
Configuration Manual

MSc Research Project

MSc Data Analytics

Saif Shuhab Rabbani

Student ID: x21223149

School of Computing

National College of Ireland

Supervisor: Vladimir Milosavljevic



National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Saif Shuhab Rabbani

Student ID: 21223149

Programme
:

Research Project Year
:

2023

Module: Msc Data Analytics

Supervisor: Vladimir Milosavljevic
Submission
Due Date:

Project
Title:

Deep Learning for Enhanced Speech Communication: Integrating
Real-time Voice Command Recognition and Emotion Analysis

Word
Count:

1370(Excluding references) Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Saif Shuhab Rabbani

Date: 14 December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on the computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):



Configuration Manual
Saif Rabbani

Student ID: 21223149

In an era where seamless and intuitive communication is vital, the convergence of many
speech processing domains has arisen as a new path for improving communication
technologies. Text-to-speech conversion, speech-to-text transcription, voice command
recognition, voice emotion analysis, text classification, and text translation are all covered in
this research thesis. When these aspects are combined, they provide a full multimodal speech
processing model, laying the framework for a more inclusive and efficient communication
ecosystem. The study aims to construct a holistic system surpassing conventional speech
processing barriers. It aspires to fuse varied elements like text-to-speech conversion, voice
command recognition, emotion analysis in speech, transcription of spoken words to text,
categorization of textual data, and language translation. This ambitious concept strives to
reshape the human-technology interface, fostering not only seamless communication but also
unlocking a myriad of possibilities in realms like education, healthcare, and beyond.

Its robust libraries such as TensorFlow, Keras, and Gradio provided the necessary tools for
implementing complex machine learning models seamlessly. The decision to execute the
project on Google Colab, a cloud-based platform, was driven by the collaborative nature of
the research. Google Colab offered a shared workspace that facilitated real-time
collaboration, version control, and the ability to harness the computational power of Google's
cloud infrastructure, ensuring scalability and efficiency in model development.

Hardware and Software Requirements

In order to commence this journey into multimodal speech processing, certain hardware and
softwareprerequisites need to be fulfilled:

GPU Acceleration: While not required, GPU acceleration speeds up deep learning model
training. It is advised to use a GPU with CUDA support, such as NVIDIA GPUs.
Adequate RAM is required for handling massive datasets and complicated models. It is
suggested to have a minimum of 16GB of RAM.

Software Prerequisites:
Python: Install the most recent Python version, ideally Python 3, to take use of the most
recent features and libraries.
Google Collaborate Account: Access to Google Colab is required for collaborative
development and to make use of Google's cloud services.
Libraries: Install the necessary Python libraries, such as TensorFlow, Keras, Gradio, and
others indicated in the manual's relevant parts such as GTTS and Whisper.



1 Text & Speech Processing using Gtts and whisper

Fig 1. GTTS Requirements

When employing the gTTS library for text-to-speech conversion, it is essential to
construct a requirements.txt file, specifying necessary dependencies such as gTTS,
requests, and click. Thesubsequent execution of 'pip install -r requirements.txt' ensures
the proper installation of the dependencies. Subsequently, the integration of gTTS into
your script facilitates the seamless conversion of both English and French text to speech,
enabling the preservation of resulting audio files. Additionally, the utilisation of the
IPython.display package further enhances the auditory experience by enabling the
playback of the generated audio. By embracing this systematic approach, thesetup and
execution of your text-to-speech application are uncomplicated, significantly enhancing
clarity and repeatability.



Fig 2. Whisper Requirements

Following the provided parameters, the improved content is as follows: The specified
code necessitates the installation of the openai-whisper library. This can be achieved by
executing the command!pip install git+https://github.com/openai/whisper.git -q.
Moreover, the approach involves loading a pre-trained model ("medium") sizing at 769M
utilising the 'whisper' library. The codeemploys 'wget' to retrieve an audio file from the
URL "http://www.moviesoundclips.net/movies1/batmanbegins/bats.mp3," saving it as
'audio.mp3'. Subsequently, both the Audio and display methods of the IPython.display
module are utilised to facilitate the playthrough of the audio file. In conclusion, the
openai-whisper library, the 'whisper' module, and the 'wget' function areall indispensable
for obtaining the desired audio file.



2 Text to Speech Conversion Model

Fig 3. Text to Speech Conversion

The given codenecessitates theutilisation of various Python libraries and modules for
diverse tasks such as data processing, file management, and machine learning. It
leverages 'numpy' and 'pandas' for carrying out numerical operations and effectively
managing data. Additionally, it makes useof 'os' for seamless communication with the
operating system. Furthermore, the code integrates 'pyunpack,' 'patool,' and 'py7zr' to
handle compressed files, ensuring efficient file management. Notably, it incorporates
'shutil' to register and unpack 7z archives, 'librosa' for precise audio processing,
'matplotlib.pyplot' for visually representing data, 'IPython.display' for enabling
interactive display capabilities, and '



Fig 4. Model Development requirements for text to speech

In building the machinelearning components, 'keras' is utilised to construct a Convolutional
Neural Network (CNN) model. This model incorporates specific layers including 'Conv1D',
'MaxPooling1D', 'Flatten', 'Dense', 'Dropout', and 'Input'. The code also encompasses early
pausing and model checkpoint callbacks, along with the closure of the Keras session for
ensuring repeatability.



