

Configuration Manual

MSc Research Project MSc Data Analytics

Rajshri Pawar Student ID: 22126571

School of Computing National College of Ireland

Supervisor:

Taimur Hafeez

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Rajshri Pawar
Student ID:	22126571
Programme:	MSc Data Analytics
Year:	2023
Module:	MSc Research Project
Supervisor:	Taimur Hafeez
Submission Due Date:	14/12/2023
Project Title:	Configuration Manual
Word Count:	868
Page Count:	9

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
Date:	14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).□Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).□You must ensure that you retain a HARD COPY of the project, both for
or□

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only				
Signature:				
Date:				
Penalty Applied (if applicable):				

Configuration Manual

Rajshri Pawar 22126571

1 Introduction

As the technology is rapidly changing and understanding Human emotions is a very difficult task and they changes in instance. A study to predict the emotions and to make them better by recommending songs and movies through the front-end.

1.1 General information

1.1.1 System information

Operating System: Windows 11 x64. Version: 10.0.19044 Build 19044. Processor: Intel(R) Core (TM) i7-9750H CPU @ 2.60GHz, 2592 MHz, 6 Core(s), 12 Logical Processor(s). Installed Physical Memory (RAM): 16.0 GB. Hard Disk: 500GB.

1.1.2 Platforms

Python(3.9): The python version used in the project is 3.9.

Google Collaboratory: An environment for developing the python code, which support GPU and TPU, gives faster execution.

1.2 Project Brief

DNN models were implemented to train the dataset for detecting the emotions through facial expressions. The Custom CNN, CNN and transfer learning models like VGG16 were used to get the desired accuracy for the system. For generating the dataset, OpenCV is used and half of the data is taken from kaggle.

1. Generated the images with OpenCV and downloaded the data from Kaggle which is an open site for accessing the Data without having any ethical issues.

Stored all the data in the specified emotions set, as we have 7 different emotions follows: Angry, Happy, Sad, Neutral, Disgust, Surprise, Fear.

2. Mediapipe is installed, which is an open-source framework used for various vision tasks. The built-in components allows to built a custom pipeline and intergrate the deep

learning models.

3. Integrating the google drive with the google collab for the data as the data is too large, 35000 images. It will ask for permission to access the drive for data.

4. Importing all the required libraries

[37]	import cv2	
	<pre>import matplotlib.pyplot as plt</pre>	
	import pandas as pd	
	import mediapipe as mp	
	import numpy as np	
	import itertools	
	import tensorflow as tf	
	from tensorflow.keras import activations	
	from tensorflow.keras import losses	
	from tensorflow.keras.regularizers import 12, 11	
	from tensorflow.keras.callbacks import LearningRateScheduler	
	from tensorflow.keras.optimizers import RMSprop, SGD, Adagrad, Adam	
	from tensorflow.keras.layers import Dropout	
	from tensorflow.keras.models import Sequential	
	from tensorflow.keras.layers import Dense, BatchNormalization ,Activation	
	import keras	
	from tensorflow.keras.preprocessing.image import ImageDataGenerator	
	from tensorflow.keras.callbacks import EarlyStopping	
	from tensorflow.keras.callbacks import ModelCheckpoint	
	import tensorflow as tf	
	from tensorflow.keras.layers import Input, MaxPooling2D, Flatten, Dense, InputLay	/er
	from tensorflow.keras import regularizers	
	#/content/drive/MyDrive/Emotion_detection_data	

Figure 1: Libraries

5. After getting the data performing the facial expressions landmark detection using the Face Mesh model. Facial Landmark defined like for example Left eye, right eye for the visualizations.

6. After landmarking, transferring the images to the specified path and the resizing it and again performing the landmarking with Gaussian blur for better image. After getting the output, visualizations are done using openCV.

