
Harnessing Deep Learning for Proactive
Detection of Security Threats in Android OS

MSc Research Project

Data Analytics

Rajat Nagaraj Murdeshwar
Student ID: x22150927

School of Computing

National College of Ireland

Supervisor: Prof. Vladimir Milosavljevic

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rajat Nagaraj Murdeshwar

Student ID: x22150927

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Prof. Vladimir Milosavljevic

Submission Due Date: 14/12/2023

Project Title: Harnessing Deep Learning for Proactive Detection of Security
Threats in Android OS

Word Count: 4978

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Harnessing Deep Learning for Proactive Detection of
Security Threats in Android OS

Rajat Nagaraj Murdeshwar
x22150927

Abstract

In this rapidly evolving domain of mobile technologies, ensuring the security
of Android systems is a critical challenge. This research project addresses the
urgent need for proactive vulnerability detection in Android OS by developing an
automated system that integrates with the National Vulnerability Database (NVD)
and Common Weakness Enumeration (CWE). I have designed functions to update
its dataset regularly, enabling the immediate detection of newly recorded vulner-
abilities. The core of this research project involved the applications of machine
learning models and deep learning models: Graph Neural Networks (GNN) using
Graph Convolutional Network (GCN), Support Vector Machines (SVM), and Ran-
dom Forests. These models analyse CVE descriptions, processed through TF-IDF
and Word2Vec, to predict vulnerabilities with high accuracy and precision-recall
values. The effectiveness of these models demonstrates the project’s contribution
to enhancing Android security. Random Forests model with Word2Vec performed
well in precision recall with a high accuracy of 98%. A key limitation was the
lack of demonstrative code or bad code for all CWE vulnerabilities, restricting the
training data’s comprehensiveness.

1 Introduction

In the third quarter of 2023, Android continued to dominate the global mobile oper-
ating system market, maintaining a 70.5 percent share1. As an open-source platform,
Android is widely used across various mobile ecosystems, including personal, corporate,
and governmental spheres.

The security of these systems is not just a technical challenge, but also a critical aspect
of global infrastructure. With the number of mobile phone users projected to double over
the next five years, enhancing vulnerability detection systems is imperative to prepare
for potential cyber attacks. Each year, numerous cyber attack incidents are reported,
significantly impacting many individuals and resulting in substantial financial losses. Al-
though the Android Play Store and Samsung Galaxy Store have built-in security checks,
these measures may not be entirely foolproof against malware attacks. A recent incident,
where 19 malware infected apps were downloadable from the Play Store2, potentially af-
fected millions of users. This incident highlights the fact that the Google Play Store is not

11:https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/

22:https://www.gizchina.com/2023/04/25/delete-these-19-malicious-android-apps-now/

1

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.gizchina.com/2023/04/25/delete-these-19-malicious-android-apps-now/


completely secure. There are two types of vulnerability detection: static and dynamic
approaches. This research presents a comprehensive study on the effectiveness of ad-
vanced machine learning techniques, specifically Graph Neural Networks (GNN), Random
Forest, and Support Vector Machines (SVM), in detecting vulnerabilities within Android
systems. My analysis employed a static approach, further enriched by continuously mon-
itoring and updating the risk through the Common Weakness Enumeration (CWE) and
Common Vulnerabilities and Exposures (CVE) standards. This ensures that the research
is grounded in industry recognized vulnerability database. While previous research has
utilis CVE data to detect vulnerabilities or focused solely on CWE data, it has not fully
integrated CVE with CWE. By doing so, the detection of potential vulnerabilities can be
more accurate, providing in-depth knowledge of the vulnerability and its associated risks.
In my approach, I have proactively detected vulnerabilities in the Android System. This
study was worked on previous efforts and introduces a unique approach by employing
neural network models to identify vulnerabilities, focusing on the descriptions provided
in CVE datasets and mapping them to their related CWE entries for enhanced accuracy
and comprehensiveness. This research not only addresses the immediate need for robust
security in the ever expanding Android ecosystem but also contributes to the broader
field of cybersecurity. By utilising cutting-edge machine learning techniques, we aim to
set a new benchmark in vulnerability detection, one that is adaptable, efficient, and more
importantly, ahead of the evolving threats. Furthermore, the integration of CVE and
CWE data in this study is not just a technical achievement, but also a strategic move to
create a more holistic and informed approach to cybersecurity. This methodology could
serve as a model for future research and development in the field. The insights gained
from this study could inform the development of more secure software, contribute to the
enhancement of existing security protocols, and inspire innovative approaches to tackling
cybersecurity challenges. Lastly, the research underscores the importance of continuous
learning and adaptation in the field of cybersecurity. As new vulnerabilities emerge and
threat actors evolve their tactics, our methods and strategies must also advance. This
study represents a step forward in that ongoing journey, showcasing the potential of ma-
chine learning in staying one step ahead in the ever-changing landscape of cyber threats.
The structure of the report is described in the following paragraph.

