

Configuration Manual

MSc Research Project Data Analytics

Shivani Saxena Student ID: x22168729

School of Computing National College of Ireland

Supervisor:

Vikas Tomer

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Shivani Saxena				
Student ID:	x22168729				
Programme:	Data analytics Year:				
Module:	Msc Research Project				
Lecturer:	Vikas Tomer				
Due Date:					
Project Title:	Disease detection for potato, tomato and pepper plants using ML algorithms				

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Shivani Saxena Student ID: x22168729

1 Introduction

This configuration manual consists of all the details of al the required parts for the project which includes hardware requirements, software requirements, design details, implementation of the project, environmental setup

2 System configuration

2.1 hardware configuration

The research was carried out the local machine below are the given hardware specification Processor- 11th Gen Intel(R) Core(TM) i7-118G7 @3.00GHz System type- 64-bit operating system, x64-based processor

í	Device specifications				
	Device name	Abhi			
		MINE			
	Processor	11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz			
	Installed RAM	16.0 GB (15.7 GB usable)			
	Device ID	1CA1F3D1-573E-4F2A-B24C-51DD592BE932			
	Product ID	00325-82232-52557-AAOEM			
	System type	64-bit operating system, x64-based processor			
	Pen and touch	Touch support with 10 touch points			

2.2 Software Configuration

The research was carried out on windows 11 Home version 22H2

Windows specifications				
Edition	Windows 11 Home			
Version	22H2			
Installed on 30/10/2022				
OS build 22621.1848				
Experience Windows Feature Experience Pack 1000.22642.1000.0				
Microsoft Services Agreement Microsoft Software License Terms				

3 Environment Setup

The environment used to carried this research was Kaggle IDE since I need to run my code on GPU and Kaggle provides free 30hrs of GPU unit on your account when phone number is verified (code was taking too long while running on collab while running on cpu and gpu of the collab is only available on paid versions)

IDE	Kaggle		
Programming Language	Python		
Device	GPU		
Other Tools	Microsoft Excel and word		

1. Go to Kaggle create notebook

2. Click on add data which is available on the right most side of the window and click on the + button there and search of the dataset

3. Once your dataset is visible click on the the button which is available on the right side + to add the dataset to work on

	왕 Share	Image: Constraint of the second secon
sion off (run a cell to start) 🔱 🗘 🚦	Add Data	×
	Q plant village	ੁ
	Your Datasets Competition Your Notebooks	n Datasets CSV
	241 Data Sources	Relevance 👻
the input directory	Plant Village arjun tejaswi · Updated 219 Upvotes · other · 34	4y ago 4 Add Dataset 🕀
tput when you create a version u rrent session	Plant village imag Updated 3y ago 10 Upvotes	e classification

4 **Project Implementation**

4.1 Python libraries

While carrying out the research I have used multiple python libraries. Numpy, pandas, matplotlib, pickle, Pytorch, sklearn

```
import numpy as np
import pandas as pd
import os
import torch
import random
import shutil
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader. Dataset
import matplotlib.pyplot as plt
from torchvision.models import (
   resnet50, ResNet50_Weights,
   alexnet, AlexNet_Weights,
    efficientnet_v2_1, EfficientNet_V2_L_Weights
from torch import nn
from torch import optim
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data.sampler import SubsetRandomSampler
```

/opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.3 $\,$

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

4.2 data preprocessing and understanding

In this section we will perform the data preprocessing where will be transforming the data using various augmentation that are flips, rotate, they will be resized, and normalized.

```
train_folder = "/kaggle/working/train"
validation_folder = "/kaggle/working/validation"
test_folder = "/kaggle/working/test"
data_transforms = {
        train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip()
transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
      1)
       validation': transforms.Compose([
            transforms, Resize(256)
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
      1),
}
image_datasets
      'train': datasets.ImageFolder(train_folder, transform=data_transforms['train']),
'validation': datasets.ImageFolder(validation_folder, transform=data_transforms['validation']),
'test': datasets.ImageFolder(test_folder, transform=data_transforms['validation'])
3
dataset_size =
      "train": len(image_datasets["train"]),
"val": len(image_datasets["validation"]),
"test": len(image_datasets["test"])
```

After this we will retrive all the classes of the images which are there in the dataset and size of the dataset too.

```
['Pepper__bell___Bacterial_spot',
'Pepper__bell___healthy',
'Potato___Early_blight',
'Potato___Late_blight',
'Potato___healthy',
'Tomato_Bacterial_spot',
'Tomato_Early_blight',
'Tomato_Late_blight',
'Tomato_Late_blight',
'Tomato_Leaf_Mold',
'Tomato_Septoria_leaf_spot',
'Tomato_Spider_mites_Two_spotted_spider_mite',
'Tomato__Target_Spot',
'Tomato__Tomato_YellowLeaf__Curl_Virus',
'Tomato__Tomato_mosaic_virus',
'Tomato_healthy']
```


