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Predictive Modelling of Low Tariff Energy
Consumption in UK

Sanket Patne
x22171746

Abstract

Deep learning applications are constantly evolving and it has seen more innov-
ations in 2023 alone than ever in the past. In such an ever changing scenario its
application in commercial sectors like load prediction can also not fall behind, but
unlike traditional machine learning techniques these new techniques should be more
widely applicable in scope for global adoption. This is a compact study towards
determining which neural networks are best suited for load prediciton as compared
to the ones explored in previous studies that include LSTM, Bidirectional LSTM
(Bi-LSTM), Multi-output Gaussian processes (MGP), etc. With the custom data
formulated, best results were achieved by the CNN model with a MAPE values
of 28.0559 percent and Variance Score of 0.0389. The best model was compared
against models developed from the RNN and LSTM algorithms.

Keywords: Load prediction, Neural Networks, Hyper Parameter Tuning, low
tariff energy consumption

1 Introduction

Energy efficiency is more important than ever in the current geopolitical climate. Con-
sumers need more information about their energy usage and pricing models to make
informed decisions about their energy consumption. This information can help them re-
duce their energy bills and carbon footprint and help power providers optimize electricity
delivery. One way to improve energy efficiency is to monitor consumption patterns over
time. As observed in a previous study by (Chen et al.; 2023), this data can be used
to identify peak and low usage periods, and to adjust the production of electricity from
regular and sustainable sources accordingly.

Seasonal variances in usage can be caused by factors such as heating and cooling
needs, and the adoption of solar alternatives. For example, in the winter, households
need more heating and have shorter days, which can lead to higher energy consumption.
In the summer, households may use more air conditioning and have longer days, which
can also lead to higher energy consumption. However, the adoption of solar alternatives
can offset some of this increased energy consumption.

Convolutional neural networks (CNN), recurrent neural networks (RNN), and artifi-
cial neural networks (ANN) are implemented and evaluated for load prediction in this
study. It excels in comparison by offering an extensive analysis across multiple deep
learning architectures. By introducing a hyperband parameter tuner, it improves upon
previous studies that did not take hyperparameter tuning into account. Models for fea-
ture extraction and retraining are unique in that they exhibit iterative refinement and
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ongoing improvement. The study is improved by the model comparison, which sheds
light on how well various deep learning architectures perform in comparison. Further-
more, the comparison with current models broadens contributions beyond research that
just benchmark against conventional machine learning methods.

1.1 Motivation and Project Background

Electricity consumers use electricity based upon their necessity in any household or busi-
ness setting. The usage of electricity is not influenced by any major habits or patterns
normally. But the current events and global usage habits affecting carbon emissions, and
a bunch of other factors have all come into play to create the need for more effective and
efficient use of not just electricity but all the natural resources that are at our disposal,
affect the surroundings and might even affect the environment in the long term to make
the planet uninhabitable. In the more recent studies, it has been found out that if the
global temperatures go up by over 2 degrees celsius above preindustrial levels people in
certain regions of the world will have to face extended periods of heat that is beyond
human tolerance as early as next year. All these concerns prompt us to use the resources
available as efficiently as possible to avoid these dire scenarios. That brings us to using
one of the most essential resources electricity which is used without most considerations
and freely as and when needed. This gives us the most scope to improve the usage
patterns in electricity and make the most difference in offsetting the carbon footprints.
Overall, research into consumption patterns of consumers is essential for improving en-
ergy efficiency and reducing carbon emissions. By monitoring consumption patterns over
time, researchers can identify areas where energy efficiency can be improved, and power
providers can optimize electricity delivery.

