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1 Introduction

This introduction provides an overview of the documentation for this research project. It
highlights all the necessary requirements and outlines the steps needed to run the project,

titled "Harnessing Deep Learning for Proactive Detection of Security Threats in Android
0S’.

2 System Configuration

All of the system configurations used for the research are listed in this section.

2.1 Hardware Requirements

e OS: macOS Ventura 13.5
e Processor: Apple M1
e RAM: 16GB

2.2 Software Requirements

e Jupyter Notebook: This the web based interactive tools used for all the python
coding that is done in this project.

e Google Colab: This is a cloud-based tool by Google. This is used for python
coding which requires higher computation power.

e Gensim This is NLP tool

3 Setting up the Environment

I installed the required software like pandas, numpy, seaborn, matplotlib and scikit-learn
in Jupyter notebook using !pip install and some more software from conda environment.
conda install -c¢ anaconda torch_geometric,

conda install -c anaconda pytorch and conda install -c conda-forge gensim



4 Data Pre-processing

The following sections outlines the steps involved in implementation:

4.1 Extracting Data

Step 1: I created function get_all_cves which accepts argument as number as shown in
code Figure[l] it is the content page number. In this function I called the API provided
by the |National Vulnerability Database (n.d.). It is called in loop for fetching the all
JSON data from that URL with interval of 2000.

In [2]: #Created function with “name" as API call request type name and “number" as the pages
def get_all_cves(number):
#https://services.nvd.nist.gov/rest/json/cves/2.0?keywordSearch=android&startIndex=8001
base_url = "https://services.nvd.nist.gov/rest/json/cves/2.0?keywordSearch=android&startIndex={}"
acc_url = base_url.format(number)

try:
with urllib.request.urlopen(acc_url) as response:

return json.load(response)
except urllib.error.URLError as e:
print(“The API URL is invalid.")
except json.JSONDecodeError:
print("Error decoding JSON response")
return {}

Figure 1: Function to extract CVE from API

Step 2: In this, I created the function extract_vulnerabilities this function extracts
the JSON data to dataframe. In this step I'm extracting only required data from JSON. I
have created two function two extract two different format data as shown in code Figure
and Figure

Step 3: In this, I created the function to extract_vulnerabilities this function extracts
the JSON data to dataframe. In this step I'm extracting only required data from JSON. I
have created two function two extract two different format data as shown in code Figure 4l

Step 4: I used the CWE data that was downloaded from |Common Vulnerabilities
and Exposures (n.d.) and mapped both the dataframe using left join on CWE-ID of first
dataframe as shown in code Figure [5] and combined code Figure [6]

4.2 Preparing data for GNN

The cleaned data underwent preprocessing, during which the date column was formatted.
Additionally, the base score, impact score, and exploitability score were encoded as shown
in Figure []The CVE description was encode using NLP technique like TF-IDF and
Word2Vec as shown in code snippet Figure [J] and Figure [11]

4.3 Preparing data for Random Forest

The same preprocessing was done for Random Forest with additional columns Severity
column was encoded with the proper format. The CVE description was encode using NLP
technique like TF-IDF and Word2Vec as shown in this code snippet Figure [12| Figure

and Figure [14]



In [4]: # Function to extract vulnerabilities information
def extract_vulnerabilities(data):
vulnerabilities = data.get("vulnerabilities", [])
vuln_list = []

for vuln in vulnerabilities:
cve = vuln.get("cve", {})

# Extracting weaknesses information
weaknesses_data = cve.get("weaknesses", [1)
weaknesses = ""
for weakness in weaknesses_data:
descriptions = weakness.get("description"”, [])
for desc in descriptions:

if desc.get("lang") == "en":
weaknesses = desc.get("value", "")
break

# Extracting metrics information
metrics_data = cve.get("metrics", {}).get("cvssMetricv2", [])
baseScore, baseSeverity, exploitabilityScore, impactScore = ", "",6 ", uu
if metrics_data:
metrics = metrics_datal0].get("cvssData", {})
baseScore = metrics.get("baseScore", "")
baseSeverity = metrics_datal[0].get("baseSeverity", "")
exploitabilityScore = metrics_datal@].get("exploitabilityScore™, ")
impactScore = metrics_datal@].get("impactScore", "")

vuln_dict = {
"id": cve.get("id", ""),
"published": cve.get("published", ""),
"lastModified": cve.get("lastModified",
"vulnStatus": cve.get("vulnStatus", )
"descriptions™: " ".join([desc["value"] for desc in cve.get("descriptions", [1) if desc["lang"] == "en"]
"weaknesses'': weaknesses,
""baseScore": baseScore,
"baseSeverity": baseSeverity,
"exploitabilityScore": exploitabilityScore,
""impactScore": impactScore