<pre>mp_face_mesh = mp.solutions.face_mesh</pre>	
<pre>mp_drawing = mp.solutions.drawing_utils</pre>	
<pre>mp_drawing_styles = mp.solutions.drawing_styles</pre>	
<pre>LEFT_EYE = list(set(itertools.chain(*mp_face_mesh.FACEMESH_LEFT_EYE)))</pre>	
RIGHT_EYE = list(set(itertools.chain(*mp_face_mesh.FACEMESH_RIGHT_EYE)))	
LEFT_EYEBROW = list(set(itertools.chain(*mp_face_mesh.FACEMESH_LEFT_EYEBROW)))	
RIGHT_EYEBROW = list(set(itertools.chain(*mp_face_mesh.FACEMESH_RIGHT_EYEBROW)))	
LIPS = list(set(itertools.chain(*mp_face_mesh.FACEMESH_LIPS)))	
CONTOURS = list(set(itertools.chain(*mp_face_mesh.FACEMESH_CONTOURS)))	
OTHER = [1]	
<pre>face_mesh = mp_face_mesh.FaceMesh(</pre>	
<pre>static_image_mode=True,</pre>	
max_num_faces=1,	
refine_landmarks=True,	
min_detection_confidence=0.5)	
<pre>img=cv2.imread('/content/drive/MyDrive/Emotion_detection_data-20231205T222356Z-0</pre>	01/Emotion_detection_data/Emotion_detection/test/fearful/im293.png')
<pre>#img=cv2.imread(df['image_path'][1])</pre>	
<pre>#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)</pre>	
if img is None: #added by rajshri	
print("Error: Could not load the image") #added by rajshri	
else: #added by rajshri	
img = cv2.resize(img, (500, 500)) # Any size, just for visualization	
<pre>img = cv2.GaussianBlur(img, (3, 3), cv2.BORDER_DEFAULT)</pre>	
<pre>img_shape = img.shape[0]</pre>	
print("sahpe of the image it should be 500",img_shape)	
results = face_mesh.process(img)	
print("the results", results)	
annotated_image = img.copy()	
<pre>shape = [(lmk.x, lmk.y, lmk.z) for i, lmk in enumerate(results.multi_face_land</pre>	marks[0].landmark)]
<pre>shape = np.array(shape)</pre>	
print(shape[1])	
print("")	
print(len(shape)) #x,y,z #this after normalization	
shape = shape[LEFT_EYE + RIGHT_EYE + LEFT_EYEBROW + RIGHT_EYEBROW + LIPS + OTH	ER]
print("the shape of the it ",shape.shape)	
for lmk in shape:	
<pre>cv2.circle(annotated_image, (int(lmk[0] * img_shape), int(lmk[1] * img_shape</pre>)), 2, (0, 0, 255))
<pre>plt.imshow(annotated_image, interpolation='nearest')</pre>	

Figure 2: Facial Landmark

Figure 3: Facial Landmark

300

400

2 Preparation of Data set

100

0

200

1. Firstly setting the path for storing the specified data in the specified location. After that defining the 2D and 3D spaces.

2. Preparing a CSV file which will be containing the facial expression landmark Data. Storing all the images according to the specifically given directory for each emotion.

3. Loading the images again and then converting them into RGB formate to obtain the landmark predictions. After that calculating the euclidean distance in 2d and 3d from nose point.

4. Storing the dataFrame to a CSV file in the given mode as train or test set.

3 Model Creation

For the system, used models are Custom CNN, CNN and transfer learning model like VGG16.

