-8.7, colors=colors, shadow=True, \
textprops=dict(fontsize=16))

plt.title("Shot Outcomes”, fontsize=26, fontfamily='serif’)

plt.tight_layout()

plt.show()

Figure 7: Performing EDA

In our analysis, we ascertain that the ratios of goals and no-goals exhibit a remarkable
consistency throughout the course of time. This observation leads us to the compelling
inference that, from a statistical perspective, there exists a consistent pattern wherein
approximately one out of nine to ten shots result in goals as shown in Figure 12, re-
gardless of the specific location or temporal context under scrutiny. It is noteworthy to
mention that this empirical relationship holds true irrespective of the various circum-
stances surrounding the occurrence of these shots, thereby reinforcing the robustness of
our findings.
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Figure 8: Performing EDA
bar = shots[['shot_place’, 'id_event']].groupby( shot_place').count().reset_index().rename(columns={ 'id_event': ‘count'})

bar.shot_place = bar.shot_place.astype(int)

bar.shot_place = bar.shot_place.replace({1: 'Bit too high", 2: 'Blocked', 3: 'Bottom left corner', 4: 'Bottom right corner’, \
5: 'Centre of the goal’, 6: 'High and wide’, 7: 'Hits the bar', 8: 'Misses to the left’,
9: 'Misses to the right', 1@: 'Too high', 11: 'Top centre of the goal', \
12: 'Top left corner’, 13: 'Top right corner'})

sns.set_style("whitegrid")

fig, ax = plt.subplots(figsize=[13,6])

labels = bar['shot_place’]

colors = ['#ff9999°, "#66b3ff", #99ff99°, "#ffcc99’]

ax = sns.barplot(x=bar['count'], y=labels)
ax.set_yticklabels(labels, size = 13)
ax.set_xticks(np.arange(10ea,57688,4008))
ax.set_ylabel(ylabel="")

plt.title("Shot Placement”, fontsize-=25, fontfamily='serif')
plt.tight_layout()

ax.grid(color="black', linestyle='-", linewidth=0.1, axis="x")
plt.show()

Figure 9: Performing EDA
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Figure 10: Performing EDA



goals = shots[['is_goal’, 'id_event', 'country']].groupby(['is_goal’, ‘country']).count().reset_index().rename(columns={"id_ever
goals.is_goal = goals.is_goal.replace({l: 'Goal’, @: 'No Goal'})
4

goals['percentage’]=@
for i in range(len(goals)):
for country in goals.country.unique():
if goals.iloc[i,goals.columns.get_loc("country”)]==country:
goals.iloc[i,goals.columns.get_loc("percentage”)]=goals.iloc[i,goals.columns.get_loc("count™)] / \

goals[goals.country==country][ 'count’].sum()
goals[ 'percentage’ ]=round(goals[ 'percentage’]*166,2)

def show_values_on_bars(axs):
def _show_on_single_plot(ax):
for p in ax.patches:
_x = p.get_x() + p.get_width() / 2
_y = p.get_y() + p.get_height()
value = '{:.2f}%".format(p.get_height())
ax.text(_x, _y+2, value, ha="center", fontsize=14)

if isinstance(axs, np.ndarray):
for idx, ax in np.ndenumerate(axs):
_show_on_single_plot(ax)
else:
_show_on_single_plot(axs)

sns.set_style("whitegrid")

fig, ax = plt.subplots(figsize=[14,6])

colors = ['#Ff9999°, "#66b3ff", "#09Ff99", "#ffcc9g’]

ax = sns.barplot(data=goals, y="percentage', hue="is_goal', x="country')
ax.set_yticks(np.arange(©,118,1@))

ax.set_ylabel(ylabel="Percentage %", fontsize=15, fontfamily="serif’)
ax.set_xlabel(xlabel-'League', fontsize=15, fontfamily="serif')
ax.set_xticklabels(labels=ax.get_xticklabels(), fontsize=16, fontfamily='serif’)
plt.title("Goal/No-Goal per Country”, fontsize=24, fontfamily='serif')
plt.tight_layout()

ax.grid(color="black', linestyle="-", linewidth=8.1, axis="y')
plt.legend(fontsize=12)

show_values_cn_bars(ax)

plt.show()

® %

Figure 11: Performing EDA
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Figure 12: Performing EDA



4 xG Model

data = pd.get_dummies(shots.iloc[:,-8:-3], columns=['location’, 'bodypart’,'assist_method’, 'situation’])

data.columns = ['fast_break', 'loc_centre_box', 'loc_diff_angle_lr’', if le_left', 'diff_angle_right’,
"left_side_box', "left_side_6ybox', ‘right_side_box", "ri _6ybox', 'close_range’,
‘penalty’, ‘outside_box', ‘long_range', 'more_35y', 'more_4@y’, ‘not_recorded’, ‘right_foot’,
"left_foot', 'header', 'no_assist', 'assist_pass', 'assist_cross’, 'assist_header’,
"assist_through_ball', ‘open_play', ‘set_piece’, 'corner’, ‘free_kick']

data["is_goal'] = shots['is_goal']

print(len(data))
print(data.is_goal.sum())
print(len(data.columns)-1)

