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Enhancing Low-Light Images using Deep Learning

Linda Susan Raju
22134409

Abstract

This research addresses the challenge of low-light image denoising through a
multi-stage approach involving convolutional neural networks (CNNs) and a gen-
erative adversarial network (GAN) for enhancement. Motivated by the persistent
issue of noise in low-light conditions impacting image quality, the study aims to
integrate the denoising capabilities of CNN with the refinement offered by a GAN.
The CNN models are trained separately to denoise the low-light images. Sub-
sequently, the GAN model is used where its generator component is replaced with
the pre-trained denoising CNN model and after the training process, the enhance-
ment using the GAN shows improvements in image quality. It highlights the benefit
of the integrated approach compared to the standalone denoising models of sequen-
tial processing in achieving low-light image enhancement.

Keywords— Low-light images, Denoising, Enhancement, Convolu-
tional Neural Networks (CNN), Generative Adversarial Networks (GANs),
Feature Map Based Convolutional Neural Networks (FMBCNN)

1 Introduction

In the field of imaging technology, the challenge of capturing clear and vibrant images
under low-light conditions has become a major area of research. This area holds immense
significance across diverse fields such as surveillance, autonomous driving, medical ima-
ging, and photography. The motivation to address this challenge is focused on its broad
applications, where the quality and reliability of visual data notably influence decision-
making processes. Clean, noise-free images are crucial in these applications, shaping the
precision of results and impacting safety, diagnostics, and the overall user experience.

With applications including surveillance, autonomous driving, medical imaging, and pho-
tography, research for clear and noise-free images becomes important. The clarity of
low-light images directly influences the quality and reliability of results in these domains.
Notably, this clarity is essential for object detection and recognition, where precision in
visual data is critical for accurate decision-making. The presence of noise and artifacts
in low-light conditions can lead to misinterpretations, posing potential risks in contexts
like autonomous driving and medical diagnosis. As technology advances, addressing this
challenge becomes increasingly crucial for ensuring the integrity of decision-making pro-
cesses in these high-stakes scenarios. Researchers try to increase the accuracy of findings
in an attempt to obtain clear, noise-free images so that decision-makers in a number of
fields may depend on precise and understandable visual information.
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The resulting improvement in image quality not only caters to preferences in photo-
graphy but also plays a pivotal role in enhancing safety, security, medical diagnostics,
and scientific exploration through clearer and more detailed visual data. The improve-
ment of low-light images in these conditions is evidence of the constant effort to push the
limits of innovation for the benefit of society.

1.1 Research Question

How the integration of CNN-based denoising models and GAN-based techniques enhance
the quality of low-light images?

1.2 Novelty

Convolutional neural networks (CNN) and generative adversarial networks (GAN) are
combined in this research to offer a promising approach for the problems of noise reduction
and low-light image enhancement. The proposed method suggests that the denoised CNN
model’s ability to capture intricate features is refined through GAN training, resulting in
enhanced visual quality in low-light conditions; that is, the denoised CNN model will be
used as a generator in the GAN model to produce even more enhanced output. From all
the denoised models, the Feature Map Based Convolutional Neural Network (FMBCNN),
which uses the inherent ability of feature maps to capture detailed visual features and
patterns, further distinguishes this research. Given the importance of low-light images
in applications, the primary focus on improving low-light image quality using denoising
processes is recent. The empirical data showing that the FMBCNN approach outperforms
traditional filtering methods is the new factor in this research, showing its capacity to
significantly improve the area of low-light image denoising.

2 Related Work

2.1 Denoising CNN Approach

Ilesanmi & Ilesanmi (2021) provides an overview of the techniques in image denoising,
with a focus on convolutional neural network (CNN) methods. It addresses the import-
ance of image denoising due to the increase of digital images captured in poor conditions,
emphasizing its importance in various domains such as medical imaging, remote sensing,
and forensics. The paper categorizes traditional filters, including linear, non-linear, ad-
aptive, wavelet-based, partial differential equation (PDE), and total variation filters, and
highlights their limitations, such as poor test phase optimization and manual parameter
settings. This is where they introduce CNN as a flexible solution to these drawbacks. It
also discusses the evaluation metrics for the analysis of CNN image denoising perform-
ance, which are mean square error (MSE), peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), root mean square error (RMSE), feature similarity
(FSIM and FSIMc), and signal-to-noise ratio (SNR).

