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Machine Learning Geo-spatial Framework for Crime
Prediction : Based on Socioeconomic
Factors(Configuration Manual)

Mary Cindrilla Moreira
x22114386

1 Introduction

You have arrived at the Machine Learning Framework for Crime Prediction: Integrat-
ing Socioeconomic Factors and ?Geo-spatial Analysis Configuration Manual. ? For the
effective deployment and operation of the ?Machine Learning Framework for Crime Pre-
diction: Integrating Socioeconomic Factors and Geo-spatial Analysis system, this paper
provides a thorough reference to the setup, parameters, and requirements needed. ?For
a smooth configuration procedure, this handbook offers crucial information for all users,
developers, and administrators alike.

2 Purpose

This manual’s main goal is to make setting up Project easier by offering detailed in-
structions, industry best practices, and insights into the different parts that comprise the
system. Achieving the intended functionality of the system, guaranteeing security, and
maximizing performance all depend on proper setup.

3 Hardware Requirements

The following settings were used for the project’s implementation in Local Machine

e RAM: 20.0 GB for effective multitasking

System Type: 64-bit OS, x64-based CPU for improved performance

Processor: 1.60 GHz (1.80 GHz turbo) Intel Core i5-8250U for a power-efficiency
balance

Storage: 256 GB SSD for dependable and quick storage

Operating System: Windows 11 Home Single Language edition for a user-friendly
experience



4 Software Requirements

4.1 Python

Python version of 3.12 is used

4.2 Visual Studio

Visual Studio Code x|

o Visual Studio Code

Version: 1.84.2 (user setup)

Commit: 1a3daa3al231alfbbadf14db7ecdbacfi0d7768e
Date: 2023-11-09T10:51:52.1847 (4 wks ago)

Electron: 23.9.2

ElectronBuildld: 24603566

Chrormiurm: 114.0.5735.289

Modejs: 18.15.0

W8: 11.4.183.28-electron.0

05: Windows_NTx64 10.0.22621

TR

Figure 1: Visual Studio Configuration.

5 Dataset Specifications

5.1 Dataset 01: ”PoliceStationsOfNew YorkCity.csv”

Information for 77 police precincts was gathered from the official NYPD website (https://www.nyc.gov/s
landing.page), according to the dataset. The ”Precinct,” ”Phone,” ” Address,” and " Bor-
ough” columns are among those in this dataset.

5.1.1 Libraries that are imported
5.1.2 Others

Visualization of maps:

Provide more details on the map visualization procedure, particularly if it involves
reliance on outside files (such GeoJSON data). that is attached with this project file
"nyc_precincts.geojson” HTML Export:

Provide instructions on how to save and read the HTML file if the map’s HTML
export is significant. The .html map file was generated.

5.2 Dataset 02: ”PopulationAreaWithGDP.csv”

The dataset includes the results of the 2020 census of population for New York City and

was obtained from the QuickFacts website of the Census Bureau (https://www.census.gov/quickfacts/fa
It offers information on land area in square miles and kilometers, population density per

square mile and per square kilometer, counties, boroughs, and census counts. Additional

columns such as " Billions” and GDP in US dollars for 2012 are given, however it is unclear

why these are specifically relevant.



Library

Purpose

Pandas (import pandas as pd)

Used for data manipula-
tion and analysis.

Matplotlib (import matplotlib.pyplot as plt)

Used for data visualiza-
tion.

Seaborn (import seaborn as sns)

Built on top of Matplotlib,
used for statistical data
visualization.

Geopandas (import geopandas as gpd)

Extends Pandas to en-
able spatial operations and

mapping.

Geopy (from geopy.geocoders import Nominatim)

Used for geocoding ad-
dresses.

Shapely (from shapely.geometry import Point)

Provides geometric objects
like Point, Polygon, etc.,
for spatial analysis.

Folium (import folium)

Used for interactive maps.

