~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Avis Massey
Student ID: x21199752

School of Computing
National College of Ireland

Supervisor: Aaloka Anant

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Avis Massey
Student ID: x21199752
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Aaloka Anant
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 404
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Avis Massey
x21199752

1 Introduction

This configuration manual describes the hardware and the software requirements whcih
is essential to build the counterfeit review identifier using Neural Network - LSTM &
CNN, Classifier - SVM and Transfer learning models BERT, RoBERTa, DistilBERT and

ALBERT.

2 Hardware and Software Requirement

To train the LSTM, CNN and SVM models along with the transfer learning models such
as BERT, RoBERTa, DistilBERT, and ALBERT, Google Collaboratory cloud is used
which is a cloud machine since we have a vast dataset to train. For whcih you can find
below the specification of the host device.

Device specifications

Device name

Processor

Installed RAM
Device ID
Product ID
System type

Pan and touch

DESKTOP-QNDC30O1

Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40
GHz

8.00 GB
AADD322E-F555-4682-ABAS-55F5DC04D1B6
00331-10000-00001-AAQ00S

bd-bit operating system, x64-based processor

Mo pen or touch input is available for this display

Figure 1: Device Specifications

The following table [I| provides information regarding the programming languages,
computaional unit, and libraries employed throughout the project.

Specification Value

IDE Google Colab
Computation GPU
Number of GPU | 1
Programming Python
language

Modeling library

SimpleTransformer, HuggingFace Transformer, Sklearn, Pandas, Numpy;,
Matplotlib, Seaborn, Wandb, Keras, PyTorch, tqdm, SciPy

3 Dataset

Table 1: System Specifications for the Project

The dataset whcih we have implied in the project is in the CSV format. Originally these
reviews are from amazon and the fake are Al generated using GPT. There are namely
5 column, Category, Label, Rating, Reviews and Fake Review flag. The Reviews and
Fake_Review_flag are the most important columns. Salminen et al.| (2022)

-

u e

|categary

|Rating Label Reviews

Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home_and_Kitchen_5
Home and Kitchen 5

5CG Lovethis! Well made, sturdy, and very comfortable. 1love it!Very pretty

5CG loveit, a great upgrade from the original. I've had mine for a couple of years

5 CG This pillow saved my back. I love the look and feel of this pillow.

1CG Missing information on how to use it, but it is a great product for the price! |

5CG Very nice set. Good quality. We have had the set for two months now and have not been
3 CG I WANTED DIFFERENT FLAVORS BUT THEY ARE NOT.

5 CG They are the perfect touch for me and the only thing | wish they had a little more space.
3 CG These done fit well and look great. | love the smoothness of the edges and the extra

5 CG Great big numbers & easy to read, the only thing I didn't like is the size of the

5CG My son loves this comforter and it is very well made. We also have a baby

5CG Asadvertised. 5th one I've had. The only problem is that it's not really a

Figure 2: Dataset overview

4 Implementation of the project

In the Google Colab we chage the runtime to make use of the GPU provided by the
google whcih is the T4 GPU showing exceptional computation capabilities.

Change runtime type

Runtime type

Python 3 -

Hardware accelerator (7)

Q cru @ T4GPU
Q Tru

Want access to premium GPUs? Purchase additional compute units

Cancel Save

Figure 3: change run time to GPU

4.1 Installation of Libraries

The |4 shows installtion of required libraries such as numpy pandas sentencepiece scipy
torch transformers.

¥ [1] !pip install numpy pandas sentencepiece scipy torch transformers

Requirement already satisfied: numpy in fusr/local/lib/python3.18/dist-packag
Requirement already satisfied: pandas in /usr/local/lib/python3.1@/dist-packa

Fallacr+srToes —an- F e e e

Figure 4: Dataset overview

Once installed the imported libraries are shown below in

[]

from keras.layers import ConvlD, Dense, Embedding, GlobalMaxPoolinglD, LSTM

from keras.models import Sequential

from keras.preprocessing.sequence import pad_sequences

from keras.preprocessing.text import Tokenizer

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics import accuracy score, classification_report

from sklearn.model_selection import train_test_split

from sklearn.svm import SWC

from torch.utils.data import DatalLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm

from transformers import AlbertTokenizer, AlbertForSequenceClassification, BertTokenizer,

from scipy.stats import zscore

Figure 5: Import Libraries

4.2 Importing the dataset
We import the data into the dataframe df using the pandas library.

© # # Load the dataset
df = pd.read_csv("./fake_reviews_dataset.csv™)
data = df.sample(frac=8.5)
Extracting Reviews and Labels
X = data["Reviews"]

y = data["Fake_review flag"]

Splitting the data into training and testing sets
X_train, X_test, y_traln, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

Figure 6: Store the dataset in dataframe.

