

Configuration Manual

MSc Research Project MSc in Data Analytics

Giorgia Luzia Pscheidt Student ID: x22184261

School of Computing National College of Ireland

Supervisor: Athanasios Staikopoulos

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Giorgia Luzia Pscheidt		
Student ID:	x22184261		
Programme:	MSc in Data Analytics	Year:	2023
Module:	MSc Research Project		
Lecturer:	Athanasios Staikopoulos		
Date:	14/12/2023		
Project Title:	Sentiment Analysis of Anti-LGBTQ+ laws in Comparative Analysis Models	Brazil us	sing

Word Count: 830 Page Count: 7

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Giorgia Luzia Pscheidt Student ID: x22184261

1 Introduction

In this configuration manual, it is explained in detail the execution, procedure and information about the system requirements to run the codes, library versions and the storage capacity needed for the project: "Sentiment Analysis of Anti-LGBTQ+ laws in Brazil using Comparative Analysis Models".

2 Local Machine Details

In Figure 1, you can see the processor and RAM meet the requirements suggested by the college as an ideal device for this master.

About	
Device spec	ifications
Device name	DESKTOP-BIE2ER4
Processor	Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz 2.50 GHz
Installed RAM	16.0 GB (15.7 GB usable)
Device ID	304BB955-3262-4B3A-A356-0813ACD9EA83
Product ID	00330-50126-78299-AAOEM
System type	64-bit operating system, x64-based processor
Pen and touch	No pen or touch input is available for this display
Сору	
Rename this F	C
Windows s	pecifications
Edition	Windows 10 Pro
Edition Version	Windows 10 Pro 22H2
Edition Version Installed on	Windows 10 Pro 22H2 30/11/2023
Edition Version Installed on OS build	Windows 10 Pro 22H2 30/11/2023 19045.3693

Figure 1 - Local Machine Settings

3 Comment Extraction

In this section you will find the configuration necessary to perform the comments extraction from YouTube.

• Download Python 3.8¹ and select the version based on your laptop configuration (Figure 2).

Files					
Version	Operating System	Description	MD5 Sum	File Size	GPG
Gzipped source tarball	Source release		83d71c304acab6c678e86e239b42fa7e	24720640	SIG
XZ compressed source tarball	Source release		d9eee4b20155553830a2025e4dcaa7b3	18433456	SIG
macOS 64-bit Intel installer	macOS	for macOS 10.9 and later	690ddb1be403a7efb202e93f3a994a49	29896827	SIG
macOS 64-bit universal2 installer	macOS	experimental, for macOS 11 Big Sur and later; recommended on Apple Silicon	ae8a1ae082074b260381c058d0336d05	37300939	SIG
Windows embeddable package (32-bit)	Windows		659adf421e90fba0f56a9631f79e70fb	7348969	SIG
Windows embeddable package (64-bit)	Windows		3acb1d7d9bde5a79f840167b166bb633	8211403	SIG
Windows help file	Windows		a06af1ff933a13f6901a75e59247cf95	8597086	SIG

Figure 2 - Python 3.8

- Install Chrome Browser²
- After installing Chrome Browser, make sure to check which version you have installed: open Chrome → Click in the 3 dots in the top right corner → Go to "Help" → Select "About Google Chrome" (Figure 3).

Figure 3 - Google Chrome version

- Installing ChromeDriver³ for version newer than 155 (Figure 4).
- Run the link that follows your settings. This will download the zip file containing the application.

¹https://www.python.org/downloads/release/python-3810/

²Google Chrome - The Fast & Secure Web Browser Built to be Yours

³ChromeDriver - WebDriver for Chrome - Downloads (chromium.org)

Stable			
Version: 119.0.66	945.105 (r1204	232)	
Binary	Platform	URL	HTTP status
chrone	linux64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/linux64/chrome-linux64.zip	200
chrone	mac-arm64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/mac-arm64/chrome-mac-arm64.zip	200
chrone	mac-x64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/mac-x64/chrome-mac-x64.zip	200
chrone	win32	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/win32/chrome-win32.zip	200
chrone	win64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/win64/chrome-win64.zip	200
chromedriver	linux64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/linux64/chromedriver-linux64.zip	200
chromedriver	mac-arm64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/mac-arm64/chromedriver-mac-arm64.zip	200
chromedriver	mac-x64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/mac-x64/chromedriver-mac-x64.zip	200
chromedriver	win32	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/win32/chromedriver-win32.zip	200
chromedriver	win64	https://edgedl.me.gvtl.com/edgedl/chrome/chrome-for-testing/119.0.6045.105/win64/chromedriver-win64.zip	200

