

Configuration Manual

MSc Research Project

Data Analytics

Karthika Nair
Student ID: 22105522

School of Computing

National College of Ireland

Supervisor: Shubham Subhnil

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Karthika Nair

Student ID:

22105522

Programme:

MSc. Data Analytics

Year:

2023

Module:

MSc. Research Project

Supervisor:

Shubham Subhnil

Submission Due

Date:

14-12-2023

Project Title:

Deepfake Detection: Comparison of Pretrained Xception and VGG16
Models - Configuration Manual

Word Count:

1136 Page Count: 15

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Karthika Nair

Date:

14-12-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

1

Deepfake Detection: Comparison of Pretrained Xception and

VGG16 Models

Configuration Manual

Karthika Nair

22105522

1. Introduction

This configuration manual will include all the steps that have been taken technically to achieve

the goals of this research project, i.e., detection of deepfakes with a comparison of pretrained

models such as Xception and VGG16 as suggested by (Kaushal, Singh, Negi, & Chhaukar,

2022). The following sections will encompass the system setup to aid the execution,

exploratory data analysis procedures, the implementation of the model, and their evaluations.

The code snippets will also be attached consecutively for a better understanding.

2. System Configuration – Software and Hardware Pre-requisites

This section will include the system configuration utilised for this study.

2.1 Hardware Configuration

Fig. 1 Hardware specifications

2.2 Software Configuration

Fig. 2 Software specifications

2

2.3 Development Environment

Python programming language has been implemented by combining VS Code and other

tools.

• Python Distribution: Anaconda (Version - 23.1.0)

• IDE: Visual Studio Code (Version - 1.84.2)

VS Code is used as a primary IDE as it enables a lightweight yet powerful environment

for code editing, version control integration, and good support for package extensions.

• Notebook Environment: Jupyter Notebook (Version - 6.5.2)

Below mentioned are the Python libraries used: Numpy, Keras, Pandas, Matplotlib, Sklearn,

Tensorflow (VS Code).

3. Datasets Used

The datasets used for this study have been collected from open source Kaggle which allows

studying of deepfake detection.

Dataset source: Deep Fake Detection on Images and Videos | Kaggle

Dataset information:

• faces_224.zip – collection of faces extracted from the DFDC. All the images are of

size 224 x 224.

• metadata.csv – list of filenames, label (REAL or FAKE), original filename.

Fig. 3 Dataset information

4. Python packages and Libraries Used

The below table can be used as a reference to the Python libraries used in this study to achieve

the development of a model that detects deepfakes and distinguishes between real and fake

content accurately:

in metadata.csv

https://www.kaggle.com/code/krooz0/deep-fake-detection-on-images-and-videos/input

3

Python Library Name Description

Pandas Ideal for working with data structures like

DataFrame and Series

Numpy Support for large, multi-dimensional arrays

with mathematical operations on them

Sklearn Used for data mining and data analysis

including classification, regression, etc.

Tensorflow Used for building and training deep learning

models.

Matplotlib 2D plotting library in Python used for data

visualisations.

tensorflow.keras.applications VGG16

tensorflow.keras.layers Conv2D

cv2 Open-source computer vision library

Fig. 4 Python libraries and packages used

Fig. 5 Import statements

4

5. Data Pre-processing and Visualisation Code

• The function “extract_metadata()” is used to read the data within “metadata.csv” and the

below code snippet shows a visualisation of how the information in the file looks like.

Fig. 6 Import statements

• The dataset contains 95k images. To make the visualisation and modelling easier, we take

a sample size of 16,000 real and fake images each.

Fig. 7 Sample size (16,000) for dataset

• The dataset is then split into training, testing and validation sets.