"") ’

}
vuln_list.append(vuln_dict)

return pd.DataFrame(vuln_list)

Figure 2: Function for extracting JSON data



In [5]: # Function to extract vulnerabilities information
def extract_vulnerabilitiesV3(data):
vulnerabilities = data.get("vulnerabilities", [])
vuln_list = []

for vuln in vulnerabilities:
cve = vuln.get("cve", {})

# Extracting weaknesses information
weaknesses_data = cve.get("weaknesses", [1)
weaknesses = ""
for weakness in weaknesses_data:
descriptions = weakness.get("description", [])
for desc in descriptions:

if desc.get("lang") == "en":
weaknesses = desc.get("value", "")
break

# Extracting metrics information
metrics_data = cve.get("metrics", {}).get("cvssMetricv31i", [])
baseScore, baseSeverity, exploitabilityScore, impactScore = "™, ™", ", "
if metrics_data:
metrics = metrics_datal[0].get("cvssData", {})
baseScore = metrics.get("baseScore", "")
baseSeverity = metrics.get("baseSeverity", "')
exploitabilityScore = metrics_datal0].get("exploitabilityScore", "")
impactScore = metrics_datal[0].get("impactScore", "")

vuln_dict = {
"id": cve.get("id", "),
"published": cve.get("published", ""),
"lastModified": cve.get("lastModified", ""),
"vulnStatus": cve.get("vulnStatus", ""),
"descriptions": " ".join([desc["value"] for desc in cve.get("descriptions", []) if desc["lang"] == "en"
"weaknesses": weaknesses,
"baseScore": baseScore,
"baseSeverity": baseSeverity,
"exploitabilityScore': exploitabilityScore,
"impactScore': impactScore

vuln_list.append(vuln_dict)

return pd.DataFrame(vuln_list)

Figure 3: Function for extracting JSON data

In [6]: # A list to hold all the resulting DataFrames
all_dataframes = []

for dat in np.arange(0, 6000, 2000):

print(“Fetching data starting from:", dat)

api_response = get_all_cves(dat)

if api_response: # Check if the API response is not empty
df = extract_vulnerabilities(api_response)
all_dataframes.append(df)

else:
print(“No data received for starting point:", dat)

Fetching data starting from: @
Fetching data starting from: 2000
Fetching data starting from: 4000

In [8]: for dat in np.arange(6001, 10000, 2000):

print("Fetching data starting from:", dat)

api_response = get_all_cves(dat)

if api_response: # Check if the API response is not empty
df = extract_vulnerabilitiesV3(api_response)
all_dataframes.append(df)

else:
print(“No data received for starting point:", dat)

# Concatenate all DataFrames into a single DataFrame
final_dataframe = pd.concat(all_dataframes, ignore_index=True)

Fetching data starting from: 6001
Fetching data starting from: 8001

Figure 4: Main function that call the API



In [9]: final_dataframe.head()

Out[9]:
id y

CVES 2008-03- 2018-10- Heap-based buffer overflow

O 208 067004400000 15T220408.043  MOUfied inthe GIF library ..~ CWE119 @ = 80 @
CVE- 2008-03- 2018-10- Integer overflow in the

1 2883‘; 06T00:44:00.000  15T22:04:08.560  “°%fed  Byip:readFromstream me... ~ CWE189 5 HIGH 100 6.4
Ve 2009-02- 2018-10- The link_image function in

2 ggggé 17T17:30:05.953  10T19:20:55.763  Modified linker/linker.c i ... CUE20 2 gicH & o
CVE- 2009-02- 2018-10- Multiple integer overflows in