Figure 4 – ChromeDriver

- Copy the file selected and replace in the archive downloaded from GitHub in the path: "...\Thesis\Comments Extraction".
- After you replaced the file, open the command prompt in this folder and run the command: *pip install -r requirements.txt* (Figure 5). This step will download the libraries necessary to run the python file, such as rich (version 13.6.0)⁴, scrapy (version 2.7.1)⁵, selenium (version 4.0.0)⁶ and webdriver_manager (version 3.8.5)⁷

```
Command Prompt
Microsoft Windows [Version 10.0.19045.3693]
(c) Microsoft Corporation. All rights reserved.
C:\Users\User>cd C:\Users\User\Thesis\Comments Extraction
C:\Users\User\Thesis\Comments Extraction>pip install -r requirements.txt
Requirement already satisfied: rich==13.6.0 in c:\users\user\appdata\local\programs\python\py
rom -r requirements.txt (line 1)) (13.6.0)
Requirement already satisfied: Scrapy=2.7.1 in c:\users\user\appdata\local\programs\python\py
```

Figure 5 - Installing requirements

• Running the python file: Right click in the "youtube_comment" file → Go to "Edit with IDLE → Click in "Edit with IDLE 3.8 (64-bit) (Figure 6).

Name		Date modified	Туре	Size
🧵 .ipynt	_checkpoints	01/12/2023 23:46	File folder	
chron	nedriver	02/12/2023 20:15	Application	16,468 KB
🖪 Data	Youtube_old	05/10/2023 14:57	Microsoft Excel Co	3,390 KB
📄 requir	rements	05/10/2023 14:51	Text Document	1 KB
URLs		05/10/2023 14:51	Text Document	2 KB
屠 youtu	be comment	02/12/2023 20:53	Python File	10 KB
	Open			
	Edit with IDLE	> Edit	with IDLE 3.8 (64-bit)	
	Share with Skype		-G	
	🖶 Scan with Microsoft Defen	der		
	🖻 Share			
	Open with	>		

Figure 6 - Running py. File

⁴ rich · PyPI

⁵ Scrapy · PyPI

⁶ <u>selenium · PyPI</u>

⁷ webdriver-manager · PyPI

• Once the file opens, go to $\operatorname{Run} \rightarrow \operatorname{Run} \operatorname{Module}$ (Figure 7).

Figure 7 - Running py. file (part2)

• Once the python file starts running, chrome browser will open in youtube.com in the links provided for the extraction. It will automatically collect the comments and save them in a csv file. Note this process will take time since it is collecting data from 44 URLs, for me took 6 hours.

4 Data cleaning, Translation and Sentiment Analysis

Here I will explain which applications are needed to run the rest of the code.

- Anaconda Version 23.3.1⁸
- Jupyter Lab Version 1.23.4⁹

4.1 Data Cleaning

For the data cleaning process, access the file in the Jupyter lab: **cleaning_raw_data.ipynb**. For this file you will need the following libraries: pandas (version 1.5.2)¹⁰, re (version 2.2.1)¹¹, collections¹² and spellchecker (version 0.7.2)¹³.

Then you can just restart the kernel and run all the cells (Figure 8).

⁸ Free Download | Anaconda

⁹ Project Jupyter | Installing Jupyter

¹⁰ pandas - Python Data Analysis Library (pydata.org)

¹¹ <u>re — Regular expression operations — Python 3.12.1 documentation</u>

¹² <u>collections — Container datatypes — Python 3.12.1 documentation</u>

¹³ pyspellchecker · PyPI

0	File Edit View Run	Kernel Tabs Settings Help						
	+ 🗈 ±	Interrupt Kernel	1, 1	aning_raw_data.ipynb • +				
0	Filter files by name	Restart Kernel Restart Kernel and Clear All Outputs Restart Kernel and Run up to Selected Cell	0, 0	cer				
:=	Name	Restart Kernel and Run All Cells		sfied: pyspellchecker in c:\u				
:=	cleaned_dataset.csv	Restart Kernel and Debug		estart the kernel to use updated				
*	 cleaning_raw_data.ipy remove_misspelling_sl 	Reconnect to Kernel		Counter : SpellChecker				
	replace_slang.csv	Shut Down Kernel						
	🗅 slangs.xlsx	Shut Down All Kernels						
		Change Kernel		ers\User\Thesis\Comments Extrac				
		df						

Figure 8 - Running Data Cleaning

4.2 Translation

After completing to run this code, go to the folder Translation and open the file translating.jpynb.

Before running this code, be aware that for this step it was used the Google Cloud Translation API¹⁴, which you will need to create your own account and replace this file: **googleapi_key.json** which will contain your credentials to use this tool.

The libraries used in this step were: os (version 10.0.19)¹⁵, google.cloud (version 3.12.1)¹⁶, wordcloud (version 1.9.2)¹⁷ and matplotlib (version 3.6.2)¹⁸.

Then you can just restart the kernel and run all the cells (Figure 8). Note that this process will take time to finish, between 1 to 2 hours.