After that we will be generating the images present on which we need to apply the models

4.3 model implementation and Evaluation

we will be implementing 3 models restNet, efficientNet, and alexnet to achive the best accuracy out of the three models

we will save the models in the best_model for restNet model

best_model_eff for the efficient model

best_model_alex for the alexnet model

we ran the model on the 3 learning rates 0.1,0.01 and 0.001 with batch size 32 and 3 different step sizes 5,7,10

RestNet model

a. chekcing for the best model

```
LR: 0.1 Step Size: 5 Best Accuracy: 86.02620087336244
LR: 0.1 Step Size: 7 Best Accuracy: 88.5977680737506
LR: 0.1 Step Size: 10 Best Accuracy: 89.39835031538088
LR: 0.01 Step Size: 5 Best Accuracy: 89.68947113051917
LR: 0.01 Step Size: 7 Best Accuracy: 89.8592916060165
LR: 0.01 Step Size: 10 Best Accuracy: 90.22319262493934
LR: 0.001 Step Size: 5 Best Accuracy: 90.22319262493934
LR: 0.001 Step Size: 7 Best Accuracy: 90.22319262493934
LR: 0.001 Step Size: 7 Best Accuracy: 90.22319262493934
LR: 0.001 Step Size: 10 Best Accuracy: 90.22319262493934
LR: 0.001 Step Size: 10 Best Accuracy: 90.22319262493934
```

b. chekcing the accuracy of the model

```
predicted = torch.argmax(outputs, dim=1)
    test_total += labels.size(0)
    test_correct += (predicted == labels).sum().iten
test_accuracy = 100. * test_correct / test_total
print(f'Test Accuracy: {test_accuracy:.4f}%')
```

Test Accuracy: 89.3694%

c. checking the precison, recall and accuracy of the model

d. Saving the new dataframe in the result_df csv file

	Learning Rate	Step Size	Train Loss	Train Accuracy	Validation Loss	\	
0	0.100	. 5	1.209047	66.058011	0.911607		
1	0.100	5	0.754563	78.936737	0.773006		
2	0.100	5	0.630841	81.942312	0.660324		
3	0.100	5	0.566265	83.614769	0.607370		
4	0.100	5	0.533164	84.430799	0.555256		
445	0.001	10	0.326353	89.989497	0.372721		
446	0.001	10	0.323305	90.151087	0.343228		
447	0.001	10	0.324072	90.094530	0.354622		
448	0.001	10	0.327621	90.005656	0.389722		
449	0.001	10	0.323081	89.835986	0.357290		
	Validation Accu	iracy					
0	76.63	37555					
1	79.01	15041					
2	82.24	1630					
3	82.70	92572					
4	84.03	36875					
••							
445	88.40	3688					
446	89.05	58709					
447	89.05	58709					
448	88.01	15526					
449	89.03	34449					
[450 rows x 6 columns]							

e. The below graphs shows the train/ validation accuracy with learning rate and step size

Learning Rate vs. Train/Va	alidation Accuracy	Chan Clean ver Their Schildshine Assure av
90.0	Train Accuracy Validation Accuracy	Step Size vs. Irain/Validation Accuracy
89.0		89.5
(%) 88.5	CA (29)	63.0 (€) (€) (€) (€) (€) (€) (€) (€)
97.5 S8.0	Accura	400 0.088 V000
87.0		87.5
86.5	0.06 0.08 0.10	87.0
Learning Ra	ste	Step Size

f. The below graph shows the validation loss vs learning rate on different step sizes

AlexNet model

	a.	chekcing for the best model
LR:	0.1	Step Size: 5 Best Accuracy: 81.97320341047504
LR:	0.1	Step Size: 7 Best Accuracy: 85.01827040194884
LR:	0.1	Step Size: 10 Best Accuracy: 85.01827040194884
LR:	0.01	l Step Size: 5 Best Accuracy: 85.01827040194884
LR:	0.01	l Step Size: 7 Best Accuracy: 85.1400730816078
LR:	0.01	l Step Size: 10 Best Accuracy: 85.87088915956151
LR:	0.00	01 Step Size: 5 Best Accuracy: 85.87088915956151
LR:	0.00	01 Step Size: 7 Best Accuracy: 85.87088915956151
LR:	0.00	01 Step Size: 10 Best Accuracy: 85.87088915956151
Best	: LR:	: 0.01 Best Step Size: 10