Section 2 discusses the previous studies in the field by credible researchers. Section
3 provides a detailed synopsis of the research carried out using the KDD methodology.
Section 4 discusses the fundamental technological design and the innovative solutions
proposed in this project. The implementation of the proposed solution is thoroughly
explained in Section 5. Section 6 evaluates all the experiments conducted in this project
and compares their findings.

2 Related Work

In this section on related work, I have included two distinct types of research that are
relevant to my study. The first type focuses solely on using Machine Learning (ML)
and Deep Learning (DL) models, while the second type involves a combination of Deep
Learning models with Natural Language Processing (NLP) techniques. These are detailed
in subsections 2.1 and 2.2, respectively.

2



2.1 Machine Learning (ML) and Neural Network

Gencer and Başçiftçi (2021) conducted a study that employed time series modelling
techniques to forecast security vulnerabilities. They utilised data from the National
Vulnerability Database (NVD) and Common Vulnerabilities and Exposures (CVE) and
experimented with various models, including time series multilayer perceptron (MLP),
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), ConvLSTM,
and CNN-LSTM-based models. Their primary objective was to identify the most accur-
ate forecasting model based on error rates. The results showed that the LSTM model
had an error rate of 26.830, while the Autoregressive Integrated Moving Average (AR-
IMA) model outperformed with an error rate of 18.449. However, it is essential to note
that Gencer and Başçiftçi’s study solely focused on forecasting vulnerabilities and did
not extensively leverage the available data for other purposes.

In conclusion, research in the field of forecasting security vulnerabilities has made
substantial strides, with studies employing a variety of techniques, including time series
modelling and machine learning. However, there was a need for more comprehensive
approaches that harness the full potential of available data sources and address the lim-
itations observed in the existing models. This review sets the stage for the present study,
which seeks to further advance our understanding of security vulnerability forecasting.

In this research (Senanayake et al.; 2023) addresses the critical issue of vulnerabil-
ity in source code of C/C++ applications, which poses significant reliability and security
challenges. The study emphasises the importance of incorporating software security prin-
ciples early in the development lifecycle. To achieve this, the research proposes a Machine
Learning (ML)-based method to detect vulnerabilities in source code. The unique aspect
of this study was the application of Explainable Artificial Intelligence (XAI). XAI is cru-
cial because it aids developers in identifying which parts of the source code are vulnerable
and understanding the reasons behind these vulnerabilities. This approach is not only
about detecting issues but also providing insights that can guide developers in making
informed decisions and corrections. The research tested several ML classifiers to achieve
these results. Notably, the Random Forest (RF) algorithm performed well in binary clas-
sification, while Extreme Gradient Boosting (XGB) excelled in the multi-class approach.
They didn’t really make use of deep learning models.

In this research paper (Liu et al.; 2020) they are trying to do a review on current
approaches in malware detection in android. This has a lot of information related to ML
models that are used and the steps that can be followed and building a good android mal-
ware detection. This paper also gives a lot of information on the different ML models and
their advantages and disadvantages for detecting the vulnerabilities. Over the years how
ML models have performed and which different approaches like static analysis, dynamic
and hybrid analysis have been done. I have taken some insights from this paper.This
paper presents a thorough survey of machine learning-based approaches to Android mal-
ware detection, highlighting its importance given the rapid evolution of both Android
applications and associated malware threats. It aims to fill gaps in existing literature
and guide future research in this critical area of cybersecurity

In this paper (Malik et al.; 2019) introduces an innovative method focusing on an-
omaly detection in system calls of both benign and malicious Android applications. The
study hypothesised that the type, frequency, and sequence of system calls can reliably
indicate the presence of vulnerabilities. By monitoring this aspects, the research aims
to differentiate between normal and malicious process behaviours. Utilises ML tech-

3



niques like kNN, LSTM, and GA-LSTM to detect vulnerabilities based on patterns of
system calls, with a primary focus on ML. The research opens avenues for further explor-
ation, particularly in refining machine learning models for even more accurate detection,
exploring the impact of different types of system calls, and potentially extending the
methodology to other operating systems or application environments.This maybe not a
viable option while gathering the system calls and create a dataset according to it.