The study identifies other CNN techniques, such as the feedforward CNN, U-Net, and
residual networks, while also highlighting challenges, including limited memory for CNN
applications and difficulties in solving unsupervised denoising tasks. The paper provides
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an understanding of CNN-based image denoising methods and promotes further explor-
ation in this field.

In CNN, feature maps are essential components that are generated by applying a convo-
lution operation to an input image using specific filters. These maps represent various
aspects of the input image, with early layers extracting simple features like edges and later
layers identifying more complex features such as corners and textures. Feature maps play
a crucial role in helping the network understand the relationships between features in an
image, which leads to more accurate projections and improved performance. Ravi et al.
(2023) presents FMBCNN, a feature map-based convolutional neural network for image
denoising. FMBCNN increases channel interdependencies in CNNs without significant
computation costs and dynamically selects features using feature maps. It outperforms
other denoising techniques in terms of metrics by its success in achieving a lower Mean
Square Error (MSE) of 70.105, a higher Peak Signal-to-Noise Ratio (PSNR) of 31.696,
a superior Structural Similarity Index (SSIM) of 0.924, and an entropy of 0.443. It also
manages both artificial and real noise. The study emphasizes the importance of feature
maps in CNN-based denoising and suggests that FMBCNN is a promising method for
image denoising.

Islam et al. (2018) addresses the challenging problem of mixed-noise removal in images,
focusing on the common combination of additive white Gaussian noise (AWGN) and im-
pulse noise (IN). Despite the non-linearity in noise distribution, the paper introduces an
algorithm using a convolutional neural network (CNN) model for effective denoising. The
CNN model, adopting a computationally efficient transfer learning approach, establishes
an end-to-end mapping from noisy to noise-free images. Despite its compact structure, the
CNN model outperforms established methods in accuracy and robustness. Experimental
results across diverse mixed-noise settings confirm the effectiveness of the CNN-based
denoising method, highlighting both efficiency and superior performance. The proposed
method allows for faster denoising operations compared to previous methods. Overall, it
presents a promising solution for effectively reducing mixed Gaussian-impulse noise from
images, offering improved accuracy, robustness, and computational efficiency compared
to existing methods.

2.2 GAN Enhancement Approach

Xu et al. (2022) focuses on an underwater image enhancement algorithm employing an
improved GAN model, which addresses challenges in obtaining paired training sets for
supervised learning. The proposed method integrates the GAN model with a global-local
discriminator structure, introducing a Wasserstein-GAN with gradient penalty loss and
combining L1 and L2 loss functions for enhanced performance. The algorithm utilizes a
U-Net structure with an Adaptive Dense Feature Fusion (ADFF) module to effectively
retain and accumulate key features from various levels, aiming to improve cross-scale con-
nections and multi-level feature integration. Experimental analysis on a dataset of 3,800
underwater and land images demonstrates the algorithm’s superior performance com-
pared to classic methods, as evaluated by objective indicators such as UIQM, UIConM,
UCIQE, and information entropy. The study concludes by highlighting the algorithm’s
capacity to restore underwater images with fine details and natural colours, suggesting
potential for further work in addressing details of image enhancement, particularly in
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overexposed areas.

Medical image enhancement is a critical aspect of pre-processing in automated analysis
and diagnosis. The challenges posed by different conditions across different imaging
devices necessitate advanced techniques to produce high-quality images for accurate clin-
ical interpretation. Ma et al. (2021) reveals a gap in achieving consistent and detailed
enhancement across various medical imaging modalities, and StillGAN addresses this
gap through an unpaired learning framework, treating low- and high-quality images as
distinct domains. By incorporating novel constraints on illumination and structure loss,
StillGAN demonstrates superiority over existing methods, particularly in capturing local
details crucial for clinical interpretation. The experiments on corneal confocal microscopy
and colour fundus images showcase the method’s effectiveness in improving SNR, nerve
fibre segmentation, and overall visual perception.

However, limitations are identified, such as challenges in handling non-uniform intensity
regions and the risk of incorrect translation, raising the need for further improvement in
structure loss. The paper suggests that refining these constraints and incorporating col-
our consistency considerations may enhance StillGAN’s adaptability to different medical
imaging conditions. It emphasises the significance of medical image enhancement in facil-
itating accurate diagnosis and therapy planning. StillGAN, with its unique constraints,
stands out as a promising solution to address the limitations of existing methods.