b. <u>chekcing the accuracy</u> of the model

Test Accuracy: 85.5596%

c. checking the precison, recall and accuracy of the model

d. Saving the new dataframe in the result_df csv file

	Learning Rate	Step Size	Train Loss	Train Accuracy	Validation Loss	\
0	0.100	5	11.048008	45.870445	31.624462	
1	0.100	5	6.444064	57,570850	14.997222	
2	0.100	5	5.567074	60.485830	7.554774	
3	0.100	5	4.872732	63.967611	11.251095	
4	0.100	5	4.971214	64,089069	14.695096	
445	0.001	10	1.081323	83.238866	1.238125	
446	0.001	10	1.267841	81.417004	1.238128	
447	0.001	10	1.093792	82.388664	1,238126	
448	0.001	10	1.217089	81.133603	1.238127	
449	0.001	10	1.149771	82.307692	1.238129	
			11110//12	021307032	11250125	
	Validation Accu	uracy				
0	20.95	50061				
1	53.95	58587				
2	63.58	80999				
3	47.74	46650				
4	59.19	96102				
445	84.28	87454				
446	84.28	37454				
447	84.28	37454				
448	84.28	37454				
449	84.28	87454				
[450	rows x 6 columr	ns]				

e. The below graphs shows the train/ validation accuracy with learning rate and step size

f. The below graph shows the validation loss vs learning rate on different step sizes

EfficientNet model

a. chekcing for the best model

100%	20.5M/20.5M [00:00<00:00, 89.7MB/s]
Epoch: 49, LR:	0.1, Step Size: 5, Best Accuracy: 97.32034104750305
Epoch: 49, LR:	0.1, Step Size: 7, Best Accuracy: 98.29476248477467
Epoch: 49, LR:	0.1, Step Size: 10, Best Accuracy: 98.53836784409258
Epoch: 49, LR:	0.01, Step Size: 5, Best Accuracy: 98.53836784409258
Epoch: 49, LR:	0.01, Step Size: 7, Best Accuracy: 98.66017052375152
Epoch: 49, LR:	0.01, Step Size: 10, Best Accuracy: 98.66017052375152
Epoch: 49, LR:	0.001, Step Size: 5, Best Accuracy: 98.78197320341047
Epoch: 49, LR:	0.001, Step Size: 7, Best Accuracy: 98.78197320341047
Epoch: 49, LR:	0.001, Step Size: 10, Best Accuracy: 98.78197320341047
Best LR: 0.001	Best Step Size: 5

b. chekcing the accuracy of the model

- c. checking the precision, recall and accuracy of the model
 Precision: 0.9740
 Recall: 0.9735
 F1 Score: 0.9735
- d. Saving the new dataframe in the result_df csv file

	Learning Rate	Step Size	Epoch	Train Loss	Train Accuracy			
0	0.100	5	0	1.560533	67.287449			
1	0.100	5	1	0.494857	86.032389			
2	0.100	5	2	0.369051	89.190283			
3	0.100	5	3	0.316108	90.485830			
4	0.100	5	4	0.230657	93.036437			
445	0.001	10	45	0.027517	99.190283			
446	0.001	10	46	0.031766	99.109312			
447	0.001	10	47	0.045659	98.623482			
448	0.001	10	48	0.036997	98.987854			
449	0.001	10	49	0.028252	98.987854			
	Validation Loss Validation Accuracy							
0	1.132215 72.95		9805					
1	2.000496	6	49.08	6480				
2	0.950440	6	73.93	4227				
3	0.367253	3	89.15	9562				
4	0.800227		85.26	1876				
445	0.044411 9			6565				
446	5 0.047185 98.172960							
447	0.04753	7	98.41	6565				
448	0.048228	8	98.29	4762				
449	0.048468	8	98.29	4762				
[450	rows x 7 column	nsj				_		

e. The below graphs shows the train/ validation accuracy with learning rate and step size

f. The below graph shows the validation loss vs learning rate on different step sizes

4.4 Result

The final result of all the models are shown below we can see that the efficidnet models performs the best out of all the three model with highest accuracy.

Results of all the models

model	accuracy	precision	f1score	recall
ResNet	88.59%	89.10%	88.47%	88.60%
AlexNet	85.55%	86.50%	85.24%	85.56%
EfficientNet	97.35%	97.40%	97.35%	97.35%

References

References should be formatted using APA or Harvard style as detailed in NCI Library Referencing Guide available at <u>https://libguides.ncirl.ie/referencing</u> You can use a reference management system such as Zotero or Mendeley to cite in MS Word. Beloglazov, A. and Buyya, R. (2015). Openstack neat: a framework for dynamic and energyefficient consolidation of virtual machines in openstack clouds, *Concurrency and Computation: Practice and Experience* 27(5): 1310–1333.

Feng, G. and Buyya, R. (2016). Maximum revenue-oriented resource allocation in cloud, *IJGUC* 7(1): 12–21.

Gomes, D. G., Calheiros, R. N. and Tolosana-Calasanz, R. (2015). Introduction to the special issue on cloud computing: Recent developments and challenging issues, *Computers & Electrical Engineering* 42: 31–32.

Kune, R., Konugurthi, P., Agarwal, A., Rao, C. R. and Buyya, R. (2016). The anatomy of big data computing, *Softw., Pract. Exper.* 46(1): 79–105.