3 zggg; 17T17:30:05.967  10T19:20:56.003  Modified malloc_leak c in.. ~ CWE189 72 HIGH 39 100
@l 2009-02- 2018-10- Integer overflow in the

© zgggé 17T17:30:05.983  10T19:20:56.653  Modified showLog function in fa... CWE169 2 HIGH 29 ico

Figure 5: Extracted dataframe

In [ 1: # Strip leading/trailing spaces and convert to string if necessary
cve_df['CWE-ID'] = cve_df['CWE-ID'].astype(str)
cwe_df['CWE-ID'] = cwe_df['CWE-ID'].astype(str)

# Merge dfl with df2. This will map each 'CWE-ID' in dfl to its corresponding entry in df2.
df_merged = pd.merge(cve_df, cwe_df, on='CWE-ID', how='left"')

df_merged.head ()
In [ 1: most_frequent_string = cve_df['CWE-ID'].value_counts().idxmax()
In [ 1: most_frequent_string

In [ 1: csv_file_path = "/Users/rajatmurdeshwar/Downloads/cve_cwe_updated_with_6.csv"
# Use the to_csv method to save the DataFrame to the CSV file with tab separator and UTF-8 encoding
df_merged = pd.read_csv(csv_file_path)

Figure 6: Combine dataframe

In [ 1: # Function to generate severity columns
def generate_severity_columns(row):
if pd.isna(row['CVE Base Score'l):
return [0, 0, @, 0] # Assuming NA values are represented as zeros in all severity columns
elif row['CVE Base Score'] < 4:
return [1, 0, 0, 0] # Low
elif 4 <= row['CVE Base Score'] < 6:
return [0, 1, 0, 0] # Medium
elif 6 <= row['CVE Base Score'] < 9:
return [0, 0, 1, 0] # High
else:
return [0, 0, 0, 1] # Critical

# Apply the function and split the results into four new columns
df_merged[['Severity_LOW', 'Severity MEDIUM', 'Severity HIGH', 'Severity_CRITICAL']] = pd.DataFrame(df_merged.apply

In [ 1: from sklearn.preprocessing import LabelEncoder

# Initialize the label encoder
le = LabelEncoder()

# Label encode 'CVE Vulnerability Status'
df_merged['CVE Vulnerability Status Encoded'] = le.fit_transform(df_merged['CVE Vulnerability Status'l.fillna('Unkn

# Label encode 'CVE Base Severity'
df_merged['CVE Base Severity Encoded'] = le.fit_transform(df_merged['CVE Base Severity'].fillna('Unknown'))

Figure 7: Encoded data



4.4 Preparing data for SVM

The same preprocessing was done for SVM as Random Forest as both requires sim-
ilar format. The CVE description was encode using NLP technique like TF-IDF and
Word2Vec. Figure

5 Upload Data to Google Drive

The preprocessed data was uploaded to Google Drive, which facilitated its integration
with Google Colab. This setup was utilized for building and running the model, lever-
aging Google Colab’s powerful computing resources and seamless access to data stored on
Google Drive. This approach allowed for efficient model development and testing, taking
advantage of Colab’s collaborative features and cloud-based environment to optimize the
machine learning workflow.

6 Implemented Models

In this implementation step, three different models were utilized. For each model, two
NLP techniques were employed: the first being TF-IDF and the second being Word2Vec.

6.1 Implementation of GNN

The final dataframe, integral to our analysis, was utilized in the code provided below.
This code is responsible for generating the nodes and edges essential for the Graph Neural
Network (GNN). Specifically, nodes and edges were created based on the relationship of
each Common Vulnerabilities and Exposures (CVE) entry to its corresponding Common
Weakness Enumeration (CWE-ID). As shown in below code Figure [§| and Graph Convo-
lutional Network (GCN) model type and is configured structured with a 16-dimensional
hidden space and Adam optimizer is used with a learning rate of 0.01. The loss function
is binary cross-entropy with logits (BCEWithLogitsLoss), which combines a sigmoid layer
and the BCE loss in one single class as mentioned in code Figure