Table 1: Python Libraries for Data Analysis and Visualization

’ Library \ Purpose

pandas as pd)

Pandas (import | Data manipulation and analysis

Matplotlib  (import | Data visualization
matplotlib.pyplot
as plt)

seaborn as sns)

Seaborn (import | Statistical data visualization

geopandas as gpd)

Geopandas  (import | Spatial operations and mapping

Geopy (from | Geocoding addresses
geopy . geocoders
import Nominatim)

shapely.geometry
import Point)

Shapely (from | Geometric objects for spatial analysis

folium)

Folium (import | Creating interactive maps




Configuration Point \ Description ‘

File Paths Provide correct paths to CSV files for data
loading

Data Cleaning Be aware of missing values and duplicate
TOWS

Geocoding Configuration Adjust geocoding parameters (user agent,
timeout)

Visualization Customize plots based on preferences

Dependency Installation Ensure necessary packages are installed

Map Output Save Folium map as HTML or display in
Jupyter

Dataset Description Briefly describe dataset columns and content

Data Types and Statistics Print information about data types and stat-
istics

Spatial Analysis Ensure availability of necessary geographic
data files

Customization Modify plot parameters as needed

External Data Sources Verify availability of required external files

5.3 Dataset 03: ?CrimeNYC.csv”

A thorough record of all occurrences reported to the New York Police Department (NYPD
"https://data.cityofnewyork.us/Public-Safety /nypd /pv2jzure”- Primary dataset) is con-
tained in the dataset, which was obtained from the NYPD dataset. An individual com-
plaint number (CMPLNT_NUM) is assigned to each incidence. Critical temporal data
is provided by the dataset (CMPLNT_FR_DT and CMPLNT_FR_TM), which includes
the time and date of the occurrences’ original reporting. CMPLNT_TO_DT and CM-
PLNT_TO_TM record an incident’s end date and time if it can be determined. Con-
sisting of the precinct code, the ADDR_PCT_CD column provides information on the
occurrences’ geographic location.

Other important characteristics are KY_CD, a numerical number that indicates if
the occurrence is a misdemeanor or a felony, and RPT_DT, which indicates the offi-
cial reporting date. Numerous topics are covered by the dataset, including the premises
type (PREM_TYP_DESC), jurisdiction-related information (JURIS_DESC, JURISDIC-
TION_CODE), and location description (LOC_OF_OCCUR_DESC). Spatial analytic cap-
abilities are further enhanced by geographic coordinates (Latitude, Longitude) and the
combined Lat_Lon column.

Suspect demographics, including age group, race, and gender (SUSP_GROUP), as
well as victim demographics (VIC_AGE_GROUP, VIC_RACE, and VIC_SEX), help to
provide a complete picture of law enforcement operations. The complexity of the dataset
makes it possible to examine recorded incidents in great depth, which helps develop ideas
and plans for improving public safety in New York City.

5.4 Dataset 04: ”CompleteDs.csv”

This dataset was collected by web scraping from multiple reliable data sources, and it in-
cludes the columns that were specified. MacroTrends (https://www.macrotrends.net/cities /23083 /new-
york-city /population) and the official NYC Planning historical population report (https://www.nyc.gov,



Libraries Imported | Purpose

pandas Data manipulation and analysis
matplotlib.pyplot Creating visualizations in Python
seaborn Statistical data visualization
plotly.graph_objects Creating interactive visualizations
chart-studio Publishing interactive plots online

Table 2: Imported Libraries

Configuration Manual Steps | Details

Dataset Loading Specify the path and use pd.read _csv to load the data-
set into a DataFrame

Data Exploration Check dataset information using df . info () and visual-
ize missing values

Missing Data Analysis Calculate missing data proportions, visualize patterns,
use different libraries

Data Cleaning Optionally clean data based on missing data analysis,
create a backup

Visualization Create visualizations for data distribution and patterns

Library Installation Include library installation using !pip install

Additional Configurations Specify additional settings and customization instruc-
tions

Code Organization Emphasize code organization, use functions for better
readability

Table 3: Configuration Manual Steps

maps/nyc-population /historical-population /nyc_total_pop-1900-2010.pdf) were the sources

of the population data from 1950 to 2019. Working-age group data were obtained

from https://fred.stlouisfed.org/series/LFWAG4TTUSM647S, the Federal Reserve Eco-
nomic Data (FRED). The sources of the poverty rates were the HHS Poverty Guidelines
(https://aspe.hhs.gov/topics/poverty-economic-mobility /poverty-guidelines /prior-hhs-poverty-
guidelines-federal-register-references) and the Wikipedia article on New York City’s demo-
graphics (https://en.wikipedia.org/wiki/Demographics_of New_York City). Income data

was obtained from FRED (https://fred.stlouisfed.org/series/NYPCPI), while unemploy-

ment rates were gathered from FRED (https://fred.stlouisfed.org/series/NYUR). Crime-
related housing price change data was added, and FRED’s (https://fred.stlouisfed.org/series/NYPCPI)
educational data for New York City was taken into consideration.