1.2 Research Questions

In the current day and age there are highly complex deep learning models being employed
globally for high accuracy load prediction. But the complexity of these models comes in
it also becomes highly unlikely that the outcome is going to be legible to the end user
and replicable by third parties to implement.Therefore, the following research question
are formulated to meet the replicability and simplicity demands for more recent ground
level studies:
Research Question: What machine learning methods are best for precisely predicting
the amount of energy consumed in a given area? Power providers can use this data to
optimize electricity delivery and reduce costs for both consumers and them. For example,
they can use the data to plan for maintenance and upgrades, and to develop more efficient
pricing models.
Sub Research Question: How can machine learning algorithms be effectively used to
estimate short-term energy consumption load based on historical data? Overall, research
into consumption patterns of consumers is essential for improving energy efficiency and
reducing carbon emissions. By monitoring consumption patterns over time, researchers
can identify areas where energy efficiency can be improved, and power providers can
optimize electricity delivery.
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1.3 Research Objectives and Contributions

Obj1: Extract features from data provided by energy providers
Obj2(a): Implement, evaluation and results of CNN models on House A
Obj2(b): Create a hyperband parameter tuner for finding best parameters for house A
Obj2(c): Extract best features for new model and retrain model
Obj3(a): Implement, evaluation and results of RNN models on House B
Obj3(b): Create a hyperband parameter tuner for finding best parameters for house B
Obj3(c): Extract best features for new model and retrain model
Obj4(a): Implement, evaluation and results of ANN models on House C
Obj4(b): Create a hyperband parameter tuner for finding best parameters for house C
Obj4(c): Extract best features for new model and retrain model
Obj5(c): Comparison of developed models
Obj6(d): Comparison of developed models with existing models

2 Related work

In smart grids, load prediction plays a critical role in helping utilities better manage their
resources and give consumers more dependable service. An increasing amount of research
is showing that machine learning (ML) is a highly effective method for load prediction.
ML models are able to recognise patterns and trends that can be utilised to forecast
future load demand by learning from past load data as well as other pertinent features.
Because ML models can learn from data, they are a good fit for complicated, dynamic
tasks like load prediction.

The following are some major arguments in favour of the need for machine learning
in load prediction:
Complex and non-linear relationships between variables can be handled by ML models.
The complicated issue of load forecast is impacted by numerous variables, such as the
weather, day of the week, and time of day. These intricate interactions can be modelled
by ML models, which can then produce precise load estimates. ML models are able to ad-
just to shifting load patterns. Climate change, technology breakthroughs, and economic
expansion are some of the variables that cause load patterns to fluctuate regularly. ML
models can learn from fresh data and adjust to these shifting trends. Load for various
time horizons can be predicted using machine learning models. Different time horizons
can be used for load prediction, including short-term (like intra-day), medium-term (like
day-ahead), and long-term (like weekly or monthly). For each of these time frames, load
can be predicted using machine learning models.

All things considered, machine learning (ML) is an essential technique for load prediction
since it can handle the problem’s complexity and dynamism and produce precise predic-
tions for various time horizons. Several of the particular studies conducted in this field
made use of the following models: Long short-term memory (LSTM) networks, Convolu-
tional neural networks (CNNs), Recurrent neural networks (RNNs), Bidirectional LSTM
(Bi-LSTM), Multi-output Gaussian processes (MGP), Attention mechanism, Artificial
bee colony (ABC) and Transformer. The majority of the research trained their models
through supervised learning. A model is trained using a collection of input data and
matching output data through supervised learning. When it comes to load prediction,
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the input data usually consists of historical load data along with other pertinent features
like weather, day of the week, and time of day. The load that the model is attempting
to forecast is the output data.

Several studies employed ensemble learning techniques to enhance the models’ perform-
ance. In ensemble learning, many models’ predictions are combined to yield a prediction
that is more accurate. This can be accomplished by utilising a weighted average, where
the weights are established by how well each model performs on a held-out validation set,
or simply averaging the forecasts of the several models.
The studies used a range of indicators to assess the models’ performance, such as: Mean
absolute error (MAE), Mean squared error (MSE), Root mean squared error (RMSE),
Accuracy, F1 score.

2.1 Comparison of several time horizons (hourly, intraday, day-
ahead):

This technique allowed the researchers (Huang; 2023) to show that the model can accur-
ately anticipate load for a range of time horizons. As a result, the model becomes more
flexible and useful for a larger variety of load prediction jobs. They were able to show
that the model can accurately forecast load for various customer kinds by testing it on a
variety of customer types. As a result, the model gains more adaptability and is suitable
for a greater variety of load prediction applications.