4.3 Sentiment Analysis

After completing to run the translation, go to the folder Sentiment Analysis and open the file **SA1.ipynb**. Here it is the first algorithm performed, with used Sentiment Intensity Analyzer (SIA) and VADER (Valence Aware Dictionary and Sentiment Reasoner) to make the text classification without labels (Vencer, Bansa, & Caballero, 2023). In Figure 9, those might be some necessary installations to perform this task.

In this code, it was used scattertext (version 0.1.19)¹⁹, nltk (version 3.7)²⁰, numpy (version 1.23.5)²¹, scikit-learn (version 1.0.2)²² and seaborn $(0.12.2)^{23}$.

Then you can just restart the kernel and run all the cells (Figure 8).

¹⁴ <u>Cloud Translation API | Google Cloud</u>

¹⁵ <u>os — Miscellaneous operating system interfaces — Python 3.12.1 documentation</u>

¹⁶ Python Cloud Client Libraries | Google Cloud

¹⁷ wordcloud · PyPI

¹⁸ matplotlib · PyPl

¹⁹ scattertext · PyPI

²⁰ NLTK :: Natural Language Toolkit

²¹ <u>NumPy Documentation</u>

²² scikit-learn: machine learning in Python — scikit-learn 1.3.2 documentation

²³ seaborn: statistical data visualization — seaborn 0.13.0 documentation (pydata.org)

+ 🗈 🛨 C		ZL	aunche	r			×		SA1.ip	oynb			×	+	•
Filter files by name	٩	8	+ 3	× 6	Ċ	►		C	••	Code	•	~			
/ Sentiment Analysis /			[1]	: # L	ibrar	ies									
Name				!pi	p ins [.] p ins [.]	tall tall	pysp scat	ellc tert	neck ext	er					
• 🖪 NaiveBayes.ipynb				!pi !pi	p ins p ins	tall tall	nltk word	clou	ıd						
predicted_sentiments_NB.csv				Reg	uinom	ont		dv e	atic	fied	nyene	llche	cken	in	\uconc\uc
predicted_sentiments_RF.csv				Req	uirem	ent a	alrea	dy s	atis	fied:	scatt	ertex	t in	c:\	users\user\
📕 RandomForest.ipynb				Req	uirem	ent a	alrea	dy s	atis	fied:	numpy	/ in c	:\use	rs\	user\anacon
• 🗖 SA1.ipynb				Req	uirem uirem	ent a ent a	airea alrea	ays dys	atis	fied:	scipy	/ in c it-lea	rn in	rs\i c:	user\anacon \users\user
translated_dataset_labelled.csv				Req Req	uirem uirem	ent a ent a	alrea alrea	dy s dy s	atis atis	fied: fied:	panda stats	as in smodel	c:\us s in	ers c:\	\user\anaco users\user\

Figure 9 - NLTK process

4.4 Random Forest

Still in the same folder, open the file RandomForest.ipynb. In this code the first machine learning²⁴ is performed using the labelled dataset created manually by the author. Figure 10 shows the model being trained. You can just restart the kernel and run all the cells (Figure 8).

```
# Preprocess and split your dataset into training and testing sets
from sklearn.model selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
import pandas as pd
# Load your labeled dataset
labeled_df = pd.read_csv('translated_dataset_labelled.csv')
# Split the dataset into training and testing sets
train_data, test_data, train_labels, test_labels = train_test_split(
   labeled_df['translated_comment'], labeled_df['label'], test_size=0.2, random_state=42
)
# Preprocess the text data
vectorizer = CountVectorizer()
X train = vectorizer.fit transform(train data)
X_test = vectorizer.transform(test_data)
# Train a Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
rf_classifier.fit(X_train, train_labels)
# Predict sentiment labels for the test set
predicted_labels = rf_classifier.predict(X_test)
# Evaluate the accuracy of the model
accuracy = accuracy_score(test_labels, predicted_labels)
print(f'Accuracy: {accuracy}')
```

Figure 10 - Random Forest

²⁴ <u>sklearn.ensemble.RandomForestClassifier</u> — scikit-learn 1.3.2 documentation

4.5 Naïve Bayes

Still in the same folder, open the file NaiveBayes.ipynb. In this code the second machine learning²⁵ is performed using the labelled dataset created manually by the author. Figure 11 shows the model being trained. You can just restart the kernel and run all the cells (Figure 8).

References

Vencer, L. V., Bansa, H., & Caballero, A. R. (2023). Data and Sentiment Analysis of Monkeypox Tweets using Natural Language Toolkit (NLTK). 2023 8th International Conference on Business and Industrial Research (ICBIR) (pp. 392--396). IEEE.

²⁵ <u>1.9. Naive Bayes — scikit-learn 1.3.2 documentation</u>