The aforementioned dataset is extensive, spanning several decades and containing
essential measures that provide a nuanced knowledge of the socio-economic conditions in
several New York City boroughs. The data is carefully compiled from reliable sources to
assure accuracy and dependability, which makes it a great tool for in-depth analysis and
well-informed decision-making. (

5.5 Dataset 05: "merged _dataFinal.csv”

This dataset is an extensive aggregation of data from CompleteDs.csv and CrimeNYC.csv,
two main sources. The first step involved data translation of the CrimeNYC.csv dataset,



Libraries Used in Data Cleaning | Purpose

pandas Data manipulation and analysis
matplotlib.pyplot Creating visualizations in Python
numpy Numerical operations

dateutil.parser

Parsing date strings into datetime objects

sklearn.preprocessing

Standardizing and normalizing numeric data

Table 4: Libraries Used in Data Cleaning

Libraries Imported

Purpose

pandas

Data manipulation and analysis

matplotlib.pyplot

Creating visualizations in Python

seaborn

Statistical data visualization

plotly.graph_objects

Creating interactive visualizations

chart-studio

Publishing interactive plots online

Table 5: Imported Libraries

which contained 11 million records. By extending the dataset’s dimensions, namely by
averaging crime categories such as ” Felony,” ” Misdemeanor,” and ” Violation,” the dataset
was flattened. After that, the flattened dataset was organized by years and Boroughs,
which led to a major decrease in the number of records—from 11 million to 350—making
it easier to handle. Ultimately, a thorough and integrated summary was produced by
merging this compressed dataset with the original CompleteDs.csv file.

Imported Libraries

Purpose

pandas

Data manipulation and analysis

matplotlib.pyplot

Creating visualizations in Python

seaborn

Statistical data visualization

plotly.graph_objects

Creating interactive visualizations

plotly.express

Creating dynamic visualizations

Table 6: Imported Libraries




6 Model Specifications

6.1 Model Building

6.1.1 Simple Linear Regression
6.1.2 Random Forest

6.1.3 Ordinary Least Square Model
6.1.4 K Nearest Neighbour

7 Appendix On Analysis(Graphs)

7.1 Dataset 01:”PoliceStationsOfNew YorkCity.csv”

The plot displays a bar chart with the bars arranged according to the number of police
stations in each borough, illustrating how the stations are distributed throughout the
several boroughs. The x-axis labels have been rotated for better readability, and the
figure is the right size with clear labels. Plot: The base map shows the NYC precincts

Distribution of Boroughs

Borough

Figure 2: police station distribution.

highlighted in red, with labels for the title, longitude, and latitude clearly visible. Using
Geopy and Nominatim, the code geocodes addresses from address_borough_array to ex-
tract (latitude, longitude) coordinates for each address; these coordinates are then placed
in the coordinates list, which may be used for further analysis or plotting on a map.

7.2 Dataset 02: ”PopulationAreaWithGDP.csv”
7.3 Dataset 03: ”CrimeNYC.csv”

7.4 Dataset 04: ”CompleteDs.csv”

7.5 Dataset 05: "merged_dataFinal.csv”

7.6 Data Modelling and Results



NYC Precincts

40.9 4
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Figure 3: NYC map.

Figure 4: Distribution of Police station in NYC as a HTML page.

166 Population by Borough in Ascending Order (2020 Census)

Population (2020 Census)

05

00

Borough

Figure 5: Distribution of population by Boroughs.