The researchers(Li et al.; 2023) demonstrated that the model can accurately represent
the dynamics of load patterns at various time scales by evaluating it over a number of
time horizons. This is crucial for creating precise load prediction models, particularly for
applications involving short-term load prediction.

Sun et al. (2023) and others assessing the model over several time horizons would have
added to the study’s high computing expense. This is because, for each time horizon, the
researchers had to train and assess the model on a different dataset. They were able to
determine which client kinds the model works best and worst for by testing the model on
a variety of customer types. To create load prediction models that are more specifically
tailored to the needs of various clientele, this data can be utilised.

By concentrating on residential clients Tomar (2023), the study’s breadth and the
findings’ practicality were restricted.

2.2 Comparison of various weather conditions and seasons:

Huang (2023), by testing the model using data from various weather conditions and
seasons, the researchers were able to show that the model is resilient to variations in
the weather and the seasons. This is crucial for creating realistic load prediction models
that work in the real world. The researchers demonstrated that the model can capture
the seasonal and weather trends that impact load demand by testing it with data from
various seasons and weather conditions. This is crucial for creating precise load prediction
models that are applicable to both long- and short-term load forecasting.

Going back to the study by Li et al. (2023), by concentrating on cold load circum-
stances, the study’s breadth and the findings’ applicability were restricted.
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The benefits of testing models across a variety of time horizons by Zou et al. (2023),
clientele, and meteorological circumstances are generally greater than the drawbacks. On
the other hand, it’s critical to make sure the models are trained on representative data
and to be conscious of the increased time and processing requirements.

2.3 Comparison of different types of customers (residential, com-
mercial, industrial):

Revisiting the study by Huang (2023) the researchers were able to show that the model
can accurately forecast load for various customer kinds by testing it on a variety of
customer types. As a result, the model gains more adaptability and is suitable for a
greater variety of load prediction applications.

The researchers Sun et al. (2023) again were able to determine which client kinds
the model works best and worst for by evaluating the model on a variety of customer
types. To create load prediction models that are more specifically tailored to the needs
of various clientele, this data can be utilised.

By concentrating on residential clients by Tomar (2023), the study’s breadth and the
findings’ practicality were restricted. In summary:

In smart grids, deep learning models have proven to be successful in predicting load. A
range of deep learning models, including LSTM networks, CNNs, RNNs, Bi-LSTM, MGP,
and attention mechanisms, were employed in the experiments examined in this literature
review. While some studies employed ensemble learning to boost model performance,
the majority of studies used supervised learning to train their models. The research used
a range of metrics, such as accuracy, F1 score, M-statistic, MSE, RMSE, and MAE, to
assess how well their models performed. According to the majority of the studies, Manju
et al. (2023) their deep learning models could forecast load for a wide range of scenarios
with accuracy.

All things considered, the research by Friansa et al. (2023) offers compelling proof
that deep learning algorithms may be applied to precisely forecast load in smart grids.
In addition to investigating the applicability of deep learning models to other smart grid
applications, more research is required to build and enhance deep learning models for
load prediction.

3 Modified CRISP DM Methodology for Load Pre-

diction

The variation of CRISP DMmethodology that was followed skips the business application
layer as the study is not end user ready similar to (Kamilin et al.; 2023). Although the
purpose for the research is to bring value for the customers to get the maximum out
of their electricity consumption habits, it is not associated directly with any businesses.
The information includes daily readings of the energy use over time for three houses
(MAC000147, MAC000150, and MAC000151). Apart from this dataset, a third party
dataset retrieved from the Darksky1 API was also integrated to the original dataset.

1https://support.apple.com/en-us/102594
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This API enabled us to add additional features to the data that could provide correlation
between energy usage patters and seasonal trends in weather.

3.1 Data Acquisition

The energy consumption data was obtained from the open data source provided by the
Government of London(Networks; 2023)2. The following variables are present in the data:
LCLid: A distinct identifier for every dwelling
day: Date of the reading recorded
energy mean: The average daily energy usage
energy max: The daily maximum energy use
energy min: The daily minimum energy use

3.2 Data Preprocessing and Data Selection

To deal with missing values and inconsistent data, the data underwent preprocessing.
After removing rows where energy mean had missing values, the day variable was format-
ted as a datetime. The readings for energy usage were transformed into numerical num-
bers.