In this paper (Arslan; 2021) Android Malicious Software Detection Based on Deep
Learning This paper is similar to other paper which uses static analysis and the network
calls and using the APK and extracting the code to perform the malware detection. This
whole Androianalyzer is using the DNN model to detect the malware. It is not that
effective in finding the latest vulnerabilities and malware

In this paper Amin et al. (2019) presents a significant advancement in the field of
mobile application security. Its hybrid approach for automated vulnerability detection,
particularly for Android applications, addresses a critical need in the rapidly evolving
landscape of mobile app development. By combining static and dynamic analyses, the
model provides a comprehensive solution for identifying a wide range of security vul-
nerabilities. The development of a user-friendly platform and the decision to make the
code publicly available further enhance the impact and relevance of this research in both
academic and practical realms.The model’s effectiveness is demonstrated through evalu-
ations against various applications with different security vulnerabilitie. A notable aspect
of this model is its ability to detect a wide range of flaws, including information leaks
and insecure network requests, which are often overlooked by other detection platforms.
This capability enhances the model’s utility in safeguarding user privacy

2.2 Neural Network with Natural Language Processing (NLP)

In this research Wartschinski et al. (2022) Introduces VUDENC, a tool that uses a
word2vec model (an NLP technique) along with LSTM cells (an ML technique) for
detecting vulnerabilities in software code. This VUDENC is mostly implemented for
python code base By utilising LSTM models, VUDENC suggests several avenues for fu-
ture research and improvements. Enhancing the understandability and actionability of
Vudenc’s results is critical for its practical application in bug or vulnerability prediction
tools. Other propsed enhancements include refining data labelling, integrating Vudenc
with other methods for better results, and using commit context for actionable fix recom-
mendations. VUDENC represents a significant advancement in the field of automated
vulnerability detection. Its use of deep learning on natural source code, combined with
its promising results and potential for future enhancements, positions it as a valuable tool
for developers and researchers in cybersecurity. The study sets a precedent for the innov-
ative use of machine learning in software security and opens new pathways for research
and development in this domain.

In this paper Renjith and Aji (2022) Discusses vulnerability detection in Android
OS using graph neural networks and Graph Embedding Mechanisms. While primarily
ML-focused, the Graph2Vec algorithm can be seen as bridging ML and NLP, as it deals
with embedding and can be related to techniques used in NLP. The study identifies a
gap in the existing methods for vulnerability detection in the Android operating system.
Most current approaches do not adequately address the complexities and scale of the
Android OS, focusing instead on more constrained environments like individual apps or
framework changes. A key contribution of this research is the design and implementation

4



of a vulnerability detection mechanism based on Graph Neural Networks (GNNs). GNNs
are particularly suitable for this task as they can effectively process the graph-structured
data, which in this case represents the source code’s structure and relationships. In
conclusion, this research represents a pivtal step forward in the field of cybersecurity,
particularly in the context of the Android operating system. I have worked on this and
improved the gap that I found in the vulnerability detection steps.

In this research Garg and Baliyan (2020) introduces M2VMapper, a novel deep
learning (DL) framework designed to address the critical challenge of mapping malware
to potential vulnerabilities in the Android mobile platform. Recognizing that over 90% of
mobile malware targets Android, the research highlights the importance of understand-
ing the complex many-to-many relationships between malware and vulnerabilities. While
primarily ML-focused, the context of their work may imply the use of NLP techniques,
especially if the analysis involves textual data like code or system logs.The study’s robust-
ness is evident in its extensive data collection, encompassing 150 malware families from
diverse datasets (AMD, CICInvesAndMal2019, Androzoo) with a total of 48,907 malware
samples and 9 types of vulnerabilities affecting Android. This comprehensive dataset en-
ables a thorough analysis and enhances the reliability of the results.M2VMapper has
achieved remarkable results, with an accuracy of 99.81% when combining XLNET with
TextCNN, and precision and F1-scores above 95% using other DL models.The study
not only fills a crucial gap in the current literature but also sets a new standard for
the application of deep learning and text processing in malware analysis. The results
of this research offer significant insights and tools for enhancing the security of Android
applications, marking a notable advancement in the field of cybersecurity.

