

Configuration Manual

MSc Research Project

MSc Data Analytics

Fathima Bi Rafi

Student ID: 21217084

School of Computing

National College of Ireland

Supervisor: Vladimir Milosavljevic

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Fathima Bi Rafi

Student ID:

21217084

Programme:

MSc Data Analytics

Year:

2023-2024

Module:

Academic Internship

Lecturer:

Vladimir Milosavljevic

Submission Due

Date:

31 January 2024

Project Title:

Configuration Manual

Word Count:

1343 Page Count: 13

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Fathima Bi Rafi

Date:

31/1/2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Fathima Bi Rafi

Student ID: 21217084

1 INTRODUCTION

The Configuration Manual serves as a comprehensive guide for implementing Artwork

Classification using Transfer Learning. It details the setup and optimization of the transfer

learning model, outlining the specific neural network architecture, hyperparameters, and

dataset configurations. This manual equips users with step-by-step instructions to seamlessly

replicate the project, ensuring accurate and efficient classification of artwork through the

utilization of pre-trained models and transfer learning techniques.

2 SYSTEM SPECIFICATIONS

• Platform: Google Colaboratory with T4 GPU and 12.7 GB RAM.

• Integrated Development Environment (IDE): Visual Studio Code (VSCode)

• Programming Language: Python version 3.7

• Web Browser: Google Chrome

3 DATASET
Dataset contains European artworks from 3rd to19th century collected from a Web Gallery of

Art. It contains 3 files:

• artists.csv: dataset of information for each artist

• images.zip: collection of images (full size), divided in folders and sequentially

numbered.

• resized.zip: same collection but images have been resized and extracted from folder

structure.

4 IMPLEMENTATIONS

STEP 1: Mount the Google Drive in Google Colab for accessing the code from the specified

location. Unzip the dataset stored in drive to specified directory for subsequent image

loading.

STEP 2: Importing all necessary libraries and modules for artwork classification as given

below in Figure 1.

2

 Figure 1: Importing Required Libraries

This section imports various Python libraries essential for machine learning and image

processing tasks, including NumPy, Pandas, TensorFlow, Keras, OpenCV, and others. These

libraries collectively support data manipulation, model development, training, and evaluation.

STEP 3: Set default size for image, retrieve labels from dataset directory and calculate the

number of classes by defining batch size as shown in Figure 2.

Figure 2: Dataset Initialization

STEP 4: Identify all the class directories, count the number of image files in each class, and

filter classes with file counts between 200 and 1000, excluding 328. The results are printed as

Figure 3.

3

 Figure 3: Filtering class

STEP 5:

 Figure 4: Converting image into array.

In figure 4, code defines a function `image_array` to read, resize, and convert images to

array.

STEP 6:

In next step, append each image's array along with its corresponding label to separate lists.

The results will be shown like Figure 5.

Figure 5: Image loading and Categorization

STEP 7:

4

Data visualization is done by creating count plot to visualize the distribution of classes in the

dataset. Also performing data balancing using SMOTE to tackle imbalance class as Figure 6.

Figure 6: Balancing data using SMOTE.

STEP 8:

First, Split the dataset into training and testing sets (90-10%). Further split the dataset into

(80-20%) as figure 7.

Figure 7: Dataset split.

STEP 9:

Generate augmented images by rotating up to 20 degrees and flipping horizontally with batch

size 32 as figure 8.

 Figure 8: Data Augmentation

4 TRAINING MODELS

For this project, training models like CNN, VGG16/Xception, ResNet50/Inception-V3, and

EfficientNet-B2 are deployed for better performance providing insights into model accuracy

and effectiveness across different classes.

4.1 CNN MODEL

STEP 10:

• Figure 9, code defines image depth, sets input shape, and adjusts channel dimensions

for compatibility.

5

Figure 9: Configuration of image

• The images are trained using the activation function=’relu’ as shown in figure 10.

Figure 10: sample of trained images using ‘relu’

4.2 RESNET50 MODEL

STEP 11:

• Import necessary libraries as figure 11.

Figure 11: Required libraries for RESNET50 model.

• Load the pre-trained model excluding the top classification layer as Figure 12.

 Figure 12: Load model

6

• Enhance model with average pooling, dropout, and a softmax layer for multi-class

classification as figure 13.

Figure 13: Model modification

4.3 XCEPTION MODEL

STEP 12:

• Using xception base, pre-learned patterns add layers for understanding images and

predict art categories for optimizing its accuracy as figure 14.

Figure 14: Xception model

4.4 EFFICIENTNETB2

STEP 13:

• Employ EfficientNet B2 with pre-learned features and add layers for image

understanding and predict art categories as figure 15.

 Figure 15: EfficentNetB2 Model

7

5 MODEL EVALUATION

STEP 14: UNIFIED CODES FOR ALL MODELS

Classification Reports

• Images are trained with batch size 10 rounds and display the progress as figure 16.

 Figure 16: Model Training

• Plot accuracy and loss over epochs to visualize the model's learning process on both

training and validation datasets as figure 17.

Figure 17: Accuracy and loss plot visualization

Confusion Matrix

• Plot heatmap displaying the confusion matrix for comparing actual vs. predicted

values as figure 18.

Figure 18: Confusion matrix Visualization

Specificity and Sensitivity

• Summary of precision, recall, and F1-score for model predictions on the test data as

figure 19.

Figure 19: Model predictions

8

• Compute and store sensitivity (true positive rate) and specificity (true negative rate)

for each class as figure 20.

 Figure 20: Specificity and sensitivity prediction

STEP 15: Comparison

• Generate a bar chart using seaborn to visually compare the performance graphs of all

models by representing their accuracy values on the y-axis as in figure 21.

 Figure 21: Bar chart comparison

6 TESTING

STEP 16: Model prediction

Load the best model (EfficientNetB2) after comparison, predict class probabilities for a

resized image, find the class with the highest probability, and print the predicted class label

for a historic art image as shown in figure 22.

 Figure 22: Prediction of class

7 GRAPHICAL USER INTERFACE (GUI)

STEP 17:

Here, The GUI defines a Flask web application for an image classifier using EfficientNetB2

model for predicting the artist of a given image.

• Import all necessary libraries required including Flask, TensorFlow and others as

shown in figure 23.

9

 Figure 23: Import necessary libraries.

• Set up file paths and constants, load a pre-trained EfficientNetB2 model, read class

labels from a pickled file, and print the available classes as shown in figure 24.

 Figure 24: Setup and Model loading

• Create a Flask web application and define allowed file extensions, checking if a

filename has a valid extension as shown in figure 25.

Figure 25: Flask configuration

• Define routes for home page and classifier page.

• For file prediction, upload an image, preprocess it, predict the artist using the model,

and render the result on the classifier page as shown in figure 26.

10

Figure 26: Prediction of Artist using Model

FINAL STEP

• Web application homepage that predicts the artist of a given image using flask screens

is shown in figure 27 and a classifier page (subpage) which process the workflow is

shown in figure 28.

 Figure 27: GUI of Web Application using Flask Screens (Homepage)

• Workflow

1. Click classify art.

2. Insert an image from any given class.

3. Predict uploaded image.

11

 Figure 28: Final Artist Prediction (Classifier page)