The houses with the most data points MAC000147, MAC000150, and MAC000151
were chosen for additional examination. Here on, the three houses are referred as A, B
and C respectively in the report. Each of these houses contains more than 1,000 data
points for statistical analysis. Preprocessing was done on the data to address missing
values, data discrepancies, and to combine weather and energy consumption data. An
outline of the preprocessing stages is provided below:
Eliminated rows that contained missing energy mean values. The energy consumption
readings were converted to numeric values and the day variable was formatted as a
datetime. The day column was used to establish a datetime index for each consumption
dataset. The resample() function was used to resample the weather data to a 30-minute
period. For numerical columns, missing values were interpolated; for categorical columns,
they were forward-filled.

Since the icon and summary columns were unnecessary given the other variables, they
were removed from the weather data. The meteorological and consumption datasets’ date-
time indexes were reset.Using the day column to match timestamps, each consumption
dataset was left-joined with the meteorological data.

3.3 Exploratory Data Analysis

Following the preprocessing of the data, an exploratory data analysis was carried out to
identify the features of the energy use data. Appropriate visualisations, like box plots or
histograms, were used to analyse the distribution of energy usage. To find any patterns or
seasonality, the patterns of energy use across time were examined. In order to comprehend
how the weather affects energy usage, the correlation between energy consumption and
weather variables such as temperature and humidity was examined.

Apart from the preprocessing stages stated before, the subsequent operations were
carried out: In order to describe and identify UK public holidays according to their unique
occurrence criteria, a custom calendar class called UKHolidayCalendar was developed.

2https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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To indicate if the associated date was a holiday, an isholiday column was added to each
consumption dataset. Each consumption dataset now has a season column that assigns
the date to one of the four seasons—winter, spring, summer, or autumn. Compare
energy use on holiday days to non-holiday days to determine how holidays affect patterns
of energy consumption. To find possible connections and underlying trends, look into
the correlations between energy use and calendar features such the season and holiday
indicator.

Figure 1: Distribution plot for energy consumption

The distribution of energy consumption over the course of the seasons and holidays
was examined as part of the exploratory data analysis to determine any potential effects
on patterns of energy usage. Figure 1 displays the three houses’ (House A, House B,
and House C) distribution of energy use (energy mean). For all three residences, the
distribution is skewed to the right and has a longer tail pointing towards greater energy
usage levels. This suggests that while most days have lower energy usage, there are
a few days with relatively high energy consumption. The energy consumption of each
dwelling is displayed as the minimum, maximum, median, and interquartile range (IQR)
in a box plot. The interval between the data’s 25th and 75th percentiles is known as the
IQR. House C has the greatest median energy usage, followed by House B and House A,
according to the box plot. House C has the broadest IQR as well, suggesting that this
home’s energy use is more erratic.

For all three dwellings, the energy consumption distribution is biased to the right,
with a longer tail pointing towards greater energy consumption values. This suggests
that while most days have lower energy usage, there are a few days with relatively high
energy consumption. The houses with the greatest median energy use are House C, House
B, and House A in that order. House C has the broadest IQR, indicating that this home’s
energy use is more variable.
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Figure 2: Energy consumption for top 3 consumers House A, B and C respectively

Figure 2 illustrates how the three households’ energy usage fluctuates with the sea-
sons. Nevertheless, each residence experiences the seasonal change to a different extent.
In House A, for instance, there is comparatively minor seasonal variation in energy con-
sumption, and the median energy consumption is consistent throughout all four seasons.
House C, on the other hand, exhibits a significant seasonal fluctuation in energy con-
sumption, with the median energy consumption peaking in the summer and falling in the
winter.

Seasons and dwellings also have an impact on the IQR. In all four seasons, for instance,
House A has a comparatively narrow IQR, suggesting that its energy consumption is less
variable. On the other hand, House C’s summer time IQR is comparatively wide, sug-
gesting that this is the season with more fluctuations in energy usage.

