"'"l :
\ National
Collegeof

Ireland

Unleashing the power of Real-Time Data:

Personalized Anxiety Interventions

Configuration Manual

MSc Research Project
Data Analytics

Manoj Kumar Periyasamy
Student ID: x22153209

School of Computing
National College of Ireland

Supervisor: Arjun Chikkankod

‘-
National College of Ireland \ National

Colleger

MSc Project Submission Sheet Ire] and

School of Computing

Student Name: Manoj Kumar Periyasamy
Student ID: x22153209
Programme: MSec. in Data Analytics
Year: 2023

Module: MSc Research Project
Supervisor: Arjun Chikkankod
Submission Due Date: 14/08/2023

Project Title: Configuration Manual
Word Count: 1225

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Manoj Kumar Periyasamy
Date: 14™ December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | U

copies)

Attach a Moodle submission receipt of the online project submission, to i
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for i
your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Manoj Kumar Periyasamy
x22153209

1 Introduction

Configuration Manual explains in a very concise manner all the details for setting up and
configuring a specific system, program, and/or hardware. It usually consists of hardware
needs, software installations, setup parameters, problems and solutions. Configuring a
manual helps in having a system running perfectly according to expectation through having
its set up well. In addition, these logs are important references that can help users who want
to carry out troubleshooting or changing system settings.

2 System Configuration

2.1 System Configuration

The success of fatigue detection models relies significantly on the underlying system
configuration, encompassing both hardware and software components. A robust system
ensures the efficient processing and analysis of data, contributing to the accurate and timely
identification of fatigue states. In this section, we outline the key elements of the system
configuration employed in our evaluation:

2.2 Hardware Requirments:

The hardware infrastructure comprises the computational backbone responsible for executing
the machine learning algorithms and handling the data processing load. In our study, we
utilized a system with the following specifications:

MacBook Air

M1, 2020

Chip Apple M1
Memory 8 GB
Serial number FVFJCBYN1WFV
macOS Sonoma 14.1

These hardware specifications were chosen to provide ample computational power, ensuring
efficient model training and evaluation.

2.3 Software Requirments:

The software environment is equally critical, as it dictates the tools, libraries, and frameworks
available for implementing and running machine learning algorithms. The software
configuration in our study included:

® Jupyter Notebook (Version 6.5.2) or Google Colab

® Python (Version 3.10)

® MS Excel

These software components were carefully chosen to create a cohesive and conducive
environment for developing and evaluating fatigue detection models.

3 Installation and Environment Setup

e Python

This project made use of a Python package. Since the majority of Deep Learning and
Machine Learning Projects are supported by its numerous built-in libraries. With a variety of
plots, it makes developing and analysing models easier. Installing the most recent version of
Python on the machine is the first prerequisite. The package installer is capable of being
downloaded through a web browser from the website reference
https://www.python.org/downloads depending on the operating system. Type 'python -
version' in the command prompt to confirm Python has been successfully installed from the
website, as shown in figure python below.

Python

e python’ . I

About Downloads Documentation Community Success Stories News Events

Functions Defined
_ The core of extensible programming is defining functions.

Python allows mandatory and optional arguments, keyword

arguments, and even arbitrary argument lists. More about
defining functions in Python 3

811235813 21 34 55 89 144 233 377 610 987

Python is a programming language that lets you work quickly
and integrate systems more effectively. »» Learn More

e Anaconda

The anaconda package includes a number of IDE that are helpful for writing code and
analyzing outputs from python packages. As seen in the below figure, this package can be
obtained and installed from the website https://www.anaconda.com/products/individual.
Jupyter notebook and its tasks are launched in browser tabs from the anaconda navigator.
Python notebooks are first created and saved in the.ipynb format.

https://www.python.org/downloads
https://www.anaconda.com/products/individual

{_) ANACONDA Enterprise Pricing ~ Resources About .

Everything you need to get started in data science on your workstation.

@ Free distribution install
@ Thousands of the most fundamental DS, Al, and ML packages
& Manage packages and environments from desktop application

@ Deploy across hardware and software platforms

Get Additional Instollers

Higd

:s: 1.;.1 Q
Open Source User-friendly Trusted

Access the open-source software you need With our intuitive platform, you can easily Our securely hosted packages and artifacts
n any field, from data visualization seal and install packages and create, load, are methodically tested and regularly updated.
and switch between environments.