Configuration Manual Considerations

Details

Dataset Loading

Specify  the path and use
pd.read csv to load the data-
set into a DataFrame

Data Exploration

Check dataset information using
df.info() and visualize missing
values

Missing Data Analysis

Calculate missing data proportions,
visualize patterns, use different lib-
raries

Data Cleaning

Optionally clean data based on miss-
ing data analysis, create a backup

Visualization

Create visualizations for data distri-
bution and patterns

Custom Visualizations

Specify purpose and interpretation
of custom plots

Statistical Analysis

Provide information on methods and
reasoning

Dependencies and Environment Setup

Mention necessary libraries and ver-
sions, suggest using a virtual envir-
onment

Visualization Output

Specify how visualizations will be
displayed

Usage Instructions

Provide step-by-step instructions for
code execution

Additional Notes

Include any relevant additional in-
formation

Time Series Plot

Specify requirements for datetime
column

Plotly Express Configuration

Provide details on configuring Plotly
Express plots

Interactive Plots

Mention specific features or interac-
tions for interactive plots

Table 7: Configuration Manual Considerations




Imported Libraries Purpose

pandas Data manipulation and handling
DataFrames

numpy Numerical operations and trans-

formations

sklearn.model_selection

Splitting the dataset into training
and testing sets

sklearn.linear_model

Implementing the Linear Regression
model

sklearn.metrics

Providing metrics for model evalu-
ation

matplotlib.pyplot

Creating visualizations, especially

scatter plots

seaborn Enhancing the aesthetics of visualiz-
ations
scipy.stats Calculating Z-scores

MinMaxScaler, StandardScaler (sklearn.preprocessing)

Feature scaling

Table 8: Simple Linear Regression Imported Libraries

Configurations

Details

Data Splitting

Use train test_split for training
and testing sets

Model Selection

Choose Linear Regression, explain
suitability

Features

Specify selected features and ra-
tionale

Model Training

Train linear regression on the train-
ing set

Evaluation Use MSE, R-squared for model eval-
uation
Visualization Emphasize predicted vs. actual val-

ues

Feature Engineering | Describe 'InteractionTerm’,
"SquaredPopulation’, "LogPopu-
lation’

Outliers Use Z-scores for outlier identification

Scaling Explain Min-Max, Standard Scaling

on features

Target Loop

[terate over target variables

Results

Present and interpret evaluation and
visualizations

Table 9: Configuration Manual Considerations Simple Linear regression.
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Configuration Manual Considerations

Detalils

Data Splitting

Split the data into training and test-
ing sets using train_test_split.
Specify features and target wvari-
ables.

Model Selection

Choose  RandomForestRegressor
for regression tasks. Adjust para-
meters like n_estimators based on
your dataset.

Model Training Initialize and fit the
RandomForestRegressor model
on the training set.

Model Evaluation Use mean squared error
(mean_squared_error) and R-

squared (r2_score) for evaluation.

Visualization Plot predicted vs. actual values for
each target variable to assess model
performance.

Feature Importance Print and analyze fea-
ture importance using

model.feature_importances._.
Optionally, create visualizations.

Code Organization

Emphasize code organization and
comments for better readability. En-
courage the use of functions or mod-
ular code.

Library Versions

Include versions of used libraries,
considering potential variations in
functionalities.

Usage Instructions

Provide step-by-step instructions on
running the code. Specify any con-
figurable parameters.

Additional Considerations

Include any relevant notes or consid-
erations for users.

Visualization Output

Specify how visualizations will be
displayed (inline, saved, external
tools).

Table 10: Configuration Manual Considerations for Random Forest

11




Configuration Manual Considerations

Details

Data Splitting

Split the data into training and test-
ing sets using train_test_split.
Specify features and multiple target
variables.

Model Selection

Use Ordinary Least Squares (OLS)
regression for each target variable.

Model Training

Build separate OLS models for each
target variable. Add a constant term
to the independent variables.

Model Evaluation

Print  summary statistics for
each OLS model. Evalu-
ate using mean squared error
(mean _squared error) and R-
squared (r2_score).

Visualization

Plot predicted vs. actual values for
each OLS model.

Library Versions

Include versions of used libraries,
considering potential variations in
functionalities.

Usage Instructions

Provide step-by-step instructions on
running the code. Specify any con-
figurable parameters.

Additional Considerations

Include any relevant notes or consid-
erations for users.

Visualization Output

Specify how visualizations will be
displayed (inline, saved, external
tools).

Table 11: Configuration Manual Considerations for OLS Models

Land Area by Borough

Brooklyn

Manhattan

The Bronx

Staten Island
Queens

Figure 6: Distribution of Land area by Boroughs.
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Configuration Manual Considerations | Details
Data Selection Select relevant spatial fea-
tures  (Latitude, Longitude,

Population density_persons_per_s
Poverty_ Rate,

UnEmployment Rate) and  the
target variable (Bor_Names).