229135

24441
28

data.head()

fast_break loc_centre_box loc_diff_angle_Ir diff_angle_left diff_angle_right left_side_box left_side_6ybox right_side_box right_side_6ybox close_range |

L] 0 0 Q L] 0 1 1] (] Q 0
" 0 0 a o 0 L] L] 0 a 0
13 0 0 a (] 0 1 (] 0 a 0
14 0 0 Q 0 0 1] 1] (] Q 0
17 0 0 Q L] 0 1] 1] (] Q 0
»

#lets split the data in 65-35 for training and testing of model
X = data.iloc[:,:-1]
y = data.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test split(X, y, test_size=8.35, random_state=1)

Figure 13: xG Model Preparation

4.1 Gradient Boosting Classifier

As there is no discernible variation observed when attempting various numerical inputs
for the parameter, it can be inferred that there is an absence of any indications that
would suggest the presence of overfitting as shown in Figure 14.



from hyperopt import fmin, tpe, hp, STATUS_OK, Trials

def evaluate_model(params):
model = GradientBoostingClassifier(
learning_rate=params['learning_rate'],
min_samples_leaf=params['min_samples_leaf'],
max_depth = params['max_depth'],
max_features = params[ 'max_features']

)

model.fit(¥_train, y_train)
return {
*learning_rate': params['learning_rate'],
‘min_samples_leaf': params[ 'min_samples_leaf'],
"max_depth”: params[ max_depth'],
‘max_features': params['max_features’],
"train_ROCAUC': roc_auc_score(y_train, model.predict_proba(¥_train)[:, 1]},
"test_ROCAUC': roc_auc_score(y_test, model.predict_proba(X_test)[:, 1]},
‘recall’: recall score(y_test, model.predict(X_test)),
"precision’: precision_score(y_test, model.predict(X_test)),
"fl1_score’: f1_score(y_test, model.predict(X_test)),
“train_accuracy’': model.score(X_train, y_train),
"test_accuracy': model.score(¥_test, y_test),

def objective(params):
res = evaluate_model(params)

res["loss'] = - res['test_ROCAUC'] # Esta loss es la que hyperopt intenta minimizar
res["status’] = STATUS OK # Asi le decimos a hyperopt que el experimento salio bien
return res

hyperparameter_space = {
"learning_rate’: hp.uniform(’'learning_rate’, @.85, 8.3),
‘min_samples_leaf': hp.choice( 'min_samples_leaf', range(15, 288)),
‘max_depth": hp.choice( 'max_depth', range(2, 28)),
"max_features': hp.choice( max_features', range(3, 27))

3
trials = Trials()
fmin{

objective,

space=hyperparameter_space,
algo=tpe.suggest,
max_evals=58,

trials=trials

he
109% | 58/58 [14:25¢68:086, 17.31s/trial, best loss: -0.8104851214247517]

Figure 14: xG Model using GBC

model = GradientBoostingClassifier(
learning_rate=0.285588,
min_samples_leaf-99,
max_depth = 19,
max_features = 7
)

model.fit(X_train, y_train)

GradientBoostingClassifier(learning_rate=@.285508, max_depth=19, max_features=7,
min_samples_leaf=09)

print(’'The test set contains {} examples (shots) of which {} are positive (goals).’'.format(len(y_test), y test.sum()))
print('The accuracy of classifying whether a shot is goal or not is {}%.'.format(round(model.score(X_test, y_test)*188),2))
print('Our classifier obtains an ROC-AUC of {}%'.format(round(roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])*10@),2))

The test set contains 80198 examples (shots) of which 8584 are positive (goals).
The accuracy of classifying whether a shot is goal or not is 91%.
Our classifier obtains an ROC-AUC of 82%

print(’'The baseline performance for PR-AUC is {}%. This is the PR-AUC that what we would get by random guessing.'.format{round(y
print('Our model obtains an PR-AUC of {}%.'.format(round(average_precision_score(y_test, model.predict_proba(X_test)[:, 1])*1e8,:
print(’'Our classifier obtains a Cohen Kappa of {}.'.format(round(cohen_kappa_score(y_test,model.predict(X_test)),2)))

The baseline performance for PR-AUC is @.11%. This is the PR-AUC that what we would get by random guessing.
Our model obtains an PR-AUC of 47.33%.
Our classifier cbtains a Cohen Kappa of @.35.

print(color.BOLD + color.YELLOW + "Confusion Matrix:\n' + color.END)
print(confusion_matrix(y_test,model.predict(X_test)))
print(color.BOLD + color.YELLOW + "\n Report:' + color.END)
print(classification_report(y_test,model.predict(X_test)))

Figure 15: GBC Performance Metrics Code
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Figure 16: GBC Confusion Matrix
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4.2 Logistic Regression

model = LogisticRegression(max_iter=40@)
model. fit(X_train, y_train)

LogisticRegression(max_iter=4@@)

print('The test set contains {} examples (shots) of which {} are positive (goals).'.format(len(y_test), y_test.sum()))
print(’'The accuracy of classifying whether a shot is goal or not is {}X%.'.format(round(model.score(X_test, y test)*16@),2))
print(’'Our classifier obtains an ROC-AUC of {}%'.format(round(roc_auc_score(y_test, model.predict_proba(X_test)[:, 1])*1e8),2))