65y scipy ‘,@' !F

SPYDER NumPy

bakeh g eate Anaconda Repository

é Numba pa ndas Our repositary features over 8,000 open-source data science
Tensgr =1 . and machine learning packages, Anaconda-built and compiled
- for all major operating systems and architectures.

matpltlib

> PYTORCH

e Jupyter Notebook

Using the pip command, the python libraries are installed during the execution of code.
Transformers, Scikit-Learn, nltk, Numpy, Pandas, Tensorflow, Matplotlib, googletrans,
Seaborn, and heatmap are the necessary libraries for this course of action. In this browser,
many different IDEs were available. The model in this project is constructed in Jupyter
Notebook.

Command: pip install ’LibraryName’

4 Dataset Details:

The dataset was generated through responses obtained from a distributed survey conducted
via Amazon Mechanical Turk between December 3, 2016, and December 5, 2016. Thirty
eligible Fitbit users provided consent for the submission of personal tracker data,
encompassing minute-level output for physical activity, heart rate, and sleep monitoring.
Individual reports can be parsed using either the export session ID (column A) or timestamp
(column B). The variability in output reflects the use of various Fitbit tracker types and
individual tracking behaviours/preferences.

Dataset Link: https://www.kaggle.com/code/elenamekeshkina/bellabeat-case-study-in-
r/input

https://www.kaggle.com/code/elenamekeshkina/bellabeat-case-study-in-r/input
https://www.kaggle.com/code/elenamekeshkina/bellabeat-case-study-in-r/input

5 Implementation

5.1 Importing Libraries

The implementation part is explained below in detail on how the project was implemented
using Python. Please carry out the instructions step by step. The first step is to preprocess the
provided data before we start the implementation. The libraries required for startup are
displayed in the below picture.

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

from IPython.display import Image

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import roc_curve, roc_auc_score, auc
from sklearn.preprocessing import label_binarize

from sklearn.multiclass import OneVsRestClassifier

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, rZ_Skore
from sklearn.preprocessing import StandardScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping

5.2 Data Collection:

Loading datasets
data dir ='/content/'

relevant_minutes datasets = [
data_dir + 'minuteMETsNarrow merged.csv',
data_dir + "minuteStepsNarrow merged.csv',
data_dir + "minutelntensitiesNarrow merged.csv',
data_dir + "minuteCaloriesNarrow merged.csv’,
data_dir + 'heartrate seconds _merged.csv'

1
dfs_minutes = []

dict_rename_date_cols = {
‘Date’: 'Time',
"ActivityMinute': 'Time',
"date’: 'Time',
"Value': 'heart rate'

}

for ds in relevent_minutes datasets:
dfs_minutes.append(pd.read csv(ds).rename(columns=dict rename date cols))

for i_df in range(len(dfs_minutes)):
dfs_minutes[i df]['Time'] = pd.to_datetime(dfs minutes[i df]['Time'], format=r'%m/%d/%Y FI:%M:%S %p')

Added different datasets into single folder

Specify the path where you want to save the CSV file

csv_output_path = '/content

Save Dataframe to CS5V

foutput.csv’

df_grouped.to_csv('csv_output path’, index=False)

Saving Merged file into our local desk

5.3 Data Preprocessing

Aggregating the bins with the min, max and mean values

df_grouped
df_grouped

drop(columns=["'Time_max', 'Time_mean']).
rename (columns={'Time_min': 'Time'}))

df_grouped.head()

df_concat.groupby(['Id", 'time_range']).agg(['min', 'max’,
(df_grouped.set_axis(df_grouped.columns.map('_'.join), axis=1).

