~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Linda Susan Raju
Student ID: 22134409

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Linda Susan Raju
Student ID: 22134409
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Vladimir Milosavljevic
Submission Due Date: 14/12/2023
Project Title: Enhancing Low-Light Images using Deep Learning
Word Count: 480
Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Linda Susan Raju

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Linda Susan Raju
22134409

1 Introduction

The configuration manual serves as a guide for setting up and configuring the project
environment for the proper execution of the research project. It provides information
on hardware and software requirements and other system configurations. The purpose
of this manual is to give step-by-step instructions on the necessary procedures ensuring
easy replication of the experiment and also if interested, extend the project for their own
research or applications.

2 System Requirements

2.1 Hardware Specifications

Figure 1 shows the hardware specifications

Device specifications

Device name LAPTOP-NCU7DOTS
Processor 12th Gen Intel((TM) i7-1255U 1.70 GHz

Installed RAM
Device ID
Product ID
System type

Pen and touch

Figure 1: Hardware Specifications

Graphics:
e NVIDIA GeForce MX550
e Intel(R) UHD Graphics

2.2 Software Requirements

The project was executed using Python on Google Colab Pro+.

2.3 Software Dependencies

e Python (Programming Language) : Python 3.10.12

TensorFlow (Deep Learning Library) : TensorFlow 2.12.0

Keras (Neural Networks API) : Keras 2.12.0

Matplotlib (Data Visualization Library) : 3.7.1

Scikit-learn (Machine Learning Library): 1.2.2

3 Setting Up the Environment

Google Colab Environment:

e Mount Google Drive: To access the dataset which is uploaded in the Google Drive
and also save the model checkpoints, we mount Google Drive using the following
code snippet in Figure 2

° from google.colab import drive

drive.mount((' /content/drive")l

E) Mounted at /content/drive

Figure 2: Code to Mount Google Drive

4 Dataset and Preprocessing

4.1 Dataset Acquisition

The LOL dataset is used consists of 500 low-light and normal-light image pairs and is
separated into 485 training pairs and 15 testing pairs. The dataset used is public and
available in Kaggle repository.

Link: https://www.kaggle.com/datasets/soumikrakshit/lol-dataset/

4.2 Dataset Preprocessing

Figure 3, the preprocessing code defines a function to load and preprocess images for a
given folder in the dataset. The images are resized to (400, 600) pixels, and their pixel
values are normalized to the range [0, 1]. The preprocessing is done separately for training
and evaluation sets.

https://www.kaggle.com/datasets/soumikrakshit/lol-dataset/

oad_and_preprocess_images(data_path, folder):
images =[]
folder_path = os.path.join(data_path, folder)

filenames = sorted(os.listdir(folder_path))

ilename in sorted(os.listdir(folder_path)):
img_path = os.path.join(folder_path, filename)
img = load_img(img_path, target_size=(400, 600))
img_array = img_to_array(img) / 255.@ al

images .append(img_array)
return np.array(images)

data_path =

train_low_light_images, val low_light_images = train_test_split(load_and_preprocess_images(data_path,

train_normal_light_images, val_normal_light_images = train_test_split(load_and_preprocess_images(data_path,

test_low_light_images = load_and_preprocess_images(data_path, ‘evall
test_normal_light_images = load_and_preprocess_images(data_path,

Figure 3: Dataset Preprocessing

5 Model Architecture

This research has four CNN models and one GAN model, which uses the CNN model as
it’s generator to produce an enhanced image. Each CNN model along the GAN model
was executed in 4 separate files because of limited GPU memory during the computation.
So other than CNN models, preprocessing, hyperparameter tuning and training code are

the same.

5.1 Model 1: Basic CNN Model

=f build_denoising model():
model = Sequential()

add(Conv2D(64, (3, 3), activation='relu’, padding=

add(BatchNormalization())

add(Conv2D(128, (3, 3), activation='relu’, padding:

add(BatchNormalization())

add(MaxPooling2D((2, 2), paddin

ame*))

add(Conv2DTranspose(128, (3, 3), activation='relu', paddin,
add(BatchNormalization())
add(Conv2DTranspose(64, (3, 3), activation='relu’, padding=
add(BatchNormalization())
add(UpSampling2D((2, 2)))

model.add(Conv2D(3, (3, 3), activation=

return model

Figure 4: Basic CNN Model

rNVeoRBARE T

'), test_size=0.2, random_state=42)

, test_size=0.2, random_sta

5.2 Model 2: Feature-map Based CNN with Skip Connections

build_fabcnn_with_skip_connections(input_shape

inputs = Input(shape=input_shape)

convi e paddin

") (relul)

)(relu2)

, padding) (concat1)