2.3 Integrated Approaches

Vashisht et al. (2023) and Shi et al. (2022) represent significant contributions to the
realms of medical image categorization, hemolysis image identification, and PD pattern
recognition within GIS. They employ a fusion of CNN and GAN methodologies, each with
distinct applications and approaches. Vashisht et al. (2023), the focus lies on medical
image classification, specifically pneumonia, utilising CNN-GAN methods. This study
underscores the potency of GAN-driven data augmentation for dataset enhancement,
effectively tackling challenges in medical image classification. Conversely, Shi et al. (2022)
concentrates on hemolysis detection in medical images, employing CNN-GAN techniques
for both data expansion and feature extraction. This highlights the versatility of CNN-
GAN beyond classification tasks. Wang et al. (2022), the emphasis is on PD pattern
recognition in GIS with imbalanced samples. This research utilizes GAN and CNN to
rectify data imbalances and automatically optimize CNN construction, showcasing the
adaptability of CNN-GAN in real-world data scenarios and model optimization for GIS
pattern recognition tasks.

Vashisht et al. (2023) underscores the importance of GAN-based data augmentation
in medical image classification, specifically pneumonia. This aligns with the potential
advantages of GAN-based data augmentation in the current study, offering benefits in
creating diverse training data to manage variations in low-light conditions and noise levels
effectively.

3 Methodology

In this section, a detailed overview of the methodology used in this project with the
key approaches and techniques is highlighted. The methodology outlines the gradual
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process followed to develop and evaluate CNN and GAN models for the denoising and
enhancement tasks.

3.1 Dataset Collection

The LOL (LOw-Light) dataset is a repository comprising 500 low-light and normal-light
image pairs, which have separate training and testing pairs along with same distribution
making this a balanced dataset. Each image in the dataset has a resolution of 400x600
and was captured in indoor areas. Figure 1 and Figure 2 show the low-light and its
corresponding normal-light images from the LOL dataset.

Figure 1: Low-light images in LOL dataset

Figure 2: Corresponding Normal-light images in LOL dataset

3.2 Data Splitting and Preparation

During the preprocessing step, the function ’load and preprocess images’, is designed to
handle the loading and preprocessing of images. This function operates on a specified
folder path containing low-light and normal-light images for subsequent processing. First,
the image files are sorted since the pairs may not share the same index. After sorting,
the images are resized and then normalised to a pixel value range of [0, 1] to ensure
consistency in model input. Here, data augmentation is not done; only resizing and nor-
malisation are applied to the images since data augmentation increases the computational
load, and limited computation is one of the drawbacks of this work. So, the number of
images used for training were limited.

Since the dataset has separate training and testing folders with 485 and 15 images, re-
spectively, in each folder for both low-light and normal-light images. The training images
are split using the ‘train test split‘ function from Scikit-learn, to training and validation
with 388 and 97 images respectively.
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3.3 CNN Model Architectures

Figure 3 shows the outline of all the CNN models used in this research.

Figure 3: Four CNN Models

3.3.1 Model 1: Basic CNN Model

The architecture of the first model designed is a basic Convolutional Neural Network
(CNN) for the purpose of denoising low-light images. The model is constructed using the
Keras Sequential API, encompassing an encoder-decoder structure. The use of convolu-
tional and transpose convolutional layers enables the model to capture and reconstruct
essential features for effective low-light image denoising.

The encoder begins with a convolutional layer comprising 64 filters with a (3, 3) kernel
size, employing the rectified linear unit (ReLU) activation function and same-padding.
Batch normalisation is applied to enhance training stability. Subsequently, a similar pat-
tern is repeated with a convolutional layer featuring 128 filters. A MaxPooling layer with
a (2, 2) pool size is then employed to down-sample the spatial dimensions.

The decoder mirrors the encoder architecture, utilising Conv2DTranspose layers for up-
sampling. This begins with a Conv2DTranspose layer with 128 filters, followed by another
with 64 filters. Batch normalisation is applied to each layer for stability. Finally, an Up-
Sampling2D layer with a (2, 2) size is utilised to restore the spatial dimensions.