Figure 3: Skewness patterns for the 3 houses A, B and C

Three houses (House A, House B, and House C) are represented in Figure 3 with
their half-hourly energy use from 2012 to 2014. Each house’s unique energy consumption
trends are displayed in the plot. Over the course of the period, House A shows a generally
stable pattern of energy usage with a few small variations. This study (Han et al.; 2023)
implies that the residents of this home have rather consistent energy-use patterns.

Energy use in House B varies more noticeably, with peaks and troughs happening
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on a regular basis. The use of appliances like washing machines and dishwashers or the
presence of people at specific hours of the day or week could be to blame for this.

There are notable variations in House C’s energy usage as well, with summertime
seeing the largest usage. The usage of air conditioning during this period could be the
cause of this.

The houses with the greatest median energy use are House C, House B, and House A,
in that order. Numerous variables, like the size of the home, the number of people, and the
kind of appliances utilised, could be to blame for this. All things considered, the plot offers
a useful summary of the three residences’ patterns of energy use. Additional research into
the variables influencing energy consumption can be guided by the identified variances in
consumption patterns and median usage. All three of the homes use more energy in the
winter, most likely because they are heating their homes. During the evening, the three
houses’ energy use drops. The house with the most summertime energy usage increase is
House C. The house with the least fluctuation in energy use over the course of the week
and day is House A.

4 Design Specification

For this study the dataset not just consisted of the data provided from the original source
but also a custom python class that helped us map out UK holidays(Colman-Goff; 2023).
The study quite similar to the one by (MA et al.; 2023) combined these two aspects of the
data with the third element being the weather data which was aggregated from a third
party. This gave more scope to work, than just the time series data from energy providers.
This provided a greater context into the load prediction domain and also expands the
scope for the neural networks implemented to learn from. The abstract holiday class
helped us define all the possible holidays that had been declared for the UK which helped
us in insights further.

Figure 4: Project Design Process Flow
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5 Implementation

The timeseries data that was available since the beginning was not sufficient for quality
predictions by the neural network models in place. Thus, additional features from the
weather API darksky(Support; 2023) were added to the dataset to provide an additional
layer of depth to the existing features. This established some correlations between existing
data in its own time frames.

5.1 Feature Engineering

Feature engineering approaches were used on the data to improve the statistical models’
prediction power. This involved representing temporal features as sinusoidal and cosi-
nusoidal functions and encoding category features using one-hot encoding.
Encoding of Categorical Features: With one-hot encoding, categorical features like
season and precipType were encoded. By producing distinct binary features for every
category, this method by Zhang et al. (2022) efficiently converts the categorical data into
numerical representations that the statistical models can use.
Temporal Feature Representation: The temporal features ’hour’,’minute’, ’day’,’month’,
and ’week day’ were converted to cosinusoidal and sinusoidal representations. This
method encodes the features as periodic functions of time, capturing the cyclical struc-
ture of temporal data.
Rationale behind Feature Engineering: In this analysis, feature engineering accom-
plishes multiple goals:
Feature engineering can increase the statistical models’ prediction accuracy by changing
categorical features and better reflecting temporal features. Simple linear features might
not be able to sufficiently capture non-linear interactions between temporal features and
energy usage. These relationships can be captured via sinusoidal and cosinusoidal rep-
resentations. By choosing a subset of pertinent binary features, one-hot encoding has the
ability to both raise and decrease the dimensionality of the data. By making temporal
aspects easier to understand, sinusoidal and cosinusoidal representations help to better
understand how these features affect energy use.

Figure 5: Relation between Energy Consumption and Temperature for House A

The following conclusions can be drawn from Figure 5:
The energy use and temperature are negatively correlated. The red trend line’s declining
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slope serves as an indicator of this and The amount of energy used drops with increasing
temperature. The irregularities in the data are indicated by the dispersed data points
around the trend line. This shows that energy usage is influenced by a variety of factors
in addition to the general trend of reduced energy consumption with rising temperat-
ures. The data does not seem to include any noteworthy outliers. This implies that the
information is largely trustworthy and consistent. The negative association in similar
studies (Zhao et al.; 2022) may indicate that during colder months, the household utilises
more energy for heating. Lower energy usage results from less demand for heating as the
temperature rises.