1. Firstly, for creation of the model, using TensorFlow and Keras for the detection of the emotions.

2. After Importing the required libraries like: sequential, InputLayer, Conv2D Max-Pooling2D, Flatten etc.

3. Set the parameters for image size and batch size and creating a generator for the

0	import os import cv2 # added by rajshri import numpy as np # added by rajshri import pandas as pd # added by rajshri
	<pre>PTH = '/content/drive/MpOrive/Emotion_detection_data-20231205T2223562-001/Emotion_detection_data/Emotion_detection' test_path = f'(PTH)/test'</pre>
	<pre>def euc2d(a, b): # in 2d dimension return np.sqrt((a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]))</pre>
	<pre>def euc3d(a, b):#in third dimension return np.sqrt((a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) + (a[2]-b[2])*(a[2]-b[2]))</pre>
	<pre>def prepare_csv(path, mode, face_mesh):</pre>
	emotions = os.listdir(path) #all directores of the train or the test the emotion exactly
	<pre>df = pd.DataFrame{{ ihe choose the 92 becouse the range(5) => 0-4 so it will be acually a 5 number i *2 is to be x and y }, columns = [f*(i)* for 1 in range(92 * 2)] + [*y*])</pre>
	<pre>for i, emotion in enumerate(emotions): #also i we make it as labels images = os.listdir(f*(path)/(emotion)*) for image in images: #pre process of the image ing = cv2.imread(f*(path)/(image)**) img = cv2.cutolor(img, cv2.cutoR_BGEADEGE) img = cv2.cutoR_GGEADEGEDEFAULT)</pre>
	results = face_mesh.process(img)
	<pre>if results.multi_face_landmarks:</pre>
	<pre>shape = [(lmk.x, lmk.y, lmk.z) for lmk in results.multi_face_landmarks[0].landmark] shape = np.array(shape) #all thing mose = shape[1] #the mose of the shape shape = shape(LEFT EVF + RIGHT EVF + LEFT EVEBROW + RIGHT EVEBROW + LIPS)</pre>
	#the interested indexes from the landmark
	<pre>distances2d = [round(euc2d(nose, x), 6) for x in shape] distances3d = [round(euc3d(nose, x), 6) for x in shape]</pre>
	df.loc[len(df)] = distances2d + distances2d + [i] #meed more investigation
	<pre>df.to_csv(f'{mode}.csv', index=False)</pre>
	<pre>prepare_csv(train_path, 'train', face_mesh) prepare_csv(test_path, 'test', face_mesh)</pre>

Figure 4: Data preparation

training data. After that the data generator for validation and training used to train the CNN model

Import necessary libraries from tensorfiow.kersa.jewys import Sequential from tensorfiow.kersa.jewys import Inputlayer, Conv2D, MaxPooling2D, Flatten, Dense, Dropout from tensorfiow.kersa.jewys import Adam from tensorfiow.kersa.jewys import MobileMetV2 from tensorfiow.kersa.jewys import GlobalAveragePooling2D from tensorfiow.kersa.jewys call.inage import ImageDataGenerator Import metplotlib.pyplot as plt
Set parameters
batch_size = 32
image_size = (48, 48)
<pre># Create data generators datagen = ImageDataGenerator(rescale=1./255, validation_split=0.3) train_generator = datagen.flow_from_directory('/content/drive/MpOrive/Emotion_detection_data-20231205T222356Z-001/Emotion_detection_data/Emotion_detection/train/', target_size=image_size, batch_ize=batch_ize, color_mode='rgb', class_mode':ategorical', subset='training')</pre>
<pre>validation_generator = datagen.flow_from_directory('_content/drive/Mpotine/Enotion_detection_data-2023120572223562-001/Emotion_detection_data/Emotion_detection/train/', target_size=image_size, batch_size=batch_size, color_mode="rgb", class_mode="rgb", class_mode="rgb", class_toude="rgb"</pre>
Found 20106 images belonging to 7 classes. Found 8613 images belonging to 7 classes.