The output layer consists of a Conv2D layer with three filters, employing the sigmoid
activation function and same-padding. This architecture is tailored for denoising tasks,
aiming to reconstruct denoised low-light images.
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3.3.2 Model 2: Feature-map Based CNN with Skip Connections

The second model uses a feature-map-based Convolutional Neural Network (CNN) archi-
tecture enhanced by the incorporation of skip connections, similar to the concept of Ravi
et al. (2023). This model is specifically designed for denoising low-light images, using
both downsampling and upsampling pathways. The model begins with an input layer,
accepting low-light images with a specified shape of (400, 600, 3). The encoding pathway
commences with a series of convolutional layers. The first convolutional layer employs
64 filters with a kernel size of 3 and utilises batch normalisation and rectified linear unit
(ReLU) activation. This is followed by a similar pattern with 128 filters and subsequent
down-sampling using strides of 2. The process continues with a layer featuring 256 filters
and further down-sampling.

The feature map processing layer involves upsampling and concatenation of skip connec-
tions. The feature maps from the encoding pathway are upsampled, and skip connections
from previous layers are concatenated to preserve high-level features. A convolutional
layer with 128 filters is then applied.

The decoding pathway mirrors the encoding process, but in reverse. Upsampling is
performed, and skip connections are concatenated to the feature maps at each step. This
enhances the model’s ability to capture fine-grained details during image reconstruction.

The final output layer consists of a convolutional layer with three filters, employing the
sigmoid activation function. The utilisation of skip connections enables the model to
effectively capture and retain important features, enhancing the denoising capability.

3.3.3 Model 3: Feed-Forward Denoising CNN

This model is a feed-forward denoising Convolutional Neural Network (CNN) architec-
ture. A feed-forward denoising Convolutional Neural Network (CNN) is a type of neural
network designed to remove noise from input data, especially images. Unlike the previous
models that incorporated convolutional layers for spatial feature extraction, this model
relies on fully connected layers to process and denoise low-light images. The model begins
with an input layer designed to accommodate low-light images of a specified shape. The
input is flattened, converting the multi-dimensional image data into a one-dimensional
vector. This step facilitates the processing of the image content through fully connected
layers.

The flattened input is connected to dense layers for feature processing. The model in-
corporates two dense layers with 1024 and 512 neurons, respectively, each activated by
the rectified linear unit (ReLU) activation function. These layers play a crucial role in
learning hierarchical representations of the input data.

The output layer consists of a dense layer with the number of neurons equal to the
product of the input shape. The sigmoid activation function is employed to ensure out-
put values fall within the [0, 1] range. This layer aims to reconstruct denoised low-light
images from the learned representations.

To restore the output to the original image shape, a reshape layer is introduced, which
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is crucial for preserving the spatial structure of the denoised images. The feed-forward
denoising CNN model represents an alternative approach to low-light image denoising,
relying on fully connected layers for feature processing. This architecture provides flex-
ibility in handling diverse image characteristics and contributes to the overall diversity
of our denoising model ensemble.

3.3.4 Model 4: Feed-Forward Denoising CNN with Filtering Stages

This model also uses a feed-forward denoising Convolutional Neural Network (CNN) ar-
chitecture, which is distinguished by a unique multi-stage filtering approach, a concept
from Islam et al. (2018). The initial layer of the model encompasses a convolutional layer
with 64 filters, each of size 3x3, utilizing batch normalization and rectified linear unit
(ReLU) activation. The core of the model consists of four consecutive convolutional fil-
tering stages. Each stage contains a sequence of convolutional layers, batch normalisation,
ReLU activation, max pooling, and upsampling operations. This intricate combination of
operations aims to extract hierarchical features at different spatial resolutions, promot-
ing effective denoising. Following the filtering stages, a global average pooling layer is
employed to capture the overall spatial information, reducing the spatial dimensions and
summarizing the learned features. A fully connected layer with 256 neurons and ReLU
activation serves as the bridge between the convolutional layers and the final output layer.
This layer facilitates the aggregation and processing of high-level feature representations.

The output layer comprises a dense layer with the number of neurons equal to the product
of the input shape. The sigmoid activation function is applied to ensure output values are
confined within the [0, 1] range. The final reshape layer reconstructs the denoised low-
light images to their original shape. The unique aspect of this model lies in its multi-stage
filtering strategy, offering a distinctive approach to low-light image denoising.

3.3.5 Hyperparameter Tuning

To optimise the performance of the denoising models, hyperparameter tuning is a critical
step in the methodology. The objective is to evaluate various combinations of hyper-
parameters and identify the configuration that yields optimal results in terms of Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity In-
dex (SSIM). The ’evaluate cnn model’ function is designed for each model to assess the
denoising model’s performance based on a set of hyperparameters. The function builds
the CNN denoising model using the specified hyperparameters, compiles it with the Adam
optimizer, and trains it on the training set. Subsequently, the model’s performance is
evaluated on the validation set using MSE, PSNR, and SSIM metrics.

