ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shivani Saxena
Student ID: x22168729

School of Computing
National College of Ireland

Supervisor: Vikas Tomer

‘-—
National College of Ireland \ National

_ o Collegeof
MSc Project Submission Sheet Ireland
School of Computing
Student ... ShiVani SAXENA......cciiiiie e e
Name:
Student ID: X22LO08729 ... g s
Programme: Data analytics.......ccccoovveivcneenen, Year: ...t .
Module: ... MsC Research Project........cccoieiiiiicce e
Lecturer: ... ViIKAS TOMIEE .. .eiiti ettt ettt ettt be e ere e e e aeeareens
Submission
Due Date: I B L0 A TSP
Project Disease detection for potato, tomato and pepper plants using ML
Title: algorithms
Word Count:.............. 1043............... Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y e T3 1= 1T o=

D - 1 o -

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shivani Saxena
Student ID: x22168729

1 Introduction
This configuration manual consists of all the details of al the required parts for the project

which includes hardware requirements, software requirements, design details,
implementation of the project, environmental setup

2 System configuration

2.1 hardware configuration

The research was carried out the local machine below are the given hardware specification
Processor- 11" Gen Intel(R) Core(TM) i7-118G7 @3.00GHz
System type- 64-bit operating system, x64-based processor

@ Device specifications

Device name Abhi
MINE
Processor 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz 3.00 GHz
Installed RAM 16.0 GB (15.7 GB usable)
Device ID 1CATF3D1-573E-4F2A-B24C-51DD592BE932
Product ID 00325-82232-52557-AAOEM
System type 64-bit operating system, x64-based processor

Pen and touch Touch support with 10 touch points

2.2 Software Configuration
The research was carried out on windows 11 Home version 22H2

Windows specifications

Edition Windows 11 Home
Version 22H2

Installed on 30/10/2022

OS build 22621.1848

Experience Windows Feature Experience Pack 1000.22642.1000.0

Microsoft Services Agreement
Microsoft Software License Terms

3 Environment Setup

The environment used to carried this research was Kaggle IDE since | need to run my code
on GPU and Kaggle provides free 30hrs of GPU unit on your account when phone number is
verified (code was taking too long while running on collab while running on cpu and gpu of
the collab is only available on paid versions)

IDE Kaggle
Programming Language Python
Device GPU
Other Tools Microsoft Excel and word

1. Go to Kaggle create notebook

File Edit View Run Add-ons Helg

+ X O©@ > w-

-

<> New Notebook hon 3 en
fined by
ﬁ New Dataset
ple, her
9P New Competition
Py as n
_-— - py p
import pandas as p
& # Input data files
For example, run
<>

2. Click on add data which is available on the right most side of the window and click on
the + button there and search of the dataset

= ki

I :
O . Notebook
Data N
+ Addbata &, (O
a version u No data added

Add Kaggle data or upload your own. Output files will
also appear here.

3. Once your dataset is visible click on the the button which is available on the right side
+ to add the dataset to work on

o RN

sion off (run a cell to start) Ll) E Add Data

X
(Q plant village| ?}

Your Datasets Competition Datasets CSVv

Your Notebooks
241 Data Sources Relevance ~

the input directory

Plant Village
arjun tejaswi - Updated 4y aaa
219 Upvotes - other - 344 e NBEIEEIE @
Plant village image classification
tput when you create a version u Updated 3y ago
<> 10 Upvotes @

“rent session

4 Project Implementation

4.1 Python libraries

While carrying out the research | have used multiple python libraries.
Numpy, pandas, matplotlib, pickle, Pytorch, sklearn

import numpy as np
import pandas as pd
import os

import torch

import random

import shutil

from sklearn.model_selection import train_test_split
from torch.utils.data import Dataloader, Dataset
import matplotlib.pyplot as plt
from torchvision.models import (
resnet50, ResNet58_Weights
alexnet, AlexNet_Weights
efficientnet_v2_1, EfficientNet_V2_L_Weights
)
from torch import nn
from torch import optim
import torchvision
from torchvision import datasets, models, transforms

from torch.utils.data.sampler import SubsetRandomSampler

fopt/conda/lib/python3.18/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.8 is required for
this version of SciPy (detected version 1.24.3