Figure 5: Data Generators

4. In the above image the results is showing that we have 7 classes of emotions containing the data.

Model 1 - CNN-1

Build a CNN model
<pre>cnn_model = Sequential()</pre>
<pre>cnn_model.add(InputLayer(input_shape=(image_size[0], image_size[1], 3)))</pre>
<pre>cnn model.add(Conv2D(32, (3, 3), activation='relu'))</pre>
<pre>cnn_model.add(MaxPooling2D(pool_size=(2, 2)))</pre>
<pre>cnn_model.add(Conv2D(64, (3, 3), activation='relu'))</pre>
<pre>cnn_model.add(MaxPooling2D(pool_size=(2, 2)))</pre>
<pre>cnn_model.add(Conv2D(128, (3, 3), activation='relu'))</pre>
<pre>cnn_model.add(MaxPooling2D(pool_size=(2, 2)))</pre>
<pre>cnn_model.add(Flatten())</pre>
<pre>cnn_model.add(Dense(512, activation='relu'))</pre>
cnn_model.add(Dropout(0.5))
cnn model.add(Dense(256, activation='relu'))
cnn model.add(Dropout(0.5))
<pre>cnn_model.add(Dense(7, activation='softmax'))</pre>
<pre>cnn_model.compile(loss='categorical_crossentropy',</pre>
optimizer=Adam(learning_rate=0.0001),
<pre>metrics=['accuracy'])</pre>
<pre>cnn_model.summary()</pre>
<pre>cnn_history = cnn_model.fit(train_generator, epochs=10,</pre>
<pre>steps_per_epoch=train_generator.n // batch_size,</pre>
validation_data=validation_generator,
validation_steps=validation_generator.n // batch_size)

Figure 6: Building CNN model

5. After training the CNN nodel using the TensorFlow and Keras for detection of 7 different emotion. we got the below results