Figure 6: Relation between Energy Consumption and Temperature for House B

Following conclusions are derived from Figure 6: The figure clearly displays a negat-
ive trend, meaning that energy consumption falls with rising temperatures. This implies
that when the temperature is more agreeable, the household might use fewer heating or
cooling appliances. The plot’s dispersed data points indicate that the data are variable.
Other factors that affect energy consumption, like variations in usage patterns or appli-
ance efficiency, may be the cause of this. The line that best fits the data is indicated by
the red trend line. The trend line indicates a steady decline in energy use with rising
temperature in spite of the dispersed data points.

Figure 7: Relation between Energy Consumption and Temperature for House C
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The scatterplot for house C as seen in Figure 7 depicts the following observations:
The graphic clearly displays a negative trend, meaning that energy consumption falls
with rising temperatures. This implies that when the temperature is more agreeable,
the household might use fewer heating or cooling appliances. The plot’s dispersed data
points indicate that the data are variable. Other factors that affect energy consumption,
like variations in usage patterns or appliance efficiency, may be the cause of this. The
data’s linear regression line is shown by the red trend line. The trend line indicates a
steady decline in energy use with rising temperature in spite of the dispersed data points.
The main variables affecting energy usage in House C are humidity, seasonality, cloud
cover, precipitation, and wind speed.Since there is a strong positive correlation between
humidity and energy usage, controlling indoor humidity levels may result in significant
energy savings as observed. The findings suggest that energy conservation efforts should
prioritise optimising heating and lighting throughout the autumn, winter, and cloudier
months due to the positive associations with seasonality and cloud cover. The favourable
relationships found between wind speed and precipitation suggest that weatherproofing
techniques may be able to lower the energy used to prevent heat loss. It appears that
energy usage tends to decrease with rising temperatures based on the negative correlations
found with temperature factors.

5.2 Splitting the Data into Training and Testing Sets

The data for each house (A, B, and C) was initially divided into training and testing
sets. The train test split() method from the scikit-learn(Fabian Pedregosa and Michel;
2023) library is used for this. The testing set is used to assess the models’ performance,
and the training set is used to train the machine learning models. To prevent the data
from being shuffled prior to splitting, the shuffle argument is set to False. This guar-
antees that in both the training and testing sets, the temporal relationships between
the data points are maintained. Eighty percent of the data is utilised for training and
twenty percent is used for testing, according to the test size parameter, which is set to 0.2.

Scaling the Data: Next, a MinMaxScaler was used to scale the data for each house
(A, B, and C). The purpose of this is to normalise the data to a shared range of 0.01 to
1. The machine learning models’ performance may be enhanced as a result. Both the
training and testing data are transformed using the fit transform() method, which fits
the scaler to the training set.

Reshaping the Output Variable: In the end, a 2D array was created out of the
output variable for each house (A, B, and C). The reason for this is that the machine
learning models anticipate that the output variable will have this structure. The output
variable is reshaped into a 2D array with one row representing each data point and one
column representing the output value using the reshape method.

Dimensionality Reduction using (PCA)
The training and testing data for each house (A, B, and C) were then subjected to

Principal Component Analysis (PCA). Using as much of the original data as feasible,
PCA is a dimensionality reduction approach that converts a high-dimensional dataset
into a lower-dimensional representation. By lowering the number of features the models
must take into account, this can help machine learning applications by increasing the
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models’ performance and lowering their computational complexity.
The PCA constructor has the n components parameter set at 0.95. This indicates that

95 percent of the variance in the original data will be captured by the lower-dimensional
representation created by the PCA. This method of applying PCA is popular because it
strikes a compromise between information preservation and dimensionality reduction.

The PCA model is fitted to the training set and both the training and testing sets
are transformed using the fit transform method. In other words, the training and testing
data are converted into the lower-dimensional representation by means of the PCA model,
which has been trained on the training data.