4.3 Tokenize for LSTM and CNN
We tokenize the dataset for LSTM and CNN models.

[1 # Tokenizer for LSTM and CHN
max_features = 18888 # Number of words to consider as features
tokenizer = Tokenizer(num_words=max features)
tokenizer.fit on_ texts(X train)
X _train _seq = tokenizer.texts to sequences(X train)
¥_test seq = tokenizer.texts to sequences(X test)

Padding sequences for LSTM and CNN

maxlen = 188 # Cuts off reviews after 180 words
¥_train_pad = pad sequences(X_train_seq, maxlen=maxlen)
¥_test pad = pad sequences(X¥_test_seg, maxlen=maxlen)

TF-IDF for SWVM

vectorizer = TfidfVectorizer(max features=max_ features)
¥ _train_tfidf = vectorizer.fit transform{X train)

X _test tfidf = vectorizer.transform(X_test)

Figure 7: Tokenization for the models

4.4 Building the LSTM model and CNN model

The LSTM and CNN models are built and executed, for whcih the outputs are given
below.

[1 # Building the LSTM model
1stm_model = Sequential()
1stm_model. add (Embedding(max_features, 128, input_length=maxlen))
1stm_model.add(LSTM(&4, dropout=@.2, recurrent_dropout=e.2))
1stm_model.add(Dense(1, activation="sigmoid"))

Compile the model
1stm_model.compile(optimizer="adam", loss="binary_crossentropy”, metrics=["accuracy"])

Train the model
1stm_model.fit(X_train_pad, y_train, batch_size=batch_size, epochs=epochs, validation data=(X_ test_pad, y test))

WARNING:tensorflow: Layer lstm will not use cuDNN kernels since it doesn't meet the criteria. It will use a generic
Epoch 1/3

4489/4489 [] - 2479s 55ems/step - loss: ©.3162 - accuracy: ©.897@ - val_loss: 8.3@92
Epoch 2/3
4489/4489 [] - 2415s 538ms/step - loss: ©.2042 - accuracy: ©.8975 - val_loss: 8.3@71
Epoch 3/3
4489/4489 [] - 2471s 551ms/step - loss: ©.2764 - accuracy: ©.8992 - val_loss: 8.3194

<keras.src.callbacks.History at @x7cB8e88660ebd>

Figure 8: Building the LSTM Model

4.5 Predicting the LSTM and CNN models
The CNN models outperfomr the LSTM model after evaluation.

4.6 SVM building and Evaluation

SVM is built and executed, the evaluation states that it can be an alternative.

4

[] # Building the CNN model
cnn_model = Sequential()
cnn_model.add (Embedding(max_features, 128, input_length=maxlen))
cnn_model.add(ConviD(64, 5, activation="relu"))
cnn_model.add(GlobalMaxPoolinglD())
cnn_model.add (Dense(1, activation="sigmoid"))

Compile the model
enn_model . compile(optimizer="adan", loss="binary_crossentropy”, metrics=["accuracy”])

Train the model
cnn_model.fit(X_train_pad, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_test_pad, y_test))

Epoch 1/3
4489/4489 [1 - 7es 14ms/step - loss: ©.3115 - accuracy: ©.8959 - val loss: ©.3889 - val accuracy: €.8971
Epoch 2/3
44g9/4489 [1 - 355 8ms/step - loss: ©.2809 - accuracy: ©.8977 - val_loss: @.3172 - val_accuracy: €.8936
Epoch 3/3
44g9/4489 [1 - 21s 7ms/step - loss: ©.2203 - accuracy: ©.910@ - val_loss: @.3566 - val_accuracy: @.8878

<keras.src.callbacks.History at @x7c8e8705ae3e>»

Figure 9: Building the CNN model

Predicting with LS5TM mode
dicting with del
y_pred_lstm = 1lstm _model.predict(X_test_pad)
y_pred_lstm_classes = (y_pred_lstm > @8.5).astype("int32")

Predicting with CNN model
y_pred_cnn = cnn_model.predict(X_test_pad)
y_pred_cnn_classes = (y_pred _cnn > 8.5).astype("int32")

Evaluation for LSTM model
print("LSTM Model Evaluation™)
print(classification_report(y_test, y pred lstm classes))

Evaluation for CHNN model
print("CNN Model Evaluation™)
print(classification_report(y_test, y_pred_cnn_classes))

253/253 [=
LSTM Model Evaluation

=] - 1s 2ms/step

Figure 10: Predicting the models

5 Transfer Models

The transformer model hyperparameter are shown in (15| which is used to fine tune the
model.