In this paper Yuan et al. (2020) addresses the critical issue of malware detection in
Android applications, a problem exacerbated by the proliferation of third-party Android
app markets. The lack of regulation in these markets has led to an increase in malicious
apps, posing a significant security threat. The dynamic nature of malware evolution
and improvements in the Android system make it challenging to design an effective and
efficient long-term detection method. Additionally, incorporating more features into de-
tection models increases their complexity and computational costs.In conclusion, this
paper presents a novel and effective approach to detecting malware in Android apps us-
ing a combination of TF-IDF and machine learning. By focusing on app permissions and
applying static analysis, the method addresses the challenges of dynamic malware evolu-
tion and system complexity. The high accuracy and quick processing time of the proposed
method signify a substantial advancement in the field of Android security, providing a
promising direction for future research and application development in malware detection.

In this paper Raghav et al. (2021) represents a significant advancement in the field
of Android malware detection. By integrating static analysis with sophisticated NLP
techniques, it addresses a critical limitation of existing methods. The use of document
embeddings to capture semantic information opens new avenues for more accurate and
effective malware detection. This research not only contributes to the technical domain of
cybersecurity but also has practical implications for safeguarding the increasing number
of Android users against evolving malware threats.The research identifies that existing
machine learning and deep learning approaches for Android malware detection primarily
rely on frequency-based vectors derived from various files in the Android application
package (APK). However, a significant limitation of these methods is their failure to
capture the semantic information inherent in these files, which is crucial for a more
nuanced and effective detection of malware. By leveraging document embeddings, the

5



proposed method captures a richer, more contextually informed representation of the
data contained in APK files.The use of binary classifiers in this context is particularly
relevant for practical applications, where quick and clear decisions are crucial.

2.3 Discussion

The field of Android vulnerability detection is marked by rapid advancements and con-
tinual adaptation to emerging threats. The advancement of increasingly powerful and
efficient detection strategies is largely dependent on the combination of ML, DL, and
NLP techniques. As the subject develops further, the emphasis will probably move to
producing more precise, scalable, and adaptable solutions to protect against the always
shifting cyberthreat environment. The comprehensive understanding gained from previ-
ous investigations serves as a guide for my investigation, prioritizing creativity, flexibility,
and a multifaceted strategy for identifying vulnerabilities.

3 Methodology

In this section, I describe the step-by-step process employed in detecting vulnerabilities,
Included a comprehensive flowchart in Figure 1. Each step of the workflow, along with
its specific functions and methodologies, is detailed in subsections 3.1 and 3.2 below.

3.1 Dataset

The datasets was divided into two sections. The first part is accessible in JSON format
from the National Vulnerability Database (NVD) National Vulnerability Database (n.d.),
encompassing data from 2013 to 2023, which includes various Common Vulnerabilities
and Exposures (CVEs). The second part consists of Common Weakness Enumeration
(CWE) data from Common Vulnerabilities and Exposures (n.d.). The dataset includes
approximately 8300 records detailing vulnerabilities specific to Android, while the CWE
section contains around 600 entries, each describing different weaknesses. This dual
dataset consist of more information about the vulnerabilities and it will really helped in
accurately detecting the vulnerabilities.

3.2 KDD Steps

The research made use of the Knowledge Discovery in Databases (KDD) techniques,
which is described in more detail in the subsections that follow and is shown in Figure 1.

3.2.1 Data Collection

In this step, The data collected from multiple source first is NVD website APIs and
this step was crucial for accessing a broad range of data points, specifically focusing on
extracting columns relevant to our analysis and second was CWE data csv file.

3.2.2 Data Pre-processing

In this step, data collected from the both the sources were mapped. I mapped both
the CWE and CVE datasets, The ’CWE-ID’ serves as a common link, allowing me

6



to correlate specific vulnerabilities listed in the CVE dataset with their corresponding
weakness types in the CWE dataset. By mapping the datasets in this manner, it became
possible to create a comprehensive view where each CVE entry is associated with its
respective weakness type as classified in the CWE framework.

3.2.3 Data Transformation

In this step, the merged dataset underwent several transformation processes. Initially,
column names were modified for clarity and consistency, ensuring they accurately rep-
resented the data they contained and finding the data type and changing the data type
as required per model. The next phase involved a thorough examination for missing
values, identified as ’NA’ or null entries. This step was critical to ensure data integ-
rity and reliability. Columns that contained a significant number of missing values or
those that were deemed irrelevant to the objectives of the analysis were dropped from the
dataset.Consequently, this rigorous transformation process streamlined the dataset and
Tranformed from 24 columns to just 8 columns datasets.

