~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Masters of Science in Data Analytics

Aniketh Mahesh Rao
Student ID: X22166343

School of Computing
National College of Ireland

Supervisor: Noel Cosgrave

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Aniketh Mahesh Rao
Student ID: X22166343
Programme: Masters of Science in Data Analytics
Year: 2023 2023
Module: MSc Research Project
Supervisor: Noel Cosgrave
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 504
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aniketh Mahesh Rao

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Aniketh Mahesh Rao
X22166343

1 Introduction

This configuration manual is designed to accompany the research paper titled ” Predictive
Model for Pitstop Strategy in Formula 1 using Ensemble Learning.” It provides complete
details about the software and hardware configurations used in the research project. The
manual outlines the necessary libraries and technologies imported using Python, offering
a step-by-step guide on how to configure a functional environment. The primary objective
of this manual is to allow end users to reproduce the overall research, ensuring that the
findings and Machine Learning model can be effectively replicated. By providing clear
instructions on the setup of the software, hardware, and technologies used, this manual
will help users to recreate the environment and validate or extend the research outcomes.

2 Hardware Specifications

Table 1: Hardware/Software Specification

Hardware/Software Configuration

System Model HP Pavilion Laptop
Operation System Windows 10 Home
Processor 8th Gen Intel(R) Core i5
RAM 16.00 GB

3 Working Environment

In the project, the primary programming language employed is Python, and the code
execution takes place within a Jupyter Notebook environment. The version of Python
utilized is 3.11.5, and you can install it by referring to the provided image [] Python
serves as the key tool for various stages in the project, including data gathering, cleaning,
exploration, transformation, and visualization.

To run the code open the file in the jupyter notebook environment and upload the
dataset as highlighted.

'https://www.python.org/downloads/

https://www.python.org/downloads/

~ Jupyter Quit | Logout

Files Running Clusters
Select items to perform actions on them Upload | New~ Z
(Jo |~ W/ Downloads Name ¥ Last Modified File size
(] seconds ago

Figure 1: Opening Jupyter Notebook

4 Datasets

Two distinct sources, namely Tracing Insights and Pitwall, have been used to collect
three datasets, which are then combined to a singular dataset file. The information
extracted from these two open-source websites consists of dataset comprising 25,000 rows
and encompassing 40 columns.

5 Importing Libraries and performing Exploratory
Data Analysis

All the required libraries which needs to be installed are mentioned in the below Figure
2. All the below libraries are required to run the code and to get the expected results.

M # Importing all the required Libraries

import numpy as np

import pandas as pd

import warnings

warnings.simplefilter("ignore™)

from bs4 import BeautifulSoup

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

from sklearn.ensemble import StackingClassifier, RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression

from sklearn.svm import SVC

from sklearn.metrics import classification_report, accuracy_score
from sklearn.model_selection import train_test_split

Figure 2: Importing Libraries

After importing the libraries, dataset can be imported into the jupyter environment
and initial few rows have been shown in Figure 3. In which Position and PitFlag are the
target variables.

M # loading the new dataset file and displaying the first few rows to understand its structure.

Load the new dataset
new_data = pd.read_excel('Final_updated.xlsx")

Display the first few rows of the new dataset
new_data.head()

Time Driver Position DriverNumber PitFlag LapTime LapNumber Stint SectoriTime Sector2Time .. IsAccurate LapTime_in_secol
O or0p4s5730050 VER g g 0 000139015080 L Eey B = Rk 99.
1 010145760000 VER 1 1 O 000137874000 2 31342 42504 True ar
. A L L T et CHE 23 A - it &8
3 ororas7aests VER 1 1 O 000137 976000 ¢ a1z 42642 .. True o7.
4 Odays e 1 1 0 Uldays 5 1 31.244 42724 . True 98,

01:09:45.754000 00:01:38.035000

5 rows x 40 columns

Figure 3: First 5 rows of the dataset

Figure 4, shows two line graphs that are plotted to display the relationship between
the lap number and two different temperature measurements: air temperature and track
temperature.

Lap Number vs AirTemp
25

24

AirTemp

0 10 20 30 40 50 60 70 80
Lap Number

Lap Number vs TrackTemp

g 2 8

TrackTemp
<]

28
26
24
2
0 10 20 30 40 50 60 70 80
Lap Number

Figure 4: Lap Number Vs Air Temperature

Figure 5 is a clustered bar chart titled ”Distribution of Laps with Different Tire
Compounds”. It shows the usage frequency of different tire compounds over various
groups of laps during a racing event.

Distribution of Laps with Different Tire Compounds (Aggregated in groups of 5 laps)
1400 Tire Compound
. SOFT
s HARD
=== MEDIUM
1200 === NTERMEDIATE
- WET
1000
800
£
3
3
600
400
) || | ‘ | | |‘ | |
0 L] I - I - I III- I II- -III_ I
R T S T SN NP R
A o Gl G Q- o - o 0 o - o . o Q- @
@ N & ¢ & SO & & € € & ¢ < 4
Lap Group

Figure 5: Lap Number Vs Track Temperature

6 Machine Learning Model

Splitting the dataset for 'Position' prediction
X = data.drop(['Position’], axis=1) # Features
y_position = data['Position'] # Target for 'Position’

Splitting data into training and testing sets for 'Position’
X_train_pos, X_test_pos, y_train_pos, y_test_pos = train_test_split(X, y_position, test_size=0.2, random_state=42)

X1 = data.drop(['Position’, 'PitFlag’'], axis=1) # Features
Repeat the process for 'PitFlag' prediction
y_pitflag = data['PitFlag'] # Target for 'PitFlag’

Splitting data for 'PitFlag’
X_train _pf, X test pf, y train pf, y test pf = train_test split(x1, y pitflag, test size=0.2, random state=42)

Figure 6: Training and Testing Set

Before executing the model, we split the data into training and testing data, as seen
in Figure 6, testing data is 20 percent and remaining is the training set for both the
target variables.

