

Configuration Manual

MSc Research Project Data Analytics

Jaseem Jamal Panikkaveetil Student ID: 21236828

> School of Computing National College of Ireland

Supervisor: Sasirekha Palaniswamy

Year: 2023

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Jaseem Jamal Panikkaveetil

Student ID: 21236828

Programme: Msc in Data Analytics

Module: **MSc Research Project**

Lecturer: Sasirekha Palaniswamy

Submission Due 14/12/2023 Date:

Project Title: Configuration Manual

Word Count:

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project. ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Jaseem Jamal Panikkaveetil Signature:

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not	
Sumclent to keep a copy on computer.	ct ha placed int

s that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Jaseem Jamal Panikkaveetil Student ID: 21236828

1 Introduction

The configuration manual file describes the guidelines to implement the research project 'Ball Possession metrics-oriented Analysis to Predict Football League Rankings'. The hardware and software requirements of the project are also specified in this report.

2 Hardware Configuration

The hardware requirements for the project are given below.

- Processor: Intel(R) Core (TM) i7-7700HQ CPU @ 2.80GHz 2.81 GHz
- RAM: 8GB to 16GB of RAM is usually preferred
- Storage: 128/ 500 GB SSD
- OS: Windows 10 Home Single Language version 20H2

3 Software Configuration

- Jupyter Notebook Version: 6.4.6
- Microsoft Excel
- Python

4 Environment Setup

4.1 Setup Of Code

- This part will go over how to set up the Project. Anaconda has been downloaded and installed on your system. A new environment is established, and the most recent packages are installed. Jupyter Notebook and the Anaconda CMD prompt are both installed. Figure 2 shows the installed tools.
- Once the installation is complete, launch Anaconda Navigator from the Start menu. Click on the Jupyter Notebook icon to launch the application.

O ANACONDA.NAVIGATOR

A Home	All applications v ON	base (root) v Channels			
Environments	•	*	*	÷	*
Learning	DS	\mathbf{O}	lab	Jupyter	\mathbf{O}
	DataSpell	CMD.exe Prompt	JupyterLab	Notebook	Powershell Prompt
🕰 Community	DataSpell is an IDE for exploratory data analysis and prototyping machine learning models. It combines the interactivity of Jupyter notebooks with the intelligent Python and R coding assistance of PyCharm	0.1.1 Run a cmd.exe terminal with your current environment from Navigator activated	3.4.4 An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.	₱ 6.412 Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	0.0.1 Run a Powershell terminal with your current environment from Navigator activated
	in one user-friendly environment.	Launch	Launch	Launch	Launch
	*	*	÷	*	*
	Spyder	VS Code	Datalore	Deepnote	IBM Watson Studio Cloud
Anaconda Toolbox	Scientific PYthon Development EnviRonment, Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	Streamlined code editor with support for development operations like debugging, task running and version control.	Kick-start your data science projects in seconds in a pre-configured environment. Enjoy coding assistance for Python, SQL, and R in Jupyter notebooks and benefit from no-code automations. Use Datalore online for free	Deepnote is a new kind of data notebook build for collaboration - Jupiter compatible, in the cloud and sharing is easy as sending a link	IBM Watson Studio Cloud provides you the tools to analyze and visualize data, to cleanse and shape data, to create and train machine learning models. Prepare data and build models, using open source data science tools or visual modeling
Supercharged local notebooks. Click the Taalbox	Launch	Launch	Launch	Launch	Launch

Figure 1: Anaconda Navigator

- Download python from official python website.
- Once the installation is complete, check the version by using the command "python version".

Figure 2: Python Version

- Find the folder named '21236828 CodeArtifacts'.
- There are python files and input, input1 folder that contains all datasets, Open the "1_Segregation_File1" file and run the commands similarly do it for the rest of the all the files except "1_Segregation_File-4-Seasons". This will give prediction of 2023/2024 season in test files. "1_Segregation_File-4-Seasons" is loaded to get predictions of the 2021/2022 season.

0 - 1 21236828_CodeArtifacts	
□	
input	
C C input1	
models	
1_Segregation_File-4-Seasons.ipynb	
I_Segregation_File1.ipynb	
2_Preprocessing_File.ipynb	
3_home_team_goal_count_prediction.ipynb	
4_away_team_goal_count_prediction.ipynb	
5_home_team_possession_prediction.ipynb	
6_away_team_possession_prediction.ipynb	
T_TestFile2022XGBPrediction.ipynb	
7_TestFileMatchBetweenTeamsPredictor.ipynb	
7_TestFileRandomForest2022Prediction.ipynb	
E Team_data_charts.ipynb	

Figure 3 Folder Structure

5 Data Selection

The dataset is sourced from a public website, which provides Football related datasets. The dataset used here is Premier League Dataset: <u>https://footystats.org/england/premierleague</u>

6 Implementation

6.1 Data pre-processing

• The data is loaded as a data frame and saved as df, selecting the necessary columns and finally converting the time object to time data as shown in Figure 6.

