ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shaik Rizwana
Student ID: 22114611

School of Computing
National College of Ireland

Supervisor: Vikas Tomar

‘-
National College of Ireland \ National

MSc Project Submission Sheet fr(gigfg
School of Computing
Student Name: Shaik Rizwana
Student ID: 22114611
Programme: Data Analytics Year: 2023
Module: MSc Data Analytics
Lecturer: Vikas Tomar
Submission Due
Date: 14/12/2023
Project Title: Firearm detection using Yolov7
Word Count: 1177
Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y e L 1= T] <SSO T ST RSP OPRRRPPRO

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shaik Rizwana
Student ID; 22114611

1 Introduction

This document serves the purpose of recreating the output provided by the code artifact. We
will go through several steps and require libraries to understand how to perform gun
detection using the Yolov7 model.

2 Requirements

There are two phases of working with this code. | have used Google Colab to train the model
and perform testing in the local system.

2.1 Google Colab

Since this project is a computation-heavy model, we are going to leverage Google Colab and
its GPU. Google Colab provides us with the following specifications —

1. GPU type — Tesla K80 Nvidia

2. GPU provided — 12.6 GB

3. Disk size provided — up to 80GB

4. Upto 5to 6 hours of free computation time

In order to select the required GPU in Google Colab sheet, you can follow the below
screenshots —

1.

File Edit View Insert Runtime Tools Help Lastedited on December 11

Code + Text
CvdiudlLilivlili

\We can evaliiate tha nerfarmance nf niir clietnm trainina 1icina the nravidad
Figure 1(a) : Step 1 to change runtime GPU in google Colab

2. Click on ‘Change Runtime’ and select T4 GPU like the below screenshot.

Change runtime type

Runtime type

Python 3

Hardware accelerator (?)

QO cpu (@ T4GPU
QO TprU

Want access to oremium GPUs? Purchase additional comnute units

Figure 1(b) : Step 2 to change runtime GPU in google Colab

2.2 System Configuration

1. OS - Windows 11

2. Processor - 12th Gen Intel(R) Core(TM) i7-1250U, 1100 Mhz, 10 Core(s), 12 Logical
Processor(s)

3. RAM-16GB

3 Software tools
1. Python 3 with PyTorch and TensorFlow

2. Yolov7 — Object detection state-of-the-art algorithm
3. Roboflow — Data management platform

4 Datasets

This project has utilized two different datasets. Both have been cleansed and uploaded on the
Roboflow platform, as it is easier for the API to fetch the datasets when required.

1. COCO(Common object in context) dataset - https://universe.roboflow.com/gun-
detection-with-yolo/gun-detection-using-yolo-i

2. Custom Dataset - https://universe.roboflow.com/gqun-detection-with-yolo/gun-
detection-using-yolo ii

5 Setting up the Environment

We have several steps to import the required repository and use the Yolov7. The official
creators of Yolo provide this. i.e., Ultralytics. The datasets are uploaded on Roboflow in
separate project repositories.

These steps are performed using Google Colab. Below are the steps.

1. Importing the required repository.

https://universe.roboflow.com/gun-detection-with-yolo/gun-detection-using-yolo-i
https://universe.roboflow.com/gun-detection-with-yolo/gun-detection-using-yolo-i
https://universe.roboflow.com/gun-detection-with-yolo/gun-detection-using-yolo_ii
https://universe.roboflow.com/gun-detection-with-yolo/gun-detection-using-yolo_ii

v Install Dependencies

(Remember to choose GPU in Runtime if not already selected. Runtime --> Change Runtime Type --> Hardware accelerator --> GPU)

‘> !git clone https://github.com/SkalskiP/yolov7.git
%cd yolov7
!git checkout fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy
!pip install -r requirements.txt

Figure 2 : Installing dependencies in google Colab

2. Import the two datasets —

v Download Correctly Formatted Custom Data

Next, we'll download our dataset in the right format. Use the yoLov7 PyTorch export. Note that this model requires YOLO TXT annotations, a
custom YAML file, and organized directories. The roboflow export writes this for us and saves it in the correct spot.

[1 !pip install roboflow

from roboflow import Roboflow

Figure 3(b): Importing Dataset 1 in google Colab from Roboflow

6 Implementation
Let us now look at the steps to implement the model and train, test, and validate it.

1. Download the required pre-existing best weights (a pre-trained) of the model.

J/releases/download/v@.1/yolov7 training.pt

Figure 4: Importing best weight of an existing Yolov7 mode in google Colab

2. We need to edit the ‘coco.yaml’ file so that the train, test and validate data path are
automatically picked up by the model.

4.

Fil ;M X + Code + Text
les

b G B

coco.yaml X

» 2 train: /content/yolov7/Gun-detection-using-yolo_II-1/train
3 val: /content/yolov7/Gun-detection-using-yolo_II-1/valid
4 test: /content/yolov7/Gun-detection-using-yolo_II-1/test
~ [yolov7 > # number of classes

+ [Gun-detection-using-yolo_II-1 6 nc: 1

» [sample_data

» B test
» [train
» [m valid
B README dataset.txt
B README.roboflow.txt
B data.yaml
» W cfg
~ [data

coco.yaml
st y

8 # class names
9 names: ['Gun']

o

Figure 5: providing the paths for test, valid and train data splits in coco.yaml file

“coco.yaml” file is present under the “data” folder. The path can be provided from the
downloaded datasets in red boxes under the ‘train, test and valid’ path in coco.yaml
file.