The test set contains 80198 examples (shots) of which 8564 are positive (goals).
The accuracy of classifying whether a shot is goal or not is 91%.
Our classifier obtains an ROC-AUC of 82%

print('The baseline performance for PR-AUC is {}%. This is the PR-AUC that what we would get by random guessing.'.format(round(y_
print(’'Our model obtains an PR-AUC of {}%.'.format(round(average_precision_score(y_test, model.predict_proba(X_test)[:, 1])*1ea,:
print('Our classifier obtains a Cohen Kappa of {}.".format(round(cohen_kappa_score(y test,model.predict(X_test)),2)))

3
The baseline performance for PR-AUC is @.11%. This is the PR-AUC that what we would get by random guessing.
Qur model obtains an PR-AUC of 47.88%.
Our classifier ocbtains a Cohen Kappa of 8.35.

print(color.BOLD + color.YELLOW + color.UNDERLINE + 'Confusion Matrix:\n' + color.END)
print(confusion_matrix(y_test,model.predict(X test)))

print(coler.BOLD + color.YELLOW + color.UNDERLINE + '\n Report:' + color.END)
print(classification_report(y_test,model.predict(X_test)))

Figure 17: LR Performance Metrics Code
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Figure 18: LR Confusion Matrix

4.3 Discussion

Almost precisely identical outcomes as those obtained from employing the technique of
Gradient Boosting. In circumstances where this particular scenario arises, it is generally
advisable to prioritize the utilization of the more simplistic model, specifically in this
instance, the Logistic Regression method. Nevertheless, it should be noted that there

12



exists a total of 39 objectives that were accurately recognized as such through the ap-
plication of Gradient Boosting, but regrettably, were not successfully captured by the
Logistic Regression approach. Although this disparity may not be extensively signific-
ant, I shall ultimately opt for employing the Gradient Boosting technique due to this
particular reason.

4.4 Player Analysis using xG Model

shots[ "prediction’]
shots[ "difference’]

model .predict _proba{X)[:, 1]
shots[ "prediction'] - shots['is goal']

Figure 19: Player Analysis

Which players are the best finishers?

players = shots.groupby('player').sum().reset_index()

players.rename(columns={'is_goal': 'trueGoals', 'prediction’: 'expectedGoals'}, inplace=True)
players.expectedGoals = round(players.expectedGoals,2)

players.difference = round(players.difference,2)

players['ratio’] = players['trueGoals’] / players['expectedGoals’]

print(round(players.expectedGoals.corr(players.trueGoals),3))

8.977

Best Finishers

show = players.sort_values(['difference’, 'trueGoals']).reset_index(drop=True)
show['rank’'] = show.index+1

show = show[['rank’, 'player’, 'difference’, 'trueGoals’, 'expectedGoals']].head(1@)
show.head(5)

rank player difference trueGoals expectedGoals
0 1 Lionel Messi -58.80 205 146.20
1 2 Zlatan Ibrahimovic -33.67 153 119.33
2 3 Cristiano Ronaldo -32.37 198 165.63
3 4 Luis Suarez -31.74 95 54.26
4 5 Gonzalo Higuain -31.72 118 86.28

sns.set_style("dark™)

fig, ax = plt.subplots(figsize=[12,5])

ax = sns.barplot(x=abs(show[ 'difference’]), y=show['player'], palette=
ax.set_xticks(np.arange(®,65,5))

ax.set_xlabel(xlabel="Diff. betwesn Goals Scored and Goals Expected’, fontsize=12)
ax.set_ylabel(ylabel="")

ax.set_yticklabels(labels=ax.get_yticklabels(), fontsize=12})

plt.title("Best Finishers: most goals on top of expected”, fontsize=28, fontfamily='serif')
ax.grid(color="black"', linestyle='-", linewidth=8.1, alpha=8.8, axis="x")

plt.show()

Figure 20: Best Finisher
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Best Finishers: most goals on top of expected

Lionel Messi

Zlatan Ibrahimovic
Cristiano Ronaldo
Luis Suarez
Gonzalo Higuain
Robert Lewandowski

Alexandre Lacazette

Alexis Sanchez
Karim Benzema

Antoine Griezmann

=
@
=

15 20 25 0 35 40 45 50 55 0
Diff. between Goals Scored and Goals Expected

Figure 21: Best Finisher

5 Future Work

Exploring advanced defensive metrics, such as the count of defenders and defensive pres-
sure, holds significant promise for enhancing predictive capabilities. The augmentation of
spatial granularity through the incorporation of precise shot coordinates has the poten-
tial to further elevate model accuracy. Additionally, delving into Deep Learning meth-
odologies, particularly utilizing structures like Convolutional Neural Networks (CNNs)
or Recurrent Neural Networks (RNNs), offers a valuable avenue for capturing intricate
spatial-temporal dependencies within the data, providing a more nuanced understanding
of defensive dynamics in sports analytics.
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