A hyperparameter grid, denoted by ’param grid’, is defined, encompassing different values
for learning rates, epochs, and batch sizes. This grid serves as the search space for hyper-
parameter combinations. All possible combinations of hyperparameters are generated us-
ing the ’ParameterGrid’ function, resulting in a list of dictionaries (‘param combinations‘),
each representing a unique set of hyperparameters.

The ‘evaluate cnn model’ function is executed for each hyperparameter combination
within the ‘param combinations‘ list. The results, including the specific hyperparameters,
MSE, PSNR, and SSIM, are then printed for analysis. By considering a range of learning
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rates, epochs, and batch sizes, we can strike a balance between model performance and
computational efficiency.

3.3.6 Training Procedure

In the training phase of the denoising model, the procedure is outlined as follows:

• A denoising model is initialised using the architecture defined in the build CNN
model function.

• The model is compiled with all the hyperparameters obtained from the hyperpara-
meter tuning phase. The Adam optimizer is utilised with the specified learning
rate, and Mean Squared Error (MSE) is employed as the loss function. Addition-
ally, accuracy is tracked as a metric to assess model performance along with MSE,
PSNR, and SSIM.

• Two essential callback functions are employed during training. The ‘ModelCheck-
point‘ callback is set to save the best model weights during training, ensuring that
the model with the lowest validation loss is retained. The ‘EarlyStopping‘ callback
monitors the validation loss and terminates training if no improvement is observed
after a certain number of epochs (patience). This prevents overfitting and acceler-
ates convergence.

• The training is executed over a specified number of epochs, with the batch size
during hyperparameter tuning. The validation data is used to monitor the model’s
performance on unseen data during training.

• The training history, including metrics such as loss and accuracy, is captured in the
‘history‘ object. This information provides insights into the model’s convergence
and performance trends.

• The denoised images of each model for different hyperparameters are then generated
and displayed.

• The trained model’s weights are saved using the ‘ModelCheckpoint‘ callback to
ensure that the best-performing model is retained for subsequent use.

This structured training procedure ensures that the denoising model is effectively
trained, leveraging optimal hyperparameters and incorporating mechanisms for model
checkpointing and early stopping to enhance performance and prevent overfitting.

3.4 GAN Model Architecture

The GAN model used is a conditional Generative Adversarial Network (GAN) architec-
ture for image enhancement, specifically targeting low-light image denoising. It consists
of a generator and a discriminator, each with specific architectural configurations. The
training process involves adversarial training, where the generator aims to produce high-
quality images that are indistinguishable from real high-light images, and the discrimin-
ator learns to differentiate between real and generated images.
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3.4.1 Generator Architecture

The generator is responsible for transforming low-light images into high-quality images.
It takes low-light images as input with the specified shape (400, 600, 3). The encoder uses
64 filters of convolutional layers along the rectified linear unit (ReLU) activation function
with batch normalization and again 128 filters of convolutional layers with batch normal-
ization. There are six residual blocks with batch normalisation, and each block uses the
rectified linear unit (ReLU) activation function.

The decoder employs 64 filters of convolutional layers with batch normalisation and
concludes with a convolutional layer using ’sigmoid’ activation for image output. The
final output is obtained by adding the generated image to the input, enhancing low-light
images.

3.4.2 Discriminator Architecture

The discriminator evaluates the authenticity of images, distinguishing between real and
generated ones. This model takes either real or generated images as input and utilises
64 and 128 filters of convolutional layers with the rectified linear unit (ReLU) activa-
tion function. It then flattens the output and connects to a dense layer with ’sigmoid’
activation for binary classification.

3.4.3 Residual Block

This block takes feature maps as input and uses convolutional layers with batch norm-
alisation with the activation function. It has skip connections to add the input feature
maps to the output of the convolutional layers and then apply the activation function to
the combined output.

3.4.4 Training Procedure

This is the part where combining the CNN and GAN happens; the GAN model uses the
denoised CNN model as the generator and then builds the discriminator. To maintain the
integrity of the pre-trained denoised model, its weights are frozen during GAN training.
Freezing prevents the generator (denoised model) from updating its weights based on
the adversarial training process, ensuring it retains the knowledge acquired during the
denoising training. The GAN model is compiled with the denoised model as the generator
and the newly constructed discriminator. The aim is to produce images identical to
normal light images and to fool the discriminator. Binary cross-entropy loss is used as
the objective function, as GANs involve a binary classification task for the discriminator
(real or generated).