	Output	Shape	Param #								
conv2d_18 (Conv2D)	(None,	46, 46, 32)	896								
max_pooling2d_18 (MaxPoolin g2D)	(None,	23, 23, 32)	0								
conv2d_19 (Conv2D)	(None,	21, 21, 64)	18496								
max_pooling2d_19 (MaxPoolin g2D)	(None,	10, 10, 64)	0								
conv2d_20 (Conv2D)	(None,	8, 8, 128)	73856								
max_pooling2d_20 (MaxPoolin g2D)	(None,	4, 4, 128)	0								
flatten_7 (Flatten)	(None,	2048)	0								
dense_23 (Dense)	(None,	512)	1049088								
dropout_14 (Dropout)	(None,	512)	0								
lense_24 (Dense)	(None,	256)	131328								
iropout_15 (Dropout)	(None,	256)	е								
dense_25 (Dense)	(None,	7)	1799								
otal params: 1,275,463 rainable params: 1,275,463 on-trainable params: 0 poch 1/10											
tal params: 1,275,463 rainable params: 1,275,463 on-trainable params: 0 poch 1/10 28/628 [===] - 152s 240s	s/step - loss	1.8346 - a	ccuracy: 0.	2307 - val	_loss: 1.78	78 - val_ac	curacy: (0.2548	
tal params: 1,275,463 rainable params: 1,275,463 on-trainable params: 0 poch 1/10 28/628 [===] - 152s 240m ===] - 174s 277m	s/step - loss	1.8346 - a 1.7545 - a	ccuracy: 0. ccuracy: 0.	2307 - val 2878 - val	_loss: 1.78 _loss: 1.63	78 - val_ac 82 - val_ac	curacy: (curacy: (0.2548 0.3742	
tal params: 1,275,463 rainable params: 1,275,463 on-trainable params: 0 poch 1/10 28/628 [===] - 152s 240m ===] - 174s 277m ===] - 181s 289m	is/step - loss is/step - loss is/step - loss	1.8346 - a 1.7545 - a 1.6107 - a	ccuracy: 0. ccuracy: 0. ccuracy: 0.	2307 - val, 2878 - val, 3718 - val,	_loss: 1.78 _loss: 1.63 _loss: 1.53	78 - val_ac 82 - val_ac 24 - val_ac	curacy: curacy: curacy:	0.2548 0.3742 0.4058	
otal params: 1,275,463 aranable params: 1,275,463 on-trainable params: 0 poch 1/10 28/628 [] - 152s 240#] - 174s 277#] - 181s 289#] - 178s 283#	is/step - loss is/step - loss is/step - loss is/step - loss	1.8346 - a 1.7545 - a 1.6107 - a 1.5268 - a	ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0.	2307 - val 2878 - val 3718 - val 4068 - val	loss: 1.78 loss: 1.63 loss: 1.53 loss: 1.46	78 - val_ac a2 - val_ac 24 - val_ac 59 - val_ac	curacy: curacy: curacy: curacy:	0.2548 0.3742 0.4058 0.4421	
otal params: 1,275,463 rainable params: 1,275,463 on-trainable params: 0 poch 1/10 params: 0 params: 0 p] - 152s 240#] - 174s 277#] - 181s 283#] - 178s 283#] - 178s 283#] - 173s 275#	is/step - loss: is/step - loss: is/step - loss: is/step - loss: is/step - loss: is/step - loss:	: 1.8346 - a : 1.7545 - a : 1.6107 - a : 1.5268 - a : 1.4648 - a : 1.4192 - a	ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0.	2307 - val, 2878 - val, 3718 - val, 4068 - val, 4385 - val, 4607 - val,	loss: 1.78 loss: 1.63 loss: 1.53 loss: 1.46 loss: 1.41 loss: 1.37	78 - val_ac a2 - val_ac 24 - val_ac 59 - val_ac 54 - val_ac 77 - val_ac	curacy: (curacy: (curacy: (curacy: (curacy: (curacy:)	0.2548 0.3742 0.4058 0.4421 0.4606 0.4757	
bil pares: 1,275,463 stinlip pares: 1,275,463 on-trainable pares: 0 000h 1740 48/628 [] - 152s 240#] - 174s 277#] - 181s 289#] - 178s 283#] - 178s 283#] - 178s 283#] - 152s 243#	is/step - loss is/step - loss is/step - loss is/step - loss is/step - loss is/step - loss is/step - loss	1.8346 - an 1.7545 - an 1.6107 - an 1.5268 - an 1.4648 - an 1.4192 - an 1.3693 - an	ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0.	2307 - val 2878 - val 3718 - val 4868 - val 4385 - val 4607 - val 4820 - val	loss: 1.78 loss: 1.63 loss: 1.53 loss: 1.46 loss: 1.41 loss: 1.37 loss: 1.33	78 - val_ac a2 - val_ac 24 - val_ac 59 - val_ac 54 - val_ac 77 - val_ac 70 - val_ac	curacy: (curacy: (curacy: (curacy: (curacy: (curacy: (curacy: (e.2548 e.3742 e.4458 e.4421 e.4686 e.4757 e.4865	
otal perse: 1,275,463 on-trainable perse: 1,27,243 on-trainable perses: 0 poch 1/10 20/28 [] - 152s 240t] - 174s 277t] - 181s 289t] - 178s 283t] - 178s 283t] - 178s 283t] - 178s 275t 	is/step - loss: is/step - loss:	1.8346 - a 1.7545 - a 1.6187 - a 1.5268 - a 1.4648 - a 1.4648 - a 1.4192 - a 1.3693 - a 1.3291 - a	ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0. ccuracy: 0.	2307 - val, 2878 - val, 3718 - val, 4068 - val, 4385 - val, 4607 - val, 4820 - val, 4949 - val,	loss: 1.78 loss: 1.63 loss: 1.53 loss: 1.46 loss: 1.46 loss: 1.41 loss: 1.37 loss: 1.33	78 - val_ac 32 - val_ac 24 - val_ac 59 - val_ac 54 - val_ac 77 - val_ac 77 - val_ac 81 - val_ac	curacy: (curacy: (curacy: (curacy: (curacy: (curacy: (curacy: (curacy: (0.2548 0.3742 0.4058 0.4421 0.4606 0.4757 0.4865 0.4977	

Figure 7: Output

6. The results showing the layers used in the CNN model.

Sequential : Linear stack of layers. Common way to create the models where the layer can be added on at a time.

Input layer: this layer will tell about the input shape for the model.

Conv2D: (Convolutional Layer) which performs the convolution operation on input images.

MaxPooling2D: It reduces the spatial dimensions, which helps in concentrating on the important features.

Flatten: It transfers the results from previous layer to one dimensional array, which is required for the densely connected layer.

Dense: this layer is fully connected layer. where each neuron is connected to every other neuron. It will mostly be used in the final layer.