3.2.4 Data Mining

In this process, I tried to collect the demonstrative code for each of the CWE, so it
could help in building the model and detecting the bad code. I tried to find like 4000
demonstrative example which was not sufficient for the ML models. I used the word
embedding for extracting the data from description of the vulnerability

3.2.5 Evaluation

In this evaluation phase, the cleaned and transformed data was utilized to train the pro-
posed models. Three distinct models were employed: Graph Neural Networks (GNN),
Support Vector Machines (SVM), and Random Forest. Each model incorporated word
embedding techniques using Word2Vec and the TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) process. For each model, line graphs were generated to visually repres-
ent their performance. Key metrics such as Accuracy, F1 Score, Precision, Recall, and
Confusion Matrix were evaluated. Additionally, various plots were created to facilitate a
comprehensive comparison of the models’ performances.

3.2.6 Interpretation

In this interpretation phase, we analyze the efficacy of three models: Graph Neural Net-
works (GNN), Support Vector Machines (SVM), and Random Forest, each enhanced with
Word2Vec and TF-IDF word embedding. The evaluation through Accuracy, F1 Score,
Precision, Recall, and Confusion Matrix reveals distinct strengths and weaknesses of each
model. GNN, for instance, may excel in complex pattern recognition, crucial in cyber-
security data analysis. The visual plots, including line graphs, facilitate a comparative
understanding of the models. This analysis not only highlights each model’s technical
effectiveness but also provides insights into cybersecurity vulnerabilities, guiding future
research and methodology improvements.

7



Figure 1: Flow Chart

4 Design Specification

This research project mainly focused on two techniques TF-IDF and Word2Vec to de-
velop a machine learning system where the efficacy primarily hinges on two key feature
extraction techniques. The approach I used is static analysis utilizing CVE descriptions
and severity levels.The Severity HIGH column serves as a binary target variable for clas-
sification.

To develop a system for detecting vulnerabilities in Android using three models: GNN,
SVM, and Random Forest, with a focus on analyzing CVE descriptions and severity
levels. CVE descriptions are preprocessed using TF-IDF and Word2Vec to create mean-
ingful numerical features. The Severity HIGH column serves as a binary target variable
for classification. GNN model leverages a graph structure with CVE IDs and CWE rela-
tionships, enhanced with text features from CVE descriptions. SVM and Random Forest
models use processed CVE description features to predict the Severity HIGH label.

4.1 TF-IDF

This method will be used to convert the text of CVE descriptions into a numerical
format, highlighting the importance of certain words based on their frequency in a specific
document and their inverse frequency across all documents. It helps in identifying the
most relevant words in each CVE description. I have added the idf equation 3

3:https://monkeylearn.com/blog/what-is-tf-idf/

8

https://monkeylearn.com/blog/what-is-tf-idf/


4.2 Word2Vec

This approach involves creating word embeddings for the CVE descriptions. Word2Vec
maps words into a high-dimensional vector space where the position of each word is
determined based on the context in which it appears in the CVE descriptions. This is
useful for capturing the semantic meaning of words as shown in Figure 2 4 it’s working
flow.

Figure 2: Word2Vec

4.3 Model Implementation

The implementation of the three models — Graph Neural Network (GNN) with Graph
Convolutional Network , Support Vector Machine (SVM), and Random Forest — was car-
ried out with a focus on processing CVE descriptions for Android vulnerability detection.
Each model was uniquely tailored to leverage the strengths of the respective algorithms.
Hyper-parameter tuning was an essential part of the implementation process, aimed at
optimizing the performance of each model.Throughout the tuning process for GNN, RNN
and SVM, a balance was sought between model complexity and performance, ensuring ro-
bust and reliable predictions while avoiding over fitting. The hyper-parameter tuning not
only enhanced the accuracy but also improved the models’ efficiency and interpretability.

5 Implementation

The implementation of this project involved the development of three distinct machine
learning models: Graph Neural Network (GNN) (see Figure 35), Support Vector Machine

42:https://arxiv.org/pdf/1301.3781.pdf
5https://vitalflux.com/graph-neural-networks-explained-with-examples/

9

https://arxiv.org/pdf/1301.3781.pdf
https://vitalflux.com/graph-neural-networks-explained-with-examples/


(SVM) (see Figure 5),6 and Random Forest (see Figure 4).7 These models were designed
to analyze and predict Android vulnerabilities based on CVE descriptions, processed using
TF-IDF and Word2Vec, with the Severity HIGH column serving as a binary target.