3.4.5 Hyperparameters

The hyperparameter tuning in GAN is the same as that of CNN hyperparameter tuning; a
hyperparameter grid is defined with different learning rates, epochs, and batch sizes. The
evaluation results, including metrics such as Mean Squared Error (MSE), Peak Signal-
to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM), are then printed.
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3.4.6 Generated Images

A function (‘save generated images‘) is defined to save and display low-light images, cor-
responding high-light images, and the generated images, allowing a qualitative assessment
of the generator’s output.

4 Implementation

The proposed solution for low-light image denoising and enhancement was executed,
which involved the independent development and training of CNN models. During the
training of the GAN model, the denoised CNN model acted as its generator component,
with the aim of generating identical mormal light images once the GAN was compiled.
For finding the better model, the focus was on achieving optimal model performance
through hyperparameter tuning and other evaluation metrics.

4.1 Evaluation Metrics

Quantitative assessment of the models’ performance was carried out using evaluation
metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index (SSIM). These metrics provided numerical insights into the
effectiveness of the models in denoising low-light images. Python, supplemented by lib-
raries like scikit-image, was employed for the calculation of these metrics.

4.2 CNN Models

The CNN models were designed to address the low-light image denoising task. All the
CNN models underwent hyperparameter tuning for batch size, number of epochs, and
learning rate. TensorFlow and Keras in Python served as the principal tools for model
development and training. The outcome of this phase was a set of trained models, each
associated with specific hyperparameter configurations.

Tables below show the results of all the models with their various combinations of batch
size (under column Batch), epochs, and learning rates (LR).

4.2.1 Model 1: Basic CNN Model

The hyperparameters that yield the best results in this model include a learning rate of
0.01, 50 epochs, and a batch size of 16. Upon evaluating the model’s performance on
the test dataset, the test loss is 0.0204 and the accuracy is 67.21%. This specific set
of hyperparameters contributes to the model’s capacity to effectively reduce noise and
enhance image quality within the denoising context. Figure 4 shows the generated images
of this CNN model.
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Table 1: Basic CNN Model Performance with Different Hyperparameters
# Batch Epochs LR MSE PSNR SSIM Metrics
1 8 50 0.0001 0.184 6.765 0.263 loss: 0.0200 - accuracy: 0.6646
2 8 50 0.001 0.173 6.281 0.254 loss: 0.0202 - accuracy: 0.6133
3 8 50 0.01 0.208 4.970 0.226 loss: 0.0210 - accuracy: 0.7671
4 16 50 0.0001 0.169 6.162 0.253 loss: 0.0195 - accuracy: 0.6672
5 16 50 0.001 0.173 5.961 0.260 loss: 0.0197 - accuracy: 0.6543
6 16 50 0.01 0.157 7.357 0.284 loss: 0.0204 - accuracy: 0.6721

Figure 4: Basic CNN Model’s Generated Images

4.2.2 Model 2: Feature-map Based CNN with Skip Connections

The optimal hyperparameters identified in this model include a learning rate of 0.0001,
50 epochs, and a batch size of 8. Upon evaluating the model’s performance on the test
dataset, the test loss is 0.0205, the accuracy is 71.67%, and it has the highest PSNR
value of 7.237 compared to other combinations. This specific set of hyperparameters
contributes to the model’s ability to capture intricate features through its feature-map-
based architecture with skip connections, resulting in exceptional denoising outcomes.
Figure 5 shows the generated images of this FMBCNN model.

Table 2: FMBCNN Model Performance with Different Hyperparameters
# Batch Epochs LR MSE PSNR SSIM Metrics
1 8 50 0.01 0.171 6.668 0.282 loss: 0.0249 - accuracy: 0.7065
2 8 50 0.001 0.176 6.805 0.278 loss: 0.0230 - accuracy: 0.7404
3 8 50 0.0001 0.183 7.237 0.281 loss: 0.0208 - accuracy: 0.7167
4 8 100 0.01 0.199 6.088 0.268 loss: 0.0265 - accuracy: 0.7112
5 8 100 0.001 0.181 6.404 0.272 loss: 0.0206 - accuracy: 0.7600
6 8 100 0.0001 0.173 6.857 0.285 loss: 0.0206 - accuracy: 0.7131
7 16 50 0.01 0.167 6.09 0.284 loss: 0.0228 - accuracy: 0.6565
8 16 50 0.001 0.195 5.985 0.263 loss: 0.0210 - accuracy: 0.7183
9 16 50 0.0001 0.167 6.654 0.279 loss: 0.0201 - accuracy: 0.6787
10 16 100 0.01 0.179 7.150 0.297 loss: 0.0275 - accuracy: 0.6989
11 16 100 0.001 0.168 6.510 0.276 loss: 0.0197 - accuracy: 0.7542
12 16 100 0.0001 0.171 6.619 0.272 loss: 0.0188 - accuracy: 0.7004
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Figure 5: FMBCNN Model’s Generated Images