3 Voice Command Recognition

Fig 5. Requirements for Voice Command Recognition

The specified code mandates theutilisation of various Python libraries and frameworks.
These include 'os' for interfacing with the operating system, 'pathlib' for managing file
paths, 'matplotlib.pyplot' and 'seaborn' for visualising data, 'numpy' for numerical
computations, 'tensorflow' for machine learning, 'tensorflow.keras.layers' and
'tensorflow.keras.models' for constructing neural network models, and 'IPython.display'
for interactive display functionalities.



Fig 6. Model Development Requirements for Command detection

The code also makes use of 'tensorflow_datasets' to handle datasets. The '!pip install -U -q
tensorflow tensorflow_datasets' command makes it easier to install the 'tensorflow' and
'tensorflow_datasets' libraries. Additionally, the code integrates particular layers from
'tensorflow.keras.layers' such as 'Normalisation', 'Input', 'Resizing', 'Conv2D',
'MaxPooling2D', 'Dropout', 'Flatten', and 'Dense' to build a convolutional neural network
(CNN) model. In short, the prerequisites include os, pathlib, matplotlib, numpy, seaborn,
tensorflow, and their accompanying libraries for data visualisation, machine learning, and
artificial intelligence.



4 Speech Emotion Recognition

Fig 7. Libraries required for Speech Emotion Recognition

A number of Python libraries and frameworks are needed. Among them are 'pandas' for
data manipulation, 'numpy' for numerical operations, 'os' for interacting with the
operating system,'seaborn' and 'matplotlib' for data visualisation, 'librosa' for audio
processing,'IPython.display' for displaying audio, and 'keras' for building and training
neural networks. The neural network architecture uses Keras' 'Sequential' model, which
includes layers like 'LSTM' (Long Short-Term Memory), 'Dense' for totally connected
layers, and 'Dropout' for regularisation. Furthermore, the code makes use of 'warnings' to
filter out unnecessary warnings. In summary, pandas, numpy, os, seaborn, matplotlib,
librosa, IPython.display, keras, and their dependencies are required for data analysis,
visualisation, audio processing, and neural network implementation.

Fig 8. Model Development of Speech Emotion Recognition



5 Text Classification Web Application

Fig 9. Transformers and gradio update

The provided code defines thePyTorch library and its components, ensuring the installation
of PyTorch 1.8.1 with support for CUDA 11.1. This command is essential to guarantee the
precise installation of PyTorch, torchvision, and torchaudio versions. Within the code, the
method 'translate_transformers' is employed for text translation using a translation pipeline. A
sample text, 'My name is Nick,' is used as an example, translating to 'Mein Name ist Nick.'
Notably, the codeutilises Gradio (gr.Interface) to create a user interfacefacilitating text input
for translation and exhibiting the translated output. It is evident that both text translation and
user interface creation rely on PyTorch (torch, torchvision, torchaudio) and Gradio. This code
intricately weaves together various elements to provide functionalities such as text translation
and user interface interaction, underscoring the versatileapplications of PyTorch and Gradio.

Fig 10. Launching of the web application



6 Text Classification and Language Translation Model

Fig 11. Requirements for Text Classification and language translation

Text processing, and machine learning, thecode leverages a myriad of Python libraries and
modules. Harnessing the power of 'numpy' and 'pandas' for numerical operations and data
manipulation, delving into 'matplotlib' and 'plotly' for data visualisation, and tapping into
'seaborn' to elevate the visual appeal of plots. Moreover, for text processing tasks, the code
strategically employs CountVectorizer, stop_words, WordNetLemmatizer, and
TfidfVectorizer from scikit-learn and NLTK. It also integrates string and regular expression
libraries to prepare the textual data seamlessly.

Fig 12. Model development of Text Classification



Scikit-learn machine learning models, a plethora of tools awaits deployment. Among them
stand 'MultinomialNB,' 'GaussianNB,' 'LogisticRegression,' and 'LinearSVC.' The evaluation
metrics, encompassing the accuracy score, confusion matrix, and classification report, are
ushered in by 'sklearn.metrics,' aimed at providing an intricate understanding of model
performance. To initialise thegroundwork, the 'train_test_split' function steps in, unravelling
the dataset with precision, while'time' takes charge of measuring the execution time, ensuring
efficiency at its peak. Meanwhile, 'warnings.filterwarnings("ignore")' steps in to suppress any
distracting warnings, allowing a seamless operation