6 Results

The BERT function model is executed for which the reference is given below.
The evaluation of the model is given in
Similarly, we build all the other transformer models.

References

Salminen, J., Kandpal, C., Kamel, A., Jung, S. G. and Jansen, B. (2022). Creating and
detecting fake reviews of online products, Journal of Retailing and Consumer Services
64.

[S 253/253 [==============================] - 85 31ms/step
2537253 [==============================] - 1s 2m5f5tep
LSTM Model Evaluation

precision recall fl-score support

e .95 8.94 g.94 4118

1 g.24 8.95 .94 3969

accuracy a8.94 8087
macro avg g.24 a.94 .94 8087
weighted avg .84 8.94 g.94 3887

CNH Model Evaluation

precision recall fl-score support

e g.24 8.93 .93 4118

1 8.93 8.94 8.93 3969

accuracy a8.93 8087
macro avg 8.93 8.93 8.93 B8O87
weighted avg .93 .93 .93 8887

[]

Figure 11: LSTM and CNN evaluation

Building and training the SVM model
svm_model = SVC(kernel="linear")
svm_model .fit(X train_tfidf, y train)

Predicting and evaluating on the test set
y_pred_svm = svm_model.predict(X_test_tfidf)
accuracy _svm = accuracy score(y _test, y pred swvm)
print{f"5VM Model Accuracy: {accuracy_svm}")

Figure 12: SVM model building

[] # Evaluation for SVM model
print({”svM Model Evaluation™)
print(classification_report(y test, y pred svm))

SVM Model Evaluation

precision recall fl-score support

e .91 8.9d .91 4118

1 g.98 g8.91 8.9 3969

accuracy .91 8087
macro avg g.91 g8.91 g8.91 8087
weighted avg a8.01 8,91 a8.91 8887

Figure 13: SVM Model Evaluation

=

[] # Hyperparameters
bert_batch _size = 32
roberta_batch _size = 32
distilbert batch size = 32
albert batch _size = 32

bert_epochs = 5
roberta epochs = 5
distilbert epochs = 5
albert epochs = 5

bert_max_len = 64
roberta max _len = 64
distilbert max_len = 64
albert max_len = b4

Figure 14: Hyperparameters for the transfer models

[]

Function for BERT Tokenization

def bert_encode(data, tokenizer, max_len):
input_ids = []
attention_masks = []

for i in tgdm(range(len({data)))

encoded = tokenizer.encode plus(
data.iloc[i],
add_special_tokens=True,
max_length=max_len,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors="pt",

)

input_ids.append(encoded["input_ids"])

attention_masks.append({encoded["attention_mask™])

input_ids = torch.cat(input_ids, dim=8)
attention_masks = torch.cat({attention_masks, dim=8)

i e A - e et mim wem o e

Figure 15: BERT Model Function

print({classification_report(bert flat true labels, bert flat prediction

a% | | ©/32345 [@@:@0<?, ?it/s]Truncation was not explicitly
fusr/local/lib/python3.18/dist-packages/transformers/tokenization_utils
sarnings.warn(
100%| | 32345/32345 [@@:58<BR:@0, 554.19it/s]
108%| | 8887/8087 [@@:14<00:08, 565.63it/s]
Some weights of BertForSequenceClassification were not initialized from
You should probably TRAIN this model on a down-stream task to be able t

fusr/local/lib/python3.18/dist-packages/transformers/optimization.py:41
sarnings.warn(

precision recall fl-score support

5] 8.99 8.95 a.97 4118

1 .95 8.99 8.97 3969

accuracy .97 8887
macro avg 8.97 a8.97 a8.97 8087
weighted avg 8.987 8.97 8.97 8887

Figure 16: BERT Model Evaluation

	Introduction
	Hardware and Software Requirement
	Dataset
	Implementation of the project
	Installation of Libraries
	Importing the dataset
	Tokenize for LSTM and CNN
	Building the LSTM model and CNN model
	Predicting the LSTM and CNN models
	SVM building and Evaluation

	Transfer Models
	Results