4.2.3 Model 3: Feed-Forward Denoising CNN

The identified best hyperparameters for this model are a learning rate of 0.001, 50 epochs,
and a batch size of 16. Upon evaluating the model’s performance on the test dataset, the
test loss is 2.26% and the accuracy is 76.04%.

The test loss of 0.0226 represents the mean squared error between the denoised im-
ages and the ground truth images. Additionally, the accuracy of 76.04% indicates the
proportion of correctly denoised pixels, showcasing the model’s ability to generalise well
to unseen data. Figure 6 shows the generated images of this feed-forward model.

Table 3: Feed-Forward Denoising Performance with Different Hyperparameters
# Batch Epochs LR MSE PSNR SSIM Metrics
1 8 50 0.0001 0.187 6.878 0.346 loss: 0.0175 - accuracy: 0.6907
2 8 50 0.001 0.190 6.724 0.326 loss: 0.0207 - accuracy: 0.6923
3 8 50 0.01 0.157 4.09 0.330 loss: 0.0574 - accuracy: 0.5640
4 16 50 0.0001 0.180 7.511 0.333 loss: 0.0216 - accuracy: 0.6282
5 16 50 0.001 0.214 7.043 0.324 loss: 0.0226 - accuracy: 0.7604
6 16 50 0.01 0.156 4.147 0.332 loss: 0.0574 - accuracy: 0.5614

Figure 6: Feed-Forward CNN Model’s Generated Images

4.2.4 Model 4: Feed-Forward Denoising CNN with Filtering Stages

Among the tested configurations, this model doesnt́ provide the best results; the generated
image is blurry, and the highest set of hyperparameters consists of a learning rate of 0.001,
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50 epochs, and a batch size of 16. Upon evaluating the model’s performance on the test
dataset, the test loss is 0.0638 and the accuracy is 45.36%. Figure 7 shows the generated
images of this feed-forward with filters CNN model.

Table 4: Feed-Forward Denoising Performance with Different Hyperparameters
# Batch Epochs LR MSE PSNR SSIM Metrics
1 8 50 0.0001 0.142 2.597 0.322 loss: 0.0502 - accuracy: 0.5400
2 8 50 0.001 0.150 4.842 0.332 loss: 0.0524 - accuracy: 0.4857
3 8 50 0.01 0.106 10.827 0.441 loss: 0.0820 - accuracy: 0.2511
4 16 50 0.0001 0.0693 4.315 0.497 loss: 0.0612 - accuracy: 0.498
5 16 50 0.001 0.0475 11.7514 0.5837 loss: 0.0638 - accuracy: 0.4536
6 16 50 0.01 0.0496 10.5300 0.5489 loss: 0.0596 - accuracy: 0.4731

Figure 7: Feed-Forward with Filters CNN Model’s Generated Images

4.3 GAN Model

The GAN model architecture consisted of a generator and a discriminator, both featuring
specific layers and configurations. The denoised output from the CNN model serves as
the input for the GAN model. The GAN model generates enhanced images based on
the denoised input, aiming to further improve image quality. The GAN model leverages
the pre-trained denoised model as its generator, emphasising the sequential processing of
denoising and enhancement. The discriminator distinguishes between real and generated
images, contributing to the adversarial training process; it is evaluated by its loss and
accuracy. The outputs are analysed, comparing the generated enhanced images with
ground-truth high-light images.

5 Evaluation

This research showcases an exploration of the integration of Convolutional Neural Net-
works (CNN) and Generative Adversarial Networks (GAN) for addressing the challenges
of noise reduction and low-light image enhancement. To analyse the better denoising
model, four CNN models were executed, and by using the metrics PSNR and accuracy,
it was found that, compared to all the denoising models, the FMBCNN denoised model
had the highest PSNR of 7.15 and an accuracy of 69.89%. Though other models had an
accuracy higher than that, for denoising, PSNR and SSIM are the important evaluation
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metrics. The analysis involved a rigorous evaluation of hyperparameter combinations,
revealing optimal configurations that significantly improve denoising accuracy.