Model (inputs=inputs, outputs=output)

n model

Figure 5: Feature-map Based CNN with Skip Connections

5.3 Model 3: Feed-Forward Denoising CNN

build_feedforward_denoising_model(input_shape):
model = Sequential()

model.add(Flatten (input_shape=input_shape))

model.add(Dense (1824, activatio

model.add(Dense (512, activatio

Figure 6: Feed-Forward Denoising CNN

5.4 Model 4: Feed-Forward Denoising CNN with Filtering Stages

build_ffd_cnn_denoising model (input_shape):
model = Sequential(

model.add(Conv2D(64, kernel_siz
model . add (BatchNormal:
model.add(ReLU())

e', input_shape=input_shape))

in range(4):

model . add(Conv2D(64, kern
model.add (BatchNormalization
model.add(ReLU())

model . add (MaxPooling2D(pool_size=2, strides=2, padding=
model.add(UpSampling:

model .add(61obalAveragePooling2D())
model .add(Dense (256, activation=

model . add(Dense (np. prod (input_
model . add(Reshape (input_shape))

ape), activation=

model

Figure 7: Feed-Forward Denoising CNN with Filtering Stages

5.5 Hyperparameter Tuning

©

ate': [0.0001, ©.001, ©.01, ©.0002, ©.002, ©.02, ©.0005, 0.005, ©.65],
[se, 1ee],

[8, 16, 32]

params in param_combinations
results

evaluate_basic_cnn_model_(train_low_light_images, val_low_light_images, params)
print(f"

NR:| {results['psnr’ results

Figure 8: Hyperparameter Tuning Function

5.6 GAN Model

build_gan(learning_rate, generator_activation, discriminator_activation):

denoised_model = load_model("/c

generator = denoised_model
trainable

discriminator = build_discriminator(input_shape, discrimina

rtor_activation)

! rossen , optimizer-Adam(learning_rate-learning_rate, bet

discriminator.trainable =

gan_input = tf.keras. Input(shape=(400, 60X

x_denoised d_model (gan_input)

x_enhanced = generator (x_denoised)

gan_output = discriminator(x_enhanced)

gan = Model (gan_input, gan_output)
gan. compile(loss="bina v
test_los:!

ntropy’, optimizer-Adam(learning rate-learning rate, beta
= gan_model .evaluate(test_low_light_images, test_normal_light_images)
priint(" 0 , test_loss)

gan, generator, discriminator

Figure 9: GAN Model

basic_cnn_model_(train_images, val_images, params)

basic_cnn_denoising_model = fmbcnn_with_skip_connections_model_compile(params)

denoised_images = basic_cnn_denoising_model.predict(val_images)
mse = MeanSquaredError()(val_images, denoised_images).numpy ()
psnr = peak_signal_noise_ratio(val_images[@], denoised_images[@], data_range=denoised_images[@].max())

ssim_index = structural_similarity(val_images[@], denoised_images[@], multichannel=True)

return [’ par : params, 'mse’: "psnr’: : ssim_index}

Figure 10: Evaluation Function

6 Training

All the models have similar training functions as in Figure 11

denoising_model build_denoising_model()
denoising_model.compile(optimizer=Adam(learning_rate=params , metrics= acy')
checkpoint_basic_cnn = ModelCheckpoint dr » _cnn_ , save_best_only:
history denoising_model.fit(

train_low_light_images, train_normal_light_images,

epochs:

batch_size=params[1,

validation_data=(val_low_light_images, val_normal_light_images),

callbacks=[checkpoint_basic_cnn]

test_loss = denoising model.evaluate(test_low_light_images, test_normal_light_images)

enhanced_images_model 1 = denoising_model.predict(test_low_light_images)
generate_basic_cnn_model_images(enhanced_images_model_1)

~n denoising_model

Figure 11: Training Function

7 Evaluation

The results are interpreted by analyzing the metrics provided, like Mean Squared Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM).

evaluate_basic_cnn_model_(train_images, val_images, params):

denoised_images = basic_cnn_denoising_model.predict(val_images)

mse = MeanSquaredError()(val_images, denoised_images).numpy ()
psnr = peak_signal_noise_ratio(val_images[@], denoised_images[@], data_range=denoised_images[@].max())
ssim_index = structural_similarity(val_images[@], denoised_images[®], multichannel=True)

return [’ : params, 'mse’: "psnr’: : ssim_index}]

Figure 12: Evaluation Function

8 Visualization

Figure 13 shows the final enhanced image of the integrated model

Low-Light Image Generated Image

High-Light Image

=~

Figure 13: Output images of the CNN-GAN Model

	Introduction
	System Requirements
	Hardware Specifications
	Software Requirements
	Software Dependencies

	Setting Up the Environment
	Dataset and Preprocessing
	Dataset Acquisition
	Dataset Preprocessing

	Model Architecture
	Model 1: Basic CNN Model
	Model 2: Feature-map Based CNN with Skip Connections
	Model 3: Feed-Forward Denoising CNN
	Model 4: Feed-Forward Denoising CNN with Filtering Stages
	Hyperparameter Tuning
	GAN Model

	Training
	Evaluation
	Visualization