5.1 Common Vulnerability Enumeration

In my project the Common Vulnerabilities and Exposures (CVE) database provided
a extensive details about various vulnerabilities, including their severity levels. Each
columns includes a ’last modified date’, indicating the most recent update, and the date
when the vulnerability was first reported. The database encompasses the current status
of each vulnerability along with a comprehensive descriptions content. Key elements of
the CVE entries include Base Score, Base Severity, Exploitability Score, Impact Score,
and the associated Common Weakness Enumeration (CWE) Name. Severity levels are
categorized as Low, Medium, High, and Critical. Additionally, the database contains
fields for the vulnerability status and encoded values for CVE Base Severity.

5.2 Development Environment

The instruments and software platforms listed below were used to conduct the research’s
experiments:

• OS: macOS Ventura 13.5

• Language: Python

• Development Tool: Jupyter Notebook

• Package Manager: Conda Environment

• Cloud Resources: Google Collab & Google Drive

5.3 Important Libraries used in the Project

• Gensim: Natural Language Processing Library

• sklearn: For Random Forests and SVM machine learning models

• PyTorch: For Graph neural network model

5.4 Data Pre-processing

This part, I mainly focused on the initial stage of preparing data for subsequent analysis
and modeling. In the context of Android vulnerability detection, data pre-processing
involves several key steps:

6Reproduced from Enhancing Surface Fault Detection Using Machine Learning for 3D
Printed Productshttps://www.researchgate.net/figure/Architecture-of-SVM-algorithm_fig3_
351590398

7Reproduced from Intrusion Detection Systems Based on Machine Learning Algorithms https://

www.researchgate.net/figure/Random-forest-Architecture_fig3_353906529

10

https://www.researchgate.net/figure/Architecture-of-SVM-algorithm_fig3_351590398
https://www.researchgate.net/figure/Architecture-of-SVM-algorithm_fig3_351590398
https://www.researchgate.net/figure/Random-forest-Architecture_fig3_353906529
https://www.researchgate.net/figure/Random-forest-Architecture_fig3_353906529


5.4.1 Data Cleaning and Transformation

I have identified and rectifed any inconsistencies, missing values, or errors in my data.
This might include normalizing text data, handling missing values in the dataset, and
filtering out irrelevant information.

5.4.2 Feature Extraction

I applyed TF-IDF and Word2Vec to transform the content CVE descriptions into numer-
ical features. TF-IDF highlights the importance of words in relation to their frequency
across documents, while Word2Vec captures the contextual relationships between words.

5.4.3 Data Normalization

The scaling of data to a standard range or format, ensuring that different data types are
compatible for modeling.

5.5 NLP based Strategy

In this part, I delved into the application of Natural Language Processing (NLP) tech-
niques for analyzing and interpreting the textual data related to vulnerabilities:

Figure 3: GNN Architecture

5.5.1 Textual Data Analysis

Utilizing NLP to process and analyze textual data from CVE descriptions. This includes
parsing the text, extracting relevant information, and understanding the contextual mean-
ing of words and phrases.

5.5.2 Pattern Recognition

Employing algorithms to identify common patterns or indicators of vulnerabilities within
the textual data.

11



Figure 4: Random Forest Architecture

Figure 5: SVM Architecture

12



5.5.3 Semantic Analysis

Applying advanced NLP techniques like sentiment analysis or named entity recognition
to glean deeper insights into the nature of the vulnerabilities.

5.5.4 Integration with Machine Learning

Combining NLP-processed data with machine learning models (GNN, SVM, Random
Forest) to enhance the detection and prediction of vulnerabilities. For GNN, Each node
represents a CVE and carries attributes like CVE score, severity, and associated CWE
ID. The CWE ID is converted to an integer if it’s numeric building a graph that maps
the intricate relationships between different CVEs and CWEs as shown in Figure 6.I used
Graph Convolutional Network (GCN) model type and is configured structured with
a 16-dimensional hidden space and Adam optimizer is used with a learning rate of
0.01. The loss function is binary cross-entropy with logits (BCEWithLogitsLoss), which
combines a sigmoid layer and the BCE loss in one single class.

In Random Forest model, it is set with 100 trees balancing computational efficiency
with the ability to capture diverse patterns in the data. In SVM kernel is set to Linear
because it aligns with nature of our data, ensuring optimal separation and accuracy.