Figure 8 shows the resulting denoised image of integrated basic CNN model and GAN,
which has a PSNR value of 15.93 and an SSIM of 0.811, alongside their corresponding
original images for qualitative assessment.

Figure 8: Output of the integrated basic CNN and GAN model

Figure 9 shows the resulting denoised image of integrated feed-forward CNN model
and GAN, which has a PSNR value of 17.18 and an SSIM of 0.760, alongside their
corresponding original images for qualitative assessment.

Figure 9: Output of the integrated feed-forward CNN and GAN model

Figure 10 shows the resulting denoised image of integrated feed-forward CNN model
with filtering stages and GAN, which has a PSNR value of 12.21 and an SSIM of 0.715,
alongside their corresponding original images for qualitative assessment.

Figure 10: Output of the integrated feed-forward CNN with filtering stages and GAN
model
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This study not only demonstrates the performance of the FMBCNN approach over
traditional filtering methods but also emphasizes the collaborative benefits of sequential
processing with CNN for denoising and GAN for image enhancement. Figure 11 shows the
resulting denoised image of integrated FMBCNN and GAN model, which has a PSNR
value of 17.43 and an SSIM of 0.888, visualised alongside their corresponding original
images for qualitative assessment.

Figure 11: Output of the integrated FMBCNN and GAN model

The enhanced images of the chosen model exhibit improved clarity and preservation
of essential details compared to their original low-light counterparts. The incorporation
of skip connections in the architecture contributes to the model’s ability to capture and
retain intricate features during the denoising process.

The feature-map-based CNN architecture, enriched by skip connections, proves to be
a robust solution for addressing the challenges posed by low-light conditions. These find-
ings highlight the significance of architectural choices in image denoising tasks and the
potential of this model in real-world applications where low-light image quality is a crit-
ical factor.

The FMBCNN model served as the generator component of the GAN model, keeping
the denoising model’s pre-trained data and then generating enhanced images for a cas-
caded approach to image enhancement. This sequential processing aimed to refine the
denoised images further, capturing subtle details and improving perceptual quality. The
GAN’s ability to learn and adapt to the specific characteristics of the denoised images
was crucial in achieving the desired enhancements.

The combination of the FMBCNN model and the GAN introduced a multi-stage ap-
proach to low-light image processing. The FMBCNN model, with its feature-map-based
architecture, effectively reduced noise and preserved important features. The subsequent
enhancement by the GAN demonstrated its role in refining denoised images, addressing
potential artefacts, and enhancing visual appeal.

5.1 Limitations

Despite getting a refined, denoised image, there is still scope for improvement in the
performance of the model. There are a few limitations to this project, one of which is
computation. All four denoising models are executed in separate files to avoid any GPU
memory issues, but still, during hyperparameter tuning, when the batch size increases,
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the GPU runs out of memory, making it different to work on larger batch sizes and epochs
and limiting the models’ performance. Similarly, for this reason, a small dataset and less
complex denoising models were used.

6 Conclusion and Future Work

In conclusion, this research sets out to address the challenges of noise reduction and
low-light image enhancement through the integration of Convolutional Neural Networks
(CNN) and Generative Adversarial Networks (GAN). The objective was to improve the
quality of low-light images using denoising and enhancement processes. The results have
demonstrated the FMBCNN approach performed better over traditional filtering meth-
ods, showcasing its capability to significantly enhance low-light image denoising. The
research emphasises the collaborative benefits of sequential processing, where the de-
noised CNN model serves as the generator for the GAN model, resulting in enhanced im-
age quality. This approach proves effective in capturing intricate features and patterns,
surpassing traditional methods. However, the study acknowledges several limitations,
including potential data bias and resource-intensive computations. These limitations
prompt a critical reflection on the implications of the research findings. Practical applic-
ations include improved image analysis accuracy in surveillance systems, highlighting the
real-world impact of AI advancements.

Future work can involve evaluations of the GAN model with alternative architectures
and hyperparameter configurations. The potential for commercialization is evident, sug-
gesting opportunities for user-friendly tools or software aimed at a broader audience. This
paves the way for innovative applications in various industries, marking a step towards
the practical implementation of research findings.
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