In [14]: # Then, when you add nodes and edges to your graph, you will be working with integer IDs:
G = nx.Graph()
# Add nodes with CVE attributes
for _, row in df_merged.iterrows():
# Convert CWE ID to string and check if it's numeric
cwe_id_str = str(row['Weakness CWE-ID'])
cwe_id = int(cwe_id_str) if cwe_id_str.isdigit() else None

# Add the node to the graph
G.add_node(row['CVE-ID'],
cve_score=row['CVE Base Score'l,
cve_severity=row['Severity HIGH'],
cwe_id=cwe_id)

# Add edges between CWEs using the new function
for _, row in df_merged.iterrows():
if isinstance(row['CWE Related Weaknesses'], str):
edges = extract_relationships(row['CWE Related Weaknesses'])
for edge in edges:
# Ensure the nodes for the edges exist before adding the edge
if not G.has_node(edge[0]):
G.add_node(edge[0])
if not G.has_node(edge[1]):
G.add_node(edge[1])
G.add_edge(edge[0], edgel[1])

Figure 8: GNN



In [16]: # Initialize the TF-IDF Vectorizer
tfidf_vectorizer = TfidfVectorizer(max_features=500)

# Fit and transform the CVE Descriptions into TF-IDF vectors
tfidf_matrix = tfidf_vectorizer.fit_transform(df_merged['CVE Descriptions'].values.astype('U"))

# Create the edge_index tensor for PyTorch Geometric
edge_index = torch.tensor(list(map(list, G.edges())), dtype=torch.long).t().contiguous()

# Create the feature tensor from the TF-IDF matrix
features_tensor = torch.FloatTensor(tfidf_matrix.todense())

# Create the GNN Data object
data = Data(x=features_tensor, edge_index=edge_index)

Figure 9: GNN NLP TF-IDF

In [17]: from torch_geometric.nn import GCNConv
import torch.nn.functional as F

class GNNModel(torch.nn.Module):
def __init_ (self, num_node_features, num_classes):

super(GNNModel, self)._ init_ ()
# Define GNN layers

self.convl = GCNConv(num_node_features, 16)

self.conv2 = GCNConv(16, num_classes)

def forward(self, x, edge_index):

First GNN layer

self.convl(x, edge_index)

F.relu(x)

F.dropout(x, training=self.training)

X X X #

# Second GNN layer
x = self.conv2(x, edge_index)

return x

In [18]: # Set a random seed for reproducibility
torch.manual_seed(0)
np.random.seed(0)

# Instantiate the model
model = GNNModel(num_node_features=features_tensor.size(1), num_classes=1)

# Assume binary labels for each graph
labels = torch.tensor(df_merged['Severity HIGH'].values, dtype=torch.float).unsqueeze(1)

Figure 10: GNN Model

In [16]: tokenized_texts = [word_tokenize(description.lower()) for description in df_merged['CVE Descriptions'].values.astyp

word2vec_model = Word2Vec(tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)

In [17]: def get_word2vec_embedding(words, model):
word_embeddings = [model.wv[word] for word in words if word in model.wv]
if not word_embeddings:
return np.zeros(model.vector_size)
return np.mean(word_embeddings, axis=0)

In [18]: # Creating embeddings for each CVE description
embeddings_matrix = np.array([get_word2vec_embedding(words, word2vec_model) for words in tokenized_texts])

features_tensor = torch.FloatTensor(embeddings_matrix)

# Create the edge_index tensor for PyTorch Geometric
edge_index = torch.tensor(list(map(list, G.edges())), dtype=torch.long).t().contiguous()

# Create the GNN Data object
data = Data(x=features_tensor, edge_index=edge_index)

Figure 11: GNN word2vec NLP



6.2 Implementation of Random Forest

The final dataframe, In this implementation the data was cleaned and preprocessed so
in the below code I did combine the CVE description and related weakness ID to make
it a single text to pass through word2vec or TD-IDF process. Random Forest is set with
100 trees balancing computational efficiency with the ability to capture diverse patterns
in the data as shown in code Figure [13]