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

4.2 data preprocessing and understanding

In this section we will perform the data preprocessing where will be transforming the data
using various augmentation that are flips, rotate , they will be resized, and normalized.

train_folder = “/kaggle/working/train"”
validation_folder = “/kaggle/working/validation"”
test_folder " /kaggle/working/test”

data_transforms = {
train’: transforms.Compose([
transforms.RandomResizedCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor ()

transforms.Normalize(mean=[©.485, ©.456, ©.4@6], std=[©.229, ©.224, ©.225])
190
validation' : transforms.Compose(

transforms.Resize(256),

transforms.CenterCrop(224),

transforms.ToTensor(),

transforms.Normalize(mean=[8.485, ©8.456, ©.406)], std=[©.229, ©.224, 8.225])
1),
}
image_datasets = {
train': datasets.ImageFolder(train_folder, transform=data_transforms[' train’']),
‘validation': datasets.ImageFolder(validation_folder, transform=data_transforms['validation']),
"test’' : datasets.ImageFolder(test_folder, transform=data_transforms['validation'])
¥
dataset_size {
"train”: len(image_datasets["train"]),
"val": len(image_datasets|["validation"]),
“test”: len(image_datasets["test"])

After this we willl retrive all the classes of the images which are there in the dataset and size
of the dataset too.

["Pepper__bell___Bacterial_spot',
'Pepper__bell___healthy",
"Potato___Early_blight'
'Potato___Late_blight',
'Potato___healthy"',
'Tomato_Bacterial_spot’
‘Tomato_Early_blight',
'Tomato_Late_blight',
"Tomato_Leaf_Mold'
'Tomato_Septoria_leaf_spot’
‘Tomato_Spider_mites_Two_spotted_spider_mite'
'Tomato__Target_Spot',
‘Tomato__Tomato_YellowLeaf__Curl_Virus'
'Tomato__Tomato_mosaic_virus',

'Tomato_healthy']

dataset_size
{'train': 12377, 'val': 4122, 'test': 4139}

After that we will be generating the images present on which we need to apply the models

Label: Tomato_Late_blight Label: Tomato_Late_blight Label: Tomato_Late_blight
- —.

-

Label: Potato

healtbly Tomato__Tomato_YellowLeaf _Curl_Virus

4.3 model implementation and Evaluation

we will be implementing 3 models restNet, efficientNet, and alexnet to achive the best
accuracy out of the three models

we will save the models in the best_model for restNet model

best_model_eff for the effieinet model

best_ model_alex for the alexnet model

we ran the model on the 3 learning rates 0.1,0.01 and 0.001 with batch size 32 and 3 different
step sizes 5,7,10

RestNet model
a. chekcing for the best model

LR:
LR:

0.1 Step Size: 5 Best Accuracy: 86.062620087336244

0.1 Step Size: 7 Best Accuracy: 88.5977688737506
LR: 8.1 Step Size: 10 Best Accuracy: 89.39835631538088
LR: ©.81 Step Size: 5 Best Accuracy: 89.689471136851917
LR: ©.81 Step Size: 7 Best Accuracy: 89.8592916060165
LR: ©.81 Step Size: 18 Best Accuracy: 90.22319262493934
LR: ©.881 Step Size: 5 Best Accuracy: 90.22319262493934
LR: ©.0801 Step Size: 7 Best Accuracy: 90.22319262493934
LR: ©.6801 Step Size: 10 Best Accuracy: 90.22319262493934
Best LR: ©.91 Best Step Size: 10

b. chekcing the accuracy of the model

S PN O - N s M SR Tur oy N S S P e

predicted = torch.argmax(outputs, dim=1)
test_total += labels.size(9)
test_correct += (predicted =

1]

labels).sum().iten

test_accuracy = 100. * test_correct / test_total
print(f'Test Accuracy: {test_accuracy:.4f}%')