Save the file for it to reflect for the next steps.

We are going to run the training syntax next. The batch size is 16 so there is not a lot
of pressure on the GPU for RAM. Epochs chosen can be tested from 50 to 100. Here,
we have selected 100 epochs to train the final models well.

-batch 16 --epochs 108 --data /c .ya yol 7 _tr ning.pt' --device @

Epoch box obj cls total labels
96/99 ©.65525 ©.e07444 4.111e-05 9.06274 34 640: E 8 6
Labels P R mAP@.5 1 : lee% 8 [@1:8 :08, 1.69it/s]

ELVE] .712 0.176 0.155

box obj total labels img_size
0.85647 ©.008157 4.612e 9.86467 46 640: y; 1 [©0:28<00:00,
Images P R mAP@.5 : 1ee% 108/1e8 :83<00: 1.71it/s]
3445 3423 717 8.18 8.155

box cls total labels img_size
0.05604 ©.807953 4.395e-05 0.06404 29 640: 1 31/31 [©0:28<00:00, .
Im Labels P [mAP@.5 95: 100% 108/108 [e1:e 100, 1.70it/s]
3423 .73 .18 0.159

Epoch gpu_mem obj cls total labels
99/99 13.1G 0.85279 ©.807942 4.391e-05 9.06078 22 v /31 [e@:2 9:00, 1.08it/s]
Class Images Lab P R 5 1.953 % 108/108 [@1:87<@0:00, 1.61it/s]
all 3445 3423 0.724 0.178 6 66!
Gun 3445 3421 0.448 0.356
Pistol 3445 2 1 e
100 epochs completed in 2.734 hours.

Optimizer stripped from runs/train/ex ei st.pt, 74.8MB
Ontimizer strinned from runs/train/ /weipl hest.nt. 74.8MR

Figure 7: Final output of the training of the dataset. The red box shows the final output.

In order to save the output with the graphs and best weights we can use the below
code to download the zip folder of the experiments.

] from google.colab import files

file_name

files.download(file_name)
Figure 7: Code to download any folder from the Google Colab.

5. Let us not switch to the visual studio and pull the repository into our local systems
using the same code as stepl, shown in figure 2.

PROBLEMS DEBUG CONSOLE TERMINAL ORTS

PS C:\Users\Rizwana\Desktop\exp\yolov7-main\yolov7-main>

>> lgit clone https://github.com/SkalskiP/yolov7.git

>> %cd yolov7

>> lgit checkout fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy
>> lpip install requirements.txtﬂ

Figure 8: Code in visual studio command line to pull the required repository.

6. After all the folders are pulled and requirements are installed, We copy the best.pt in
the root of the project to use it for testing. A simple drag and drop of the best.pt
should do the trick. | have renamed them according to the dataset | trained the Yolov7
model with for my convenience.

YOLOV7-MAIN
> cfg

> data
deploy
figure
inference
models
paper
runs
scripts

tools

>
>
>
>
>
>
>
>
>

utils

.gitignore
best-dataset_1.pt
N best-dataset_2.pt
detect.py
export.py
hubconf.py
LICENSE.md
README.md

reauirements txt

Figure 9: Best weights are pasted in the root path of the project pulled into Visual studio.

One final change before we start testing our model. The ‘coco.yaml’ file under ‘data’
folder needs to be changed according to the dataset we are using. Change the path of
‘valid’ dataset path so that model picks it up for testing. This has been set as default
value to be picked up. We need to change only path for ‘val’ with test dataset split.

YOLOV7-MAIN

> cfg

v data
coco.yaml|

stom.yam|

aset_1.pt

Figure 10: Providing the paths for test, valid and train data splits in coco.yaml file

8. Now run the code to test the model —

python test.py --weights “Path to the best weight without the quotes” --conf 0.4

W, sktop\exp\yolov7-main\yolov7-main> python test.py C:\Users\Rizwana\Desktop\exp\yolov7-main\yolov7-main\best-d

Figue 11(a): Syntax to run the test run for the model

Scanning 'C:\Users\Rizwana\Downloads\Guns_Yolov7\test\labels.cache' images and labels... 593 found, 10 missing, © empty, ©
Class Images Labels P R mAP@.5 mAP@.5:.95: 100%|I| 19/19 [12:28<00:00, 39.40s

all 603 698 0.715 9.133 0.125 0.0606
Speed: 1235.2/0.3/1235.5 ms inference/NMS/total per 640x640 image at batch-size 32

Figure 11(b): Output of the test syntax

We can interpret the precision, recall rate and mAP from this. All the graphs and
images are saved under run -> test -> exp

v runs
> detect

Vv test
> exp2
exp3
exp4
exp5
exp6
exp8
exp9
exp15

{ v v oV oV VY v v

expl7
PR_curve.png
test_batchQ_labels.jpg
test_batchO_pred.jpg
test_batch1_labels.jpg
test_batch1_pred.jpg
test_batch2_labels.jpg

test_batch2_pred.jpg

Figure 11(c): Output of the test syntax saved under exp folders

9. Another important note. When running the code for different datasets, the model has
run so many times that it might have an issue of overfit. Hence | recommend now to
run the model too many times. This can result in the images to be distorted and yield
bad result metrics.

References