In [6]: import re
# Function to extract CWE IDs from the 'CWE Related Weaknesses' column
def extract_cwe_ids(cwe_string):
if pd.isnull(cwe_string):
return []
cwe_ids = re.findall(r'CWE ID:(\d+)', cwe_string)
return [int(id) for id in cwe_ids if id.isdigit()]
df_merged['CWE Related Weakness IDs'] = df_merged['CWE Related Weaknesses'].apply(extract_cwe_ids)

# Example of converting CWE ID list to a string (to use in TF-IDF)
df_merged['CWE Related Weakness IDs'] = df_merged['CWE Related Weakness IDs'].apply(lambda ids: ' '.join(['CWE_ID_'

In [7]: df_merged['combined_text'] = df_merged['CVE Descriptions'] + ' ' + df_merged['CWE Related Weakness IDs'].fillna('')

Figure 12: Random Forest Extract Data

In [8]: import gensim
from gensim.models import Word2Vec

tokenized_texts = [word_tokenize(description.lower()) for description in df_merged['combined_text'].values.astype("’

word2vec_model = Word2Vec(tokenized_texts, vector_size=100, window=5, min_count=1, workers=4)

Figure 13: Random Forest word2vec NLP

In [10]: # Combine the vectorized text with other features
df_final = pd.concat([df_merged[['Weakness CWE-ID', 'CVE-ID', 'CVE Base Score', 'Severity HIGH'l]], vector_dfl, axis

In [11]: # Handle categorical data (CWE-ID, CVE-ID)
label_encoder = LabelEncoder()
df_final['Weakness CWE-ID'] = label_encoder.fit_transform(df_finall['Weakness CWE-ID'].astype(str))
df_final['CVE-ID'] = label_encoder.fit_transform(df_final['CVE-ID'])

In [12]: # Scale numerical data (CVE Base Score)
scaler = StandardScaler()
df_final['CVE Base Score'] = scaler.fit_transform(df_final[['CVE Base Score'll)

Figure 14: Random Forest Encoding

6.3 Implementation of SVM

In building SVM model, I made similar pre processing as Random Forest and the train
data and test data was exactly same then I trained as shown in this code below at
Figure [I6] In SVM kernel is set to Linear because it aligns with nature of our data,
ensuring optimal separation and accuracy. I have also added the SVM performance and
it’s evaluation metrics results Figure [I7]



In [12]: # Scale numerical data (CVE Base Score)
scaler = StandardScaler()
df_final['CVE Base Score'] = scaler.fit_transform(df_final[['CVE Base Score'll)

In [13]: df_final = df_final.fillna(0)
df_final = df_final.replace([np.inf, -np.inf]l, np.nan).fillna(@)

max_val = np.finfo(np.float32).max
df_final = df_final.clip(upper=max_val)

In [14]: epare data for training
df_final.drop('Severity HIGH', axis=1)
d

Pri
= df_finall'Severity HIGH']

#
X
y

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

In [15]: rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

Figure 15: Random Forests Model

In [14]: epare data for training
df_final.drop('Severity HIGH', axis=1)
d

# Pri
X =
y = df_final['Severity_HIGH']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [15]: svm_model = SVC(kernel='linear"')

In [16]: svm_model.fit(X_train, y_train)
Out[16]: SVC(kernel='linear')

Figure 16: SVM Model

In [18]: from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score
from sklearn.metrics import roc_auc_score, confusion_matrix, matthews_corrcoef
from sklearn.metrics import classification_report

# Evaluation metrics

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)

fl = f1_score(y_test, y_pred)

roc_auc = roc_auc_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
mcc = matthews_corrcoef(y_test, y_pred)

print("Accuracy:", accuracy)

print("Precision:", precision)

print("Recall:", recall)

print("F1 Score:", f1)

print("ROC AUC:", roc_auc)

print("Confusion Matrix:\n", conf_matrix)

print(“Matthews Correlation Coefficient:", mcc)

print("\nClassification Report:\n", classification_report(y_test, y_pred))

Accuracy: 0.7836710369487485
Precision: 0.6619385342789598
Recall: 0.56
F1 Score: 0.6067172264355363
ROC AUC: 0.7193039049235994
Confusion Matrix:
[[1035 143]
[ 220 280]]
Matthews Correlation Coefficient: 0.46199998478331955

Figure 17: SVM Results
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