Dropout: it helps to prevent from overfitting.

Output layer: The output will be having the 7 neurons. The softmax function is used for activation.

Model 2 - CNN-2

Bulding the CNN -2 model with more layers added.

Figure 8: CNN- 2 Model Build

The results of CNN-2

Epoch 1/10
628/628 [====================================
Epoch 2/10
628/628 [==========] - 196s 312ms/step - loss: 2.2023 - accuracy: 0.3079 - val_loss: 1.5947 - val_accuracy: 0.4117
Epoch 3/10
628/628 [====================================
Epoch 4/10
628/628 [====================================
Epoch 5/10
628/628 [==================] - 199s 316ms/step - loss: 1.6748 - accuracy: 0.4143 - val_loss: 1.4340 - val_accuracy: 0.4750
Epoch 6/10
628/628 [==================] - 197s 314ms/step - loss: 1.5917 - accuracy: 0.4335 - val_loss: 1.3669 - val_accuracy: 0.4880
Epoch 7/10
628/628 [====================================
Epoch 8/10
628/628 [====================================
Epoch 9/10
628/628 [==================] - 214s 341ms/step - loss: 1.3514 - accuracy: 0.4961 - val_loss: 1.3368 - val_accuracy: 0.5016
Epoch 10/10
628/628 [====================================

Figure 9: CNN-1 results

Model 3 - VGG16

1. Bulding the VGG16 model for the emotion detection.

2. Image size and batch size parameters is set.

3. Data generators are build for training and validation data and the the data is divided into training and validation subset.

4. VGG16 model will be loading with the data weights which are pre-trained on the ImageNet dataset.

5. The custom layers are added with the VGG16.then the model will be compiled.

Figure 10: VGG16 model

Layer (type)	Output Shape	Param #				
vgg1 (Functional)	(None, 1, 1, 512)	20024384				
global_average_pooling2d (G lobalAveragePooling2D)	(None, 512)	0				
dense_20 (Dense)	(None, 512)	262656				
dropout_12 (Dropout)	(None, 512)	0				
dense_21 (Dense)	(None, 256)	131328				
dropout_13 (Dropout)	(None, 256)	0				
dense_22 (Dense)	(None, 7)	1799				
dense_22 (Dense) (None, 7) 1799 Total params: 20,420,167 17ainable params: 395,783 Non-trainable params: 20,024,384						

Figure 11: VGG16 structure

Front end of the prototype

```
# Function to preprocess the input image
def preprocess_image(img_path, target_size):
    img = image.load_img(img_path, target_size=target_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0 # Rescale to [0,1]
    return img_array
@app.route('/')
def index():
    return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
    if 'file' not in request.files:
        return jsonify({'error': 'No file part'})
```

Figure 12: Code snippet for fron-end execution

O	ChatGPT	desktopauth.europe.citi.c	co emotion_detection_using_	desktopauth.europe.citi.c: 😰 (44) Soodhu Kawum Corr	Ernotion Detection
					6 6 6 9 7 1 =
	Dashboard				
 		NETFLIX	Choose File	For list channer	Listen On Spotify
		10p NetTIIX MOVIES 1. The Pursuit of Happyness 2. The Pursuit of Happyness 3. Lia La Land 4. Paddington 5. Legally Bindle 6. The Secret Life of Pets 7. Zondorski	Predict	ed Emotions neutral	Top Sportify Songs 1. Jappy - Phanel Williams 2. Cart Spo the Festings' J. Asini Timberlake 3.1 Gotta Fesling - The Black fyed Peas 4. Uptown Funk - Mark Romon ft. Bruno Mars 5. Don't Stop Believie' - Journey
•		8. The Parent Trap			
Ö		9. Shrek			
 		TU, The Grand Buddipest Hotel			
	6°C Rain		o 🗉 💿 🖬 🔤 刘	I 🥴 🔾 😑 📮 🧕 🖉 📮	∧ 🐾 🕴 ENG 👳 d0 🗁 12

Figure 13: Front-end of the prototype

References