'mean’])

Time METs_min METs_max METs_mean Steps min Steps max Steps mean Intensity min Intensity max Intensity mea
Id time_range
(2016-04-11 2016
£330 SAdAana 04-12 100 10.0 10.0 0.0 0.0 00 0.0 0.0 0.
2016-04-12 00:00:00
00:01:00] e
(2016-04-12 2016-
00:01:00, 2016-04- 04-12 10.0 10.0 10.0 0.0 0.0 00 0.0 0.0 0.
12 00:02:00] 00:02:00
(2016-04-12 2016-
1603960388 g0:02:00, 2016-04- 04-12 100 10.0 10.0 00 00 00 0.0 00 0
12 00:03:00] 00:03:00
(2016-04-12 2016-
00:03:00, 2016-04- 04-12 100 10.0 100 0.0 0.0 00 0.0 00 0.
12 00:04:00] 00:04:00
(2016-04-12 2016-
00:04:00, 2016-04- 04-12 120 120 120 00 0.0 00 0.0 0.0 0.
12 00:05:00] 00:05:00
4 4
Removing all features min/max column
df_grouped = df_grouped.drop(columns=[
'"METs_min", 'METs_max',
'Steps_min', 'Steps_max',
"Intensity_min', 'Intensity max',
'Calories_min', 'Calories max',
"heart_rate_max', 'heart_rate_min
1) .rename(columns={
c:c.replace('_mean', '') for c in df_grouped.columns
1
df_grouped.head()
Time METs Steps Intensity Calories heart rate
Id time_range
(2016-04-11 23:59:59.999999999, 2016-04-12 00:01:00] 2016-04-12 00:00:00 10.0 0.0 00 0.7865 NaN
(2016-04-12 00:01:00, 2016-04-12 00:02:00] 2016-04-12 00:02:00 100 00 00 0.7865 NaN
1503960366 (2016-04-12 00:02:00, 2016-04-12 00:03:00] 2016-04-12 00:03:00 100 0.0 00 0.7865 NaN
(2016-04-12 00:03:00, 2016-04-12 00:04:00] 2016-04-12 00:04:00 100 00 0.0 0.7865 MNaN
{2016-04-12 00:04:00, 2016-04-12 00:05:00] 2016-04-12 00:05:00 120 00 0.0 0.9438 NaN

5.4 Checking Percentage of Missing Values:

Percentage of each column with NaN values

1: pd.DataFrame(df_grouped.isna().sum() / len(df grouped)).T.style.format("'{:.2%}")

I: Time METs_min METs_max METs_mean Steps_min Steps_max Steps_mean Intensity min Intensity_ max Intensity_mean Calories_min Calories_max (

0 9.06% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08% 9.08%

4

5.5 Model building:

The model building part of the configuration manual describes how to create and customize models inside the
product or system. This part is critical for users who wish to make use of the setting up process and customize it
to their specific requirements.

5.5.1 Machine Learning Models:

In building our Anxiety prediction model, we preprocess the dataset, split it into training and testing sets, and
employ Machine Learning model for training. Evaluation metrics like Mean Squared Error and R-squared gauge
the model's accuracy for Linear Regression, Decision Tree, Random Forest and Gradient Boost.

Assuming df is your preprocessed DataFrame
X = df grouped.drop(['Calories'], axisz1) # Features excluding 'Calories' and 'Time'
y = df_grouped['Calories'] # Target variable

Split the data into training and testing sets
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=z42)

Create and train the linear regression model
model = LinearRegression()
model.fit(X train, y train)

Make predictions on the test set
y_pred = model.predict(X test)

Evaluate the model
mse = mean_squared_error(y_test, y pred)
r2 = r2 score(y test, y pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Visualize predictions vs actual values
plt.scatter(y test, y pred)
plt.xlabel("Actual Calories')
plt.ylabel('Predicted Calories')
plt.title('Actual vs Predicted Calories')
plt. show()

Model 1: Decision Tree Regressor

model_dt = DecisionTreeRegressor(random_state=42)
model_dt.fit(X_train, y_train)

y_pred_dt = model_dt.predict(X_test)

Model 2: Random Forest Regressor

model_rf = RandomForestRegressor(random_state=42)
model_rf.fit(X_train, y_train)

y_pred_rf = model_rf.predict(X_test)

Model 3: Gradient Boosting Regressor

model_gb = GradientBoostingRegressor(random_state=42)
model_gb.fit(X_train, y_train)

y_pred_gb = model_gb.predict(X_test)

5.5.2 Deep Learning Models:

In building our model for Deep Learning, we begin by standardizing features using the StandardScaler.