A data preparation approach called the sliding window method transforms a time-
series sequence into a format that may be used for time series forecasting. It accomplishes
this by dividing the input sequence into overlapping windows, each of which serves as
a forecasting model input sample. As a result, the time series’ temporal patterns and
correlations can be learned by the model. For every house (A, B, and C), the data
was preprocessed using the sliding window technique. In time series forecasting, the
sliding window technique is a popular method for preparing data. It entails splitting the
input sequence into overlapping windows, each of which serves as the forecasting model’s
single input sample. To create a single DataFrame, the input features and output values
for each house were first concatenated. This makes it possible to manipulate the data
during the sliding window procedure more easily. Next, each DataFrame is subjected to
the sliding window function, which creates the input and output sequences needed for
testing and training.
The function sliding window requires two arguments:
data array: The DataFrame for a particular house that has the input features and output
values.
window size: The total number of time steps that every window contains. Since the
window size is set to 12 in this instance, each input sample is made up of the data from
the preceding 12 time steps.
The function sliding window removes overlapping panes of data by iterating through the
data array. It generates an output target (the value of the output variable at the end
of the window) and corresponding input sample (containing the input features) for each
window. Following that, these input targets and samples are appended to distinct lists,
which are ultimately transformed into NumPy arrays and returned.
The time series forecasting models are then trained and assessed using the final input
and output sequences for every home. By capturing temporal patterns and relationships
within the time series data, the sliding window technique can assist forecasting models
become more accurate.

5.3 Defining the Multivariate CNN Model for House A

A function called multivariateCNNmodel A, which builds a convolutional neural network
(CNN) model with a sequential architecture—that is, layers are stacked one on top of
the other—that is especially designed for House A. The temporal patterns and linkages
present in the time series data for House A are intended to be captured by the model
architecture.
An HyperParameters object called hp is the input for the multivariateCNN model A
function. This object supports the use of methods such as random search and Bayesian
optimisation for hyperparameter tuning.
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The function defines four hyperparameters: Filter Size: The convolutional layer’s number
of filters is managed by this hyperparameter. The 64 and 128 filter options are investig-
ated by the function. Pooling Size: The max-pooling layer’s pooling window’s dimensions
are set by this hyperparameter. Four alternatives are evaluated by the function: 2, 3,
4, and 5. Kernel Size: The convolution kernel size utilised in the convolutional layer is
specified by this hyperparameter. Four possibilities are evaluated by the function: 2, 4,
6, and 8. Number of Neurons: The number of neurons in the dense layers is managed
by this hyperparameter. Three choices are investigated by the function: 30, 50, and 80
neurons.

The model architecture consists of the following layers:
Convolutional Layer: This layer extracts local patterns and features from the input

data by applying convolutions. Hyperparameters include the number of filters, pooling
size, and kernel size.
Max Pooling Layer: By using max pooling and choosing the maximum value within each
pooling window, this layer lowers the dimensionality of the data. The size of the pooling
is a hyperparameter.
In order to prepare the data for the dense layers, the flatten layer converts it into a one-
dimensional vector.
Dense Layers: These layers add nonlinearity and change the data to fit the output layer’s
appropriate representation. A hyperparameter is the quantity of neurons in each dense
layer.
The output layer generates the final predicted number, which is House A’s energy con-
sumption at a specific time step.
The model’s performance is assessed by compilation using the Adam optimizer, a mean
squared error loss function, and the mean squared error measure.

House A Hyperparameter Tuning Results

Using the Hyperband tuner, the CNN model was adjusted for House A’s hyperpara-
meters. The tuner uses the mean squared error measure to determine the optimal set
of hyperparameter values. Thirty trials totaling a maximum of fifty epochs were com-
pleted by the tuner. During the search process, the best mean squared error obtained
was 0.00017605. This shows that the tuner was successful in locating a set of hyperpara-
meter values that considerably lower the model’s prediction error.The hyperparameter
tweaking procedure took 00h 01m 17s in total. This suggests that, in a fair amount
of time, the Hyperband algorithm effectively examined a large range of hyperparameter
values.Overall, the results of the hyperparameter tuning show how well the Hyperband
method optimised the CNN model for House A. The model’s ability to predict House A’s
energy consumption is supported by the attained mean squared error of 0.00017605.
Chosen Hyperparameters for Residence A:

The tunerA object’s recommended hyperparameter setup was obtained. During the
hyperparameter search procedure, all assessed configurations’ performance and hyper-
parameter values are stored in the tunerA object. It is then determined whether the
tunerA object has finished at least one trial if the best hps list is not empty. The best
hyperparameter configuration (best hps) is taken from the list and printed to the terminal
if it is not empty. The code is able to successfully extract the optimal hyperparameter
configuration in this instance. The hyperparameters found are:

Size of filter: 128 Size of Pooling: 2 There are fifty neurons. Size of Kernel: 6
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The optimal set of values discovered by the tunerA object to reduce the mean squared
error metric for the CNN model of House A is represented by these hyperparameters.
With the use of these data, one can better comprehend the CNN model’s ideal configur-
ation and train a new model with the optimised hyperparameters for enhanced function-
ality.