Test Accuracy: 89.3694%

c. checking the precison, recall and accuracy of the model

Precision: ©.891@
Recall: ©.8860

F1l Score: 0.8847

d. Saving the new dataframe in the result_df csv file

Learning Rate Step Size Train Loss Train Accuracy Validation Loss
.100 5 1.209047 66.058011 8.911607
.10e0 0.754563 78.936737 0.773006
.100 0.630841 81.942312 0.660324
.1ee@ 0.566265 83.614769 0.607370
.100 0.533164 84.430799 8.555256
.001 ©.326353 89.989497 0.372721
.001 ©.323305 90.151087 0.343228
.001 0.324072 90.094530 0.354622
.001 0.327621 90.085656 0.389722
.001 0.323081 89.835986 0.357290

Validation Accuracy

76.637555
79.015041
82.241630
82.702572
84.036875
445 88.403688
446 89.058709
447 89.058709
448 88.015526
449 89.034449

[45@ rows x 6 columns]

e. The below graphs shows the train/ validation accuracy with learning rate and step size

Learning Rate vs. Train/Validation Accuracy

Step Size vs. Train/Validation Accuracy
90.0 —e— Train Accuracy
+- Train Accuracy

e Validation Accuracy 3
Validation Accuracy e
89.5 89.5 r_ff'/
—
—
89.0
89.0
. q

Learning Rate Step Size

f. The below graph shows the validation loss vs learning rate on different step sizes

Validation Loss vs Learning Rate with Step Size Hue
Step Size
0.55 %
— L]
10
0.50
@
o]
-
c
S
S 0.45
G
>
L]
0.40
L)
-.4.
0.35
0.00 0.02 0.04 0.06 0.08 0.10
Learning Rate

AlexNet model

a. chekcing for the best model
1 Step Size: 5 Best Accuracy: 81.97320341047504

.1 Step Size: 7 Best Accuracy: 85.01827040194884

1 Step Size: 10 Best Accuracy: 85.01827040194884
@1 Step Size: 5 Best Accuracy: 85.01827040194884
.01 Step Size: 7 Best Accuracy: 85.14007308166878
.01 Step Size: 1@ Best Accuracy: 85.87088915956151
.01 Step Size: 5 Best Accuracy: 85.87088915956151
LR: ©.001 Step Size: 7 Best Accuracy: 85.87088915956151
LR: ©.081 Step Size: 10 Best Accuracy: 85.87088915956151
Best LR: ©.01 Best Step Size: 10

LR:
LR:
LR:
(1
LR:
LR:
LR:

@

20 00 00 O @

b. chekcing the accuracy of the model
Test Accuracy: 85.5596%
c. checking the precison, recall and accuracy of the model

Precision: @.8651
Recall: @.8556

F1 Score: ©.8524

d. Saving the new dataframe in the result_df csv file

Train Loss
.048008
.444064
.567074
.872732
.971214

Learning Rate Step Size
.1e0 5
.1ee
.100
.100
.1ee0
.081323
.267841
.0893792
.217089
.149771

.eel
.00l
.00l
.eel
.eel

Validation Accuracy

20.95061
53.958587
63.580999
47.746650
59.196182
287454
287454
287454

287454
287454

445 84.
446 84.
447 84.
448 84.
449 84.

[450 rows x 6 columns]

e. The below graphs shows the train/ validation accuracy with learning rate and step size

Train Accuracy
45.870445
57.570850
60.485830
63.967611
64.089069

83.238866
81.417004
82.388664
81.133683
82.307692

Learning Rate vs. Train/Validation Accuracy

—e— Train Accuracy

0.00 0.02 0.04 0.06 0.08

Leaming Rate

Validation Loss
31.624462
14.997222

7.554774
11.251095
14.695096

.238125
.238128
.238126
.238127
.238129

Validation Accuracy

82

Accuracy (%)

80

0.10

Step Size vs. Train/Validation Accuracy

Step Size

—e— Train Accuracy
validation Accuracy

f. The below graph shows the validation loss vs learning rate on different step sizes

4.5

4.0

3.5

3.0

Validation Loss

2.5

2.0

15

Validation Loss vs Learning Rate with Step Size Hue

0.02 0.04 0.06
Learning Rate

Step Size

=5

—y
10

EfficientNet model

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:

Best

LR:
LR:
LR:
LR:
LR:
LR:
LR:
LR:
LR:

e 00 0@ @@

@

a. chekcing for the best model
1e0% | INNEG_N

Epoch:
Epoch:

20.
i
-4
nd by
.01,
.01,
.01,
.001, Step Size: 5, Best Accuracy: 98.78197320341047
.001, Step Size: 7, Best Accuracy: 98.78197320341047
.001, Step Size: 10, Best Accuracy: 98.78197320341047

3

5M/20.5M [00:00<00:00, 89.7MB/s]

Step Size: 5, Best Accuracy: 97.32034104750305

Step Size: 7, Best Accuracy: 98.29476248477467

Step Size: 10, Best Accuracy: 98.53836784409258
Step Size: 5, Best Accuracy: 98.53836784409258
Step Size: 7, Best Accuracy: 98.66017052375152
Step Size: 10, Best Accuracy: 98.66017852375152

LR: ©.001 Best Step Size: 5

b. chekcing the accuracy of the model

Test Accuracy: 97.3526%

Precision:

Recall: ©.9735
9.9735

F1l Score

precison, recall and accuracy of the model

0.9740

d. Saving the new dataframe in the result_df csv file

10

Learning Rate Step Size Train Loss Train Accuracy

.100) 1.560533 67.287449

.100 0.494857 86.032389

.100 0.369051 89.190283
.100 0.316108 90.485830
.100 0.230657 93.036437
.001 10 45 .027517 99.190283
.001 10 46 .031766 99.109312
.001 10 47 .045659 98.623482
.001 10 48 .036997 98.987854
.001 10 49 .028252 98.987854

Validation Loss Validation Accuracy

1.132215 72.959805

.000496 49.086480

.950446 73.934227

.367253 89.159562

.800227 85.261876

445 .044411 98.416565
446 .047185 98.172960
447 .047537 98.416565

448 .048228 98.294762
449 .048468 98.294762

[450 rows x 7 columns]

e. The below graphs shows the train/ validation accuracy with learning rate and step size

Learning Rate vs. Train/Validation Accuracy Step Size vs. Train/Validation Accuracy
.0

—e— Train Accuracy

. Validation Accuracy

| e *‘\‘\ 9.0 /

Accuracy

Learning Rate step size

f. The below graph shows the validation loss vs learning rate on different step sizes

11

Validation Loss vs Learning Rate with Step Size Hue
0.30 Step Size
-5
—17
10
0.25
@ 0.20
S °
(=
S
©
z
S 0.15
>
0.10 /o
. ,
0.05 PR
0.00 0.02 0.04 0.06 0.08 0.10
Learning Rate

4.4 Result
The final result of all the models are shown below we can see that the efficidnet models
performs the best out of all the three model with highest accuracy.

Results of all the models

model accuracy | precision | flscore | recall
ResNet 88.59% | 89.10% | 88.47% | 88.60%
AlexNet 85.55% | 86.50% | 85.24% | 85.56%
EfficientNet | 97.35% | 97.40% | 97.35% | 97.35%

References

References should be formatted using APA or Harvard style as detailed in NCI Library
Referencing Guide available at https://libguides.ncirl.ie/referencing

You can use a reference management system such as Zotero or Mendeley to cite in MS
Word.

12

https://libguides.ncirl.ie/referencing

Beloglazov, A. and Buyya, R. (2015). Openstack neat: a framework for dynamic and energy-
efficient consolidation of virtual machines in openstack clouds, Concurrency and
Computation: Practice and Experience 27(5): 1310-1333.

Feng, G. and Buyya, R. (2016). Maximum revenue-oriented resource allocation in cloud,
IJGUC 7(1): 12-21.

Gomes, D. G., Calheiros, R. N. and Tolosana-Calasanz, R. (2015). Introduction to the special
issue on cloud computing: Recent developments and challenging issues, Computers &
Electrical Engineering 42: 31-32.

Kune, R., Konugurthi, P., Agarwal, A., Rao, C. R. and Buyya, R. (2016). The anatomy of big
data computing, Softw., Pract. Exper. 46(1): 79-105.

13

	1 Introduction
	2 System configuration
	2.1 hardware configuration
	2.2 Software Configuration

	3 Environment Setup
	4 Project Implementation
	4.1 Python libraries
	4.2 data preprocessing and understanding
	4.3 model implementation and Evaluation
	4.4 Result

	References