6 Evaluation

In this evaluation part, I have compared the machine learning and deep learning models
using NLP techniques on various metrics. Before testing the model, I trained it by
splitting the dataset into train-test splits with 80% and 20%. The different evaluation
metrics used are accuracy, F1, preccison recall and ROC/AUC curve. The following
subsection 6.1 and 6.2

Figure 6: GNN Graph

13



Figure 7: GNN results in Bar Chart

Figure 8: GNN ROC Curve for Word2Vec

14



Figure 9: GNN Epoch vs Accuracy on Left and Epoch vs Loss on Right

Figure 10: GNN Confusion Matrix

15



6.1 Performance Comparison of ML & DL models used in NLP

All the different models are compared based on the NLP techniques employed and their
performance is evaluated using various metrics and scores.

6.1.1 Evaluation Metrics Comparison

In this, all the model scores are compared. Table 1 presents a comparison of the scores
from different models, The best performing Random Forests with Word2Vec model
not only accurately classifies the most instances correctly (high accuracy) but also main-
tains a high balance between precision and recall (as indicated by the F1 score) as shown
in this bar chart Figure 12. Furthermore, its high AUC/ROC score suggests excellent
capability in distinguishing between classes as shown in confuion matrix Figure 11, which
is crucial for effective vulnerability detection.

In contrast, while the Random Forest with TF-IDF also performs well, especially in
accuracy and precision, its F1 score and AUC/ROC are slightly lower than the Word2Vec
variant, indicating that the Word2Vec version may be better at handling a balanced
performance across different types of data. The GNN model did well in mapping the
CVE and CWE with nodes and edges. Here is the results for GNN with GCN model in
Figure 7 where precission was good but in other scores didn’t perform well and Figure 8
where the curve is not that ideal, Figure 6 it is Epoch vs Accuracy and Epoch vs Loss,
Figure 10 here is the detailed confusion matrix.

Therefore, for a comprehensive measure of performance across all these metrics, the
Random Forest with Word2Vec stands out as the most effective model in this context

Table 1: Comparison of the scores from different models

Models Accuracy Precision Recall F1 AUC/ROC
GNN + TF IDF 0.85 0.77 0.70 0.73 0.80
GNN + Word2Vec 0.76 0.81 0.325 0.46 0.64
Random Forest + TF IDF 0.96 0.96 0.96 0.96 0.92
Random Forest + Word2Vec 0.98 0.98 0.96 0.97 0.97
SVM + TF IDF 0.81 0.75 0.78 0.56 0.74
SVM + Word2Vec 0.78 0.66 0.56 0.60 0.71

6.2 Discussion

In this research, I employed various models such as Graph Neural Networks (GNN) with
Graph Convolutional Network (GCN), Support Vector Machines (SVM), and Random
Forests to detect vulnerabilities in Android. Utilizing data from Common Vulnerabilities
and Exposures (CVE) and Common Weakness Enumeration (CWE), the study delved
deeply into identifying different vulnerabilities, uncovering approximately 8500 distinct
vulnerabilities reported by NVD.

With the available data, the CVE descriptions, CVE-related weakness IDs, and CWE
data were leveraged to ascertain the severity of issues in the code. The models were
trained on CVE descriptions to identify high-severity vulnerabilities and subsequently
tested on similar data. This methodology was partly inspired by the study conducted by
Renjith and Aji (2022), which provided insights into understanding the codebase.

16



Figure 11: Random Forest Confusion Matrix

Figure 12: Random Forest results in Bar Chart

17



One of the primary challenges encountered was the limited availability of demonstrat-
ive CWE code. Access to more extensive CWE code examples would significantly enhance
the capability to detect vulnerabilities in Android. This additional data would allow for
more comprehensive training of the models, potentially unlocking the full potential of the
system in identifying and addressing security vulnerabilities.

7 Conclusion and Future Work

In this study, I successfully addressed the research question concerning proactive vulner-
ability detection and security concern mitigation. By regularly updating the dataset and
automating the process, the system can detect vulnerabilities as soon as they are added to
the NVD database or when their weakness enumeration is linked with problematic code.
This approach has proven effective in both detecting and mitigating vulnerabilities.

A key finding of this research is the ability to detect vulnerabilities using the de-
scriptions provided in the CVE entries, which yielded high accuracy and precision-recall
values. However, one limitation encountered was the lack of demonstrative code for all
CWE vulnerabilities. Access to such code samples for all vulnerabilities would enable
more precise training, enhancing the capability to scan codebases or APKs and pinpoint
vulnerabilities or malware in the Android OS.