Defining base learners

base_learners = [
('rf', RandomForestClassifier(n_estimators=16@, random_state=42)),
("svc', svC(probability=True, random_state=42)),
('gb", GradientBoostingClassifier(n_estimators=160, random_state=42))

]

Defining the meta-learner
meta_learner = LogisticRegression()

Building the stacking ensemble
stacked_model = StackingClassifier(estimators=base_learners, final_estimator=meta_learner, cv=5)

Training the stacked model
stacked_model.fit(X_train_pf, y_train_pf)

Making predictions and evaluating the model

y_pred = stacked_model.predict(X_test pf)

print(“Accuracy:", accuracy_score(y_test pf, y pred))

print("\nClassification Report:\n", classification_report(y_test_pf, y_pred))

Figure 7: Meta-Learner for Pitstop

In Figure 7, Ensemble Learning has been used for predicting PitFLag through a
stacking approach, which is a form of meta-learning since it involves learning how to best
combine the predictions of multiple models.

sample_data = X1.iloc[@:57]
actual_label = y pitflag.iloc[©:56]

Making predictions with each model on the sample
pred = stacked_model.predict(sample_data)

Pit_lap = np.where(pred == 1)[0]
print(f"The driver should take pit stops at laps {Pit_lap}")

Figure 8: Pitstop Prediction

Prediction output is displayed, the lap numbers on which the driver should make a
pitstop in Figure 8.

Defining base learners

base_learners = [
('rf', RandomForestClassifier(n_estimators=100, random_state=42)),
("'svc', svC(probability=True, random_state=42)),
('gb", GradientBoostingClassifier(n_estimators=160, random_state=42))

]

Defining the meta-learner
meta_learner = LogisticRegression()

Building the stacking ensemble
stacked_modell = StackingClassifier(estimators=base learners, final estimator=meta_learner, cv=5)

Training the stacked model
stacked _modell.fit(X train_pos, y train_pos)

Making predictions and evaluating the model

y_pred = stacked modell.predict(X_ test pos)

print("Accuracy:", accuracy_score(y_test_pos, y_pred))

print("\nClassification Report:\n", classification_report(y_test pos, y pred))

Figure 9: Meta-Learner for Position

In Figure 9, position is the target variable and model will predict the position of the
driver based on sample data.

sample_data = X.iloc[@:57]
actual_label = y position[56]

Making predictions with each model on the sample
pred = stacked_modell.predict(sample_data)

print(f"Predicted Position for Driver is {pred[-1]}")
print(f"Actual Position for Driver is {actual_label}")

Figure 10: Driver Position Prediction

In Figure 10, position of the drivers is displayed, if they make the pitstop in the
predicted laps shown in the output of Figure 9.

Reducing the index size for the plot to focus on a smaller subset of data for clearer visualization

Selecting a subset of data for clearer visualization
subset_data = plot_data.sample(n=1@0, random state=42) # Adjust the sample size as needed

Plotting Actual vs Predicted results on the subset

plt.figure(figsize=(12, 6))

plt.scatter(subset_data.index, subset_data['Actual'], color='blue', label="Actual', alpha=0.5)
plt.scatter(subset_data.index, subset _data['Predicted’'], color='red’, label='Predicted’, alpha=0.5)
plt.title('Actual vs Predicted Positions')

plt.xlabel(Index (Subset)')

plt.ylabel('Position")

plt.xticks([])

plt.legend()

plt.show()

Figure 11: Driver Position Prediction

In Figure 11 and 12, there are two sets of data points are depicted: blue points
represent actual positions, and orange points represent predicted positions. The points
are spread across the plot, showing the variability and relationship between the actual
and predicted values. Some points are overlapping which are highlighted in red, indicat-
ing instances where the predictions match the actual positions closely, while others are
separate, highlighting discrepancies between prediction and reality

Actual vs Predicted Positions
] @ Actual
° [] ° [] L] ° ® Predicted
75 eeoe ° [°® ee o °
e e e o ®
15.0 e o ® 1] e [
L] e o [] [] []
L]] e L] [
125
° U] e o ®
c] L e
=l
= 10.0 ® °
£ o o ° ° ™
] ° L] [} ® ® o] °
75
[] ® ® L] ° L] ° °
® [° °
50 ® o o ® @ ®
[°] ° [
25 °
’ [] L] L] [] L] ° L]
[] [] []
Index (Subset)

Figure 12: Driver Position Prediction

7 Conclusion

In conclusion, this manual provides a thorough overview of the project’s key technologies
and provides in-depth information on how to configure and use them. Its main goal is
to enable end users to set up their workspaces such that the supplied code executes suc-
cessfully. The manual guarantees consistency and accessibility by clarifying the primary
technologies and how they are configured, which improves the use of the project’s code-
base.

	Introduction
	Hardware Specifications
	Working Environment
	Datasets
	Importing Libraries and performing Exploratory Data Analysis
	Machine Learning Model
	Conclusion