The CNN model for House A was trained during the optimal epoch, which is the
one in which the model gets the highest validation accuracy. The optimal epoch in this
instance is 47. This indicates that training the model for 47 epochs yields the best results.
By using this data, overfitting can be avoided and the model’s ability to generalise can be
enhanced. The model will perform better on unseen data and is less likely to memorise
the training set if training is stopped at the optimal epoch.

5.4 Assessing Performance and Retraining the Model with Op-
timal Hyperparameters:

Next, the best hyperparameters found by the tunerA object (best hps) are used to con-
struct a new CNN model. By doing this, the mean squared error measure is guaranteed to
be minimised throughout model training. The model is then retrained by the code using
the given best epoch, in this case 47. This guarantees that in order to avoid overfitting
and enhance generalisation performance, the model is trained for the ideal amount of
epochs.

The test data for House A is then predicted using the retrained model, and its perform-
ance is assessed by calculating the mean squared error, or MSE, between the predicted
and actual values. A very low prediction error is achieved by the retrained model with
appropriate hyperparameters, as indicated by the observed RMSE value of 0.0370. This
illustrates how well the hyperparameter tweaking procedure worked and how well the
model could forecast House A’s energy usage.

6 Evaluation

Considering the neural network models in place they were evaluated based on the follow-
ing metrics: R squared: R squared indicates how well the actual results can be explained
by the model’s predictions. A greater explanatory ability is indicated by a larger value.
MAPE (Mean Absolute Percentage Error): The average percentage error in predicting the
target variable is provided by MAPE. Greater precision is suggested by a lower MAPE.
Explained Variance Score: Explained variance score indicates the extent to which the
model explains the variability observed in the data. Greater score indicates that more
variance is explained by the model.
Root Mean Squared Error (RMSE): The average magnitude of the model’s errors is meas-
ured by RMSE. Better precision is indicated by a smaller RMSE.
Mean Absolute Error (MAE): The mean absolute error (MAE) yields the average error
magnitude without directionality. Greater precision is suggested by a lower MAE.

6.1 Comparision of Developed Models

Based on the data for the three houses three different neural network models were de-
veloped to determine which one is the most effective for load prediction. As the data
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House MAPE (%) RMSE MAE Explained Variance Score R squared
House A with CNN 28.0559 0.0370 0.02940 0.0389 -0.0911
House B with RNN 31.8411 0.0945 0.0657 0.0835 -0.209
House C with LSTM 108.438 0.0813 0.0766 -3.0634 -35.305

Table 1: Performance Metrics for Different Houses

training and testing split is randomized the results can vary on every iteration the code
runs. That is why the results in the report and the results upon the latest execution may
not always be the same. The most recent results at the time of report can be seen in the
Table 1 below:

7 Conclusion

This study explored 3 neural network feed forward models namely CNN(Convoluted
Neural Network), RNN(Recurrent Neural Network) and the LSTM(Long Short Term
Memory) as mentioned in the research objectives section. From the evaluation metrics it
can safely be concluded that the CNN model performed best with the limited categorical
data that was worked upon. The other models did not perform satisfactorily and were
not suited for the task. Hence this study concludes that the CNN deep learning model is
the best suited for load prediction with limited features that do not encroach upon the
end user’s privacy.

7.1 Future Work

The scope of this research can further be expanded by working on more diverse data
which is not limited to time series features. The limitations of this research are such that
it only explores time series features in load prediction apart from the custom categorical
features. Thus with the load prediction methods currently in place being not completely
secure in terms of data privacy more focus could be given to diverse features that cannot
be traced back to the end users and which can help in creating better models in deep
learning.
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