Label Encoding

Encode borough names (Bor_Names)
to numeric labels using
LabelEncoder.

Data Splitting

Split the data into training and test-
ing sets using train_test_split.

Model Selection

Choose K-Nearest Neighbors (KNN)
classifier with a specified number of
neighbors (e.g., 3).

Model Training

Create and train the KNN classifier
using fit method.

Folium Map Creation

Create a Folium map centered on
New York City (crime map).

Marker Clusters

Create MarkerClusters for true and
predicted crime locations.

True Crime Locations

Plot true crime locations on the map
using green markers.

Predicted Crime Locations

Plot predicted crime locations on the
map using red markers.

Display the Map

Display the generated map.

Table 12: Configuration Manual Considerations for Crime Prediction Map

Population and Land Area by Borough (2020 Census)

Population (2020 Census)

Figure 7: Distribution of population and land area by Boroughs.
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Crime range

Figure 17: sankey for age and race.
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Figure 18: crime interval year.
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Harassment crimes by Borough (unstandardized) in 2015
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All crimes by Borough (unstandardized) in 2015
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Population Density Distribution
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Figure 26: Population density distribution

106 Age Group Distributions
175 -

o I —r
L

025 E—El
0.00

Children_aged_0_15  Working_age_16_84 Older_people_aged_65+

Population Count

Figure 27: box-plot for age group distribution
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Unemployment and Poverty Rates by Borough
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Figure 29: Unemployment and Poverty Rates by Borough

Figure 31: pair plot.
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Figure 32: Average Values Across Boroughs for Selected Years

Figure 33: Time Series Plot of Socio-Economic Indicators
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Correlation Heatmap
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Figure 34: Correlation heat map
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Figure 35: distribution of Unemployment Rate
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Figure 36: Radar Chart for Crime Rates and Socio-Economic Indicators
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Figure 37: Crime Rates Across New York Boroughs.
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Predicted vs, Actual Values (FELONY)
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Figure 38: Simple Linear Regression Predicted Vs Actual(Felony).
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Figure 39: Simple Linear Regression Predicted Vs Actual(Misdemeanor)
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Figure 40: Simple Linear Regression Predicted Vs Actual(Violation).
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Figure 41: Feature Importance of Simple Linear Regression
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Figure 42: Random Forest Predicted Vs Actual(Felony).
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Figure 43: Random Forest Predicted Vs Actual(Misdemeanor)
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Predicted vs. Actual Values (VIOLATION)
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Figure 44: Random Forest Predicted Vs Actual(Violation).
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Figure 45: Feature Importance of Random Forest.
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mmary for OLS Model - Target: FELONY
OLS Regr

Dep. Variable: FELONY  R-squared:
Model: OLS  Adj. R-squared:
Hethor Least Squares F-statisti
Date: Fri, 61 Dec 2023
Time: 21:09:53
No. Observations: 289
f Residuals 270
9

robust

.00
Population_ 3.8 0.043
Children_aged 615 .48
Working_oge_16_64 e+08 0.025
Older_people_aged_65+ 6. 0.353
Population_density_persons_per_sq_km 2396 2 0.504
Poverty_Rate - 0.043
UnEmployment_Rar 383.679 0.101
Change_in_housing price in % 9 260.290 0.9
[2] The smallest eigenvalue is 1.@8e-61. This might indicate that there are
rong multicollinearity problems desi, is singular.
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Figure 46: OLS Model For Felony

Summary for OLS Model - Target: MISDEMEANOR
OLS Regression Results

MISDEMEANCR  R-squared:
OLS  Adj. R-squared:
Least Squares
Fri, @1 Dec 2023
21:09

0.975]

1020.053  2196.670
-2.86e+08
-2.05e+03
1.54e+08
-3.14e+03

-1.06e+87
979.488
Change_in_housing price_in_% -1421.2433 8 0 4 4 -479..6

[2] The smallest eigenvalue is 1.88e-61. This might indicate that there are
that the design matrix

Mean Squared Error (OLS) Targe MISDEMEANOR : 28968¢ B98¢
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Figure 47: OLS Model For Misdemeanor
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