Looking ahead, leveraging comprehensive code examples for training could greatly
improve the detection capabilities, especially as the coding landscape diversifies. With
the increasing use of Java, Kotlin, and hybrid app development platforms like React
Native, Flutter, and Ionic in Android development, there is a growing need for a more
robust vulnerability detection system. Future work will focus on incorporating these
aspects to enhance the ability to identify vulnerabilities in a more varied and evolving
code environment.

References

Amin, A., Eldessouki, A., Magdy, M. T., Abdeen, N., Hindy, H. and Hegazy, I. (2019).
Androshield: Automated android applications vulnerability detection, a hybrid static
and dynamic analysis approach, Information 10(10): 326.

Arslan, R. S. (2021). Androanalyzer: android malicious software detection based on deep
learning, PeerJ Computer Science 7(34084934): e533.

Common Vulnerabilities and Exposures (n.d.). https://cve.mitre.org/cgi-bin/

cvekey.cgi?keyword=android. Accessed: Dec 08, 2023.

Garg, S. and Baliyan, N. (2020). Machine learning based android vulnerability detection:
A roadmap, in S. Kanhere, V. T. Patil, S. Sural and M. S. Gaur (eds), Information
Systems Security, Springer International Publishing, Cham, pp. 87–93.

Gencer, K. and Başçiftçi, F. (2021). Time series forecast modeling of vulnerabilities
in the android operating system using arima and deep learning methods, Sustainable
Computing: Informatics and Systems 30: 100515.
URL: https://www.sciencedirect.com/science/article/pii/S2210537921000081

18

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=android


Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D. and Liu, H. (2020). A review of android
malware detection approaches based on machine learning, IEEE Access 8: 124579–
124607.

Malik, Y., Campos, C. R. S. and Jaafar, F. (2019). Detecting android security vulner-
abilities using machine learning and system calls analysis, 2019 IEEE 19th Interna-
tional Conference on Software Quality, Reliability and Security Companion (QRS-C),
pp. 109–113.

National Vulnerability Database (n.d.). https://nvd.nist.gov/vuln/search?

results_type=overview&query=android+os&search_type=all&form_type=Basic&

isCpeNameSearch=false. Accessed: Dec 08, 2023.

Raghav, U., Martinez-Marroquin, E. and Ma, W. (2021). Static analysis for android mal-
ware detection with document vectors, 2021 International Conference on Data Mining
Workshops (ICDMW), pp. 805–812.

Renjith, G. and Aji, S. (2022). Unveiling the security vulnerabilities in android oper-
ating system, in S. Shakya, K.-L. Du and W. Haoxiang (eds), Proceedings of Second
International Conference on Sustainable Expert Systems, Springer Nature Singapore,
Singapore, pp. 89–100.

Senanayake, J., Kalutarage, H., Al-Kadri, M. O., Petrovski, A. and Piras, L. (2023).
Android source code vulnerability detection: A systematic literature review, ACM
Comput. Surv. 55(9).
URL: https://doi.org/10.1145/3556974

Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T. and Grunske, L. (2022). Vudenc: Vul-
nerability detection with deep learning on a natural codebase for python, Information
and Software Technology 144: 106809.
URL: https://www.sciencedirect.com/science/article/pii/S0950584921002421

Yuan, H., Tang, Y., Sun, W. and Liu, L. (2020). A detection method for android applic-
ation security based on tf-idf and machine learning, PLoS One 15(9): e0238694.
URL: https://pubmed.ncbi.nlm.nih.gov/32915836/

19

https://nvd.nist.gov/vuln/search?results_type=overview&query=android+os&search_type=all&form_type=Basic&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search?results_type=overview&query=android+os&search_type=all&form_type=Basic&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search?results_type=overview&query=android+os&search_type=all&form_type=Basic&isCpeNameSearch=false

	Introduction
	Related Work
	Machine Learning (ML) and Neural Network
	Neural Network with Natural Language Processing (NLP)
	Discussion

	Methodology
	Dataset
	KDD Steps
	Data Collection
	Data Pre-processing
	Data Transformation
	Data Mining
	Evaluation
	Interpretation


	Design Specification
	TF-IDF
	Word2Vec
	Model Implementation

	Implementation
	Common Vulnerability Enumeration
	Development Environment
	Important Libraries used in the Project
	Data Pre-processing
	Data Cleaning and Transformation
	Feature Extraction
	Data Normalization

	NLP based Strategy
	Textual Data Analysis
	Pattern Recognition
	Semantic Analysis
	Integration with Machine Learning


	Evaluation
	Performance Comparison of ML & DL models used in NLP
	Evaluation Metrics Comparison

	Discussion

	Conclusion and Future Work