Data Loading

```
df = pd.read_csv("match_data.csv")
df.head()
```

Figure 4 Load Data

• Only the required columns are selected. The rest are discarded in the pre-processing step.

```
selected_columns = ['home_team_name', 'away_team_name', 'home_team_goal_count', 'away_team_goal_count',
'total_goal_count', 'home_team_corner_count', 'away_team_corner_count', 'home_team_shots',
'away_team_shots', 'home_team_shots_on_target', 'away_team_shots_on_target',
'home_team_shots_off_target', 'away_team_shots_off_target', 'home_team_possession',
'away_team_possession', 'team_a_xg', 'team_b_xg']
```

df_selected = df[selected_columns]

Figure 5 Selecting Necessary columns

• The filetype of "date_GMT " is converted from object to usable format.

```
df['date_GMT'] = pd.to_datetime(df['date_GMT'], format='%b %d %Y - %I:%M%p')
df.head()
```

Figure 6 Converting date object to date format

```
df_selected.to_csv("preprocessed_data.csv", index=False)
```

Figure 7 The preprocessed dataset is obtained

6.2 Model Building

First, the 1_Segregation_File1 is opened and click on run all. The data set is divided to training and testing dataset here. With train test split function with a test size of 20% and random state of 42, dataset acquired from the preprocessed data.csv file was suitably divided into training and testing sets. The train and test sizes are given below.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```

(1520, 16) (380, 16) (1520, 1) (380, 1)

Figure 8 Splitting the dataset

The four Models are trained as shown below.

6.2.1 Random Forest

Algorithm: 1 RandomForestRegressor

```
from sklearn.ensemble import RandomForestRegressor
rf_model = RandomForestRegressor()
rf_model = rf_model.fit(X_train.values, y_train.values.ravel())
```

```
rf_pred = rf_model.predict(X_test.values)
rf_pred = [int(goal) for goal in rf_pred]
print(rf_pred)
```

Figure 9 Random Forest

6.2.2 XGBoost

Algorithm: 2 XGBoostRegressor

pip install xgboost

Requirement already satisfied: xgboost in c:\users\91756\anaconda3\li Requirement already satisfied: numpy in c:\users\91756\anaconda3\lib\ Requirement already satisfied: scipy in c:\users\91756\anaconda3\lib\ Note: you may need to restart the kernel to use updated packages.

```
from xgboost import XGBRegressor
xgb_model = XGBRegressor()
xgb_model = xgb_model.fit(X_train.values, y_train.values.ravel())
```

```
xgb_pred = xgb_model.predict(X_test.values)
xgb_pred = [int(goal) for goal in xgb_pred]
print(xgb pred)
```

Figure 8 XGBoost

Algorithm: 3 LGBMRegressor

from lightgbm import LGBMRegressor lgbm_model = LGBMRegressor() lgbm_model = lgbm_model.fit(X_train.values, y_train.values.ravel()) [LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of t You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 806 [LightGBM] [Info] Number of data points in the train set: 1520, number of u [LightGBM] [Info] Start training from score 1.530263 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf

Figure 9 : LightGBM

6.2.4

Algorithm: 4 Ridge

As shown in the above four sections, the code files 4_away_team_goal_count_prediction , 5_home_team_possession_prediction , 6_away_team_possession_prediction are run in the same way. This will give the models for away team goal count, home team possession and away team possession.

7. Testfiles Run 7_TestFile2022XGBPrediction.

This will load the pickle module shown below.

The below image shows the possession based metrics conditions. This will give ranking prediction using XGBoost.

```
# Function to calculate points based on conditions
def calculate_points(home_team_name, away_team_name, home_goals, away_goals, home_possession, away_possession):
    if home_goals > away_goals and home_possession > away_possession:
        # Condition 1
        return home_team_name, 3    # Home team win
    elif home_goals < away_goals and home_possession < away_possession:
        # Condition 2
        return away_team_name, 3    # Away team win
    elif home_goals >= away_goals and home_possession <= away_possession:
        # Condition 3
        return 'Draw', 1    # Draw
elif home_goals <= away_goals and home_possession >= away_possession:
        # Condition 4
        return 'Draw', 1    # Draw
else:
        # Condition 5
        return 'No Result', 0    # No points
```

Figure 12: Possession based metrics oriented conditions Similarly, 7_TestFileRandomForest2022Prediction is run to get the ranking prediction using Random Forest

Similarly, **Run 7_TestFileMatchBetweenTeamsPredictor**, this will give the individual matches prediction using Random Forest Model.