Fig. 8 Dataset splitting

5

• Data visualization – Number of classes (Real/Fake) in each set

(a)

(b)

Fig. 9 Classes per Set in (a) DeepfakeDetection_XceptionCode.ipynb

(b) DeepfakeDetection_VGG16Code.ipynb

6. Model Implementation Code

The implementation for this research is carried out in two Jupyter Notebook Python files to

compare two pretrained models’ performances, namely Xception and VGG16. The model

training using CNN as the baseline model is the same for both ipynb files. The change is

implemented when model fitting is done.

The following code snippets depict how the model development is implemented for both

models:

6

6.1 Model Training – Using CNN as baseline model

• The function pull_data(set_name) is responsible for retrieving the dataset (images) and

assigning labels for each of the image files. The label for an image that is labelled as ‘FAKE’

is assigned 1 and 0 for ‘REAL’.

Fig. 10 Code snippet for retrieving dataset as DataFrame through pull_dataset(set_name)

• Next step is to split the dataset into training, testing, and validation sets. pull_dataset()

assigns binary labels to each of the sets and splits the corresponding dataset to X_train,

y_train, X_val, y_val, X_test, and y_test datasets.

Fig. 11 Code snippet for splitting dataset

• Model Training –

Fig. 12 Model training using CNN

7

• Model compile and summary –

Fig. 13 Model compiling and summary output

• Model Fitting –

The below code snippet is for the model fitting which runs for 10 epochs and 140 cycles. The

dropout layers help in preventing overfitting. The dropout value considered for this training is

0.5.

8

Fig. 14 Model fitting

• Model Performance and Evaluation –

The performance of CNN model is tested and an accuracy of 50% is observed. This value is

not essentially the best and that’s why a pretrained model is chosen for finetuning. This will be

explored in the next section.

Fig. 15 Model performance

9

6.2 Model Training – Finetuning using Xception pretrained model

• Using TensorFlow, datasets are generated from training, validation and testing sets.

Fig. 16 Dataset generation using TensorFlow

• Data Augmentation –

Fig. 17 Data Augmentation

• Image Visualisation –

(a) (c)

Fig. 18 (a) Image visualisation code snippet with data augmentation, (b)Visualisation before data

augmentation (c) Visualisation after data augmentation

10

• Finetuning and final Model training

The top layers of the pretrained model are removed and replaced with the original task that we

need it to be assigned to do. Following that, the model is trained again but with a learning rate

of 0.1. The trainability of the top layers of the model are stopped.

Fig. 19 Model training with learning rate as 0.1 and top layers of the pretrained model removed

• Model Evaluation before making the top layers of the model trainable–

Fig. 20 Model evaluation result before making top layers trainable

11

• Model Evaluation after making top layers trainable and lowering the learning rate to 0.05-

Fig. 21 Model evaluation result after making top layers trainable

• Final Model Performance

Fig. 22 Final Model Performance

12

The performance of this final model achieves an accuracy of 84% indicating that the model’s

effectiveness of detecting deepfakes is good. The figure below shows the result.

Fig. 23 Final Model Evaluation

6.3 Model Training – Finetuning using VGG16 pretrained model

For the pretrained VGG16 model, the same procedures have been followed which generates

similar results until I used VGG16 for finetuning. Hence, the following sections will include

only the results of the finetuning using VGG16 to avoid repetitiveness.

Fig. 24 Training pretrained VGG16 model by making the top layers trainable again

• Final Model Performance

Fig. 25 Final performance of the pretrained VGG16 model

13

7. Model Comparison

Fig. 26 Evaluation metrics of Xception model

Fig. 27 Evaluation metrics of VGG16 model

The study reveals that using CNN as the baseline model and pretrained Xception model for

finetuning is the best model with a better accuracy for the detection of deepfakes when

compared to pretrained VGG16 model for finetuning.

References

Kaushal, A., Singh, S., Negi, S., & Chhaukar, S. (2022). A Comparative Study on Deepfake Detection

Algorithms. IEEE, 4th International Conference on Advances in Computing, Communication Control and

Networking (ICAC3N), 854-860.