Utilize the StandardScaler to standardize the features.Build a neural network model using the Sequential API
from Kera.Configure layers with a ReLU activation function and a linear activation function for the output layer.
Compile the neural network model using the Adam optimizer and mean squared error loss function. Early
stopping is implemented to prevent overfitting, and training is executed over 100 epochs with a batch size of 32,
leveraging validation data for model evaluation.

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from tensorflow.keras.models import Sequential

from tensorflow. keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

Standardize the features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Build the neural network model

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1],)))
model.add(Dense(32, activation='relu'))

model.add(Dense(1, activation='linear'))

Compile the model
model.compile(optimizer="'adam', loss='mean_squared_error"')

Set up early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)

Train the model
history = model.fit(X_train_scaled, y_train, epochs=100, batch_size=32, validation_data=(X_test_scaled, y_test), cal

Make predictions on the test set
y_pred = model.predict(X_test_scaled).flatten()

13669/13669 [l - 17s 1ms/step

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Long Short-Term Memory (LSTM) architecture

: from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error, r2_score

: # Reshape data for LSTM (samples, time steps, features)
X_train_reshaped = np.reshape(X_train_scaled, (X_train_scaled.shapel@], 1, X_train_scaled.shape[1]))
X_test_reshaped = np.reshape(X_test_scaled, (X_test_scaled.shapel[0], 1, X_test_scaled.shapel[1]))

: # Build the LSTM model
model_lstm = Sequential()
model_lstm.add(LSTM(64, activation='relu', input_shape=(1, X_train_scaled.shapel[1])))
model_lstm.add(Dense(1, activation='linear'))

: # Compile the model
model_lstm.compile(optimizer="'adam', loss='mean_squared_error')

: # Set up early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)

: # Train the model
history_lstm = model_lstm.fit(X_train_reshaped, y_train, epochs=100, batch_size=32, validation_data=(X_test_reshaped

Make predictions on the test set
y_pred_lstm = model_lstm.predict(X_test_reshaped).flatten()

13669/13669 [] — 17s 1ms/step

Evaluate the LSTM model
mse_lstm = mean_squared_error(y_test, y_pred_1lstm)
r2_1stm = r2_score(y_test, y_pred_lstm)

print(f'LSTM Mean Squared Error: {mse_lstm}"')
print(f'LSTM R-squared: {r2_1lstm}"')

5.6 Model Evaluation:

Plot training and validation loss over epochs
plt.plot(history.history['loss'], label='Training Loss"')
plt.plot(history.history['val_loss'], label='Validation Loss"')
plt.xlabel('Epochs')

plt.ylabel('Mean Squared Error')

plt.title('Training and Validation Loss')

plt.legend()

plt.show()

Training and Validation Loss

0.072 A —— Training Loss

—— Validation Loss
0.071 A

0.070
0.069 -
0.068

0.067 A

Mean Squared Error

0.066

0.065 A

0.064 A

Epochs

Figure represnt the Model Evaluation for Feedforward Neural Network.

Plot training and validation loss over epochs for LSTM
plt.plot(history_lstm.history['loss'], label='Training Loss (LSTM)"')
plt.plot(history_lstm.history['val_loss'], label='Validation Loss (LSTM)")
plt.xlabel('Epochs")

plt.ylabel('Mean Squared Error')

plt.title('Training and Validation Loss (LSTM)')

plt.legend()

plt.show()

Training and Validation Loss (LSTM)

0.074 1 —— Training Loss (LSTM)
—— Validation Loss (LSTM)

0.072 A

0.070 4

0.068 -

Mean Squared Error

0.066 -

0.064

0.062 -

Epochs
Figure represnt the Model Evaluation for Long Short Term Memory.

10

	1Introduction
	2System Configuration
	2.1System Configuration
	2.2Hardware Requirments:
	2.3Software Requirments:

	3Installation and Environment Setup
	4Dataset Details:
	5Implementation
	5.1Importing Libraries
	5.2Data Collection:
	5.3Data Preprocessing
	5.4 Checking Percentage of Missing Values:
	5.5 Model building:
	5.5.2Deep Learning Models:

	5.6 Model Evaluation:

