~

N\ National
College
Ireland

Predictive Analysis of Road Accidents in
India: A Machine Learning Approach
Configuration Manual

MSc Research Project
Data Analytics

Harini Manjunatha
Student 1D: x22169288

School of Computing
National College of Ireland

Supervisor: Shubham Subhnil

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Harini Manjunatha
Student ID: x22169288
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Shubham Subhnil
Submission Due Date: 14/12/2023
Project Title: Predictive Analysis of Road Accidents in India: A Machine
Learning Approach
Word Count: 679
Page Count:]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Harini Manjunatha

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Predictive Analysis of Road Accidents in India: A
Machine Learning Approach - Configuration Manual

Harini Manjunatha
x22169288

1 Introduction

The configuration manual contains the detailed information on setting up system. The
objective of this manual is to outline the process on conducting the study 'Predictive
Analysis of Road Accidents in India: A Machine Learning Approach’. It specifies the
necessary machine setup needed to create and execute the models. The instructions
cover installing the required programmes and packages in addition to setting up the
fundamental configuration that is necessary for the project to succeed.

2 System Specification

In this section, the hardware and software requirements used for the research is presented.

2.1 Hardware specification

Operating System Mac OS

RAM 8 GB

System processor Apple M2 (8-core)

Speed in Hz 3.49 G HZ

GPU M2 10-Core GPU 13.5 W 1398 MHz

Figure 1: Hardware specification

2.2 Software specification

Programming Language |Python 3.9
Softwares Anaconda and Jupyter notebook
Web browser Safari

Figure 2: Software specification

3 Software Used

e Microsoft excel: Used for initial exploration of data.

e Jupyter Notebook E Jupyter Notebook provides an interactive environment where
we execute code in cells and visualize the results. It makes process easier to exper-
iment with different machine learning models, algorithms, visualising the data and
data preprocessing techniques.

e smartdraw [| : Online platform used for creating flowcharts.

4 Installation

The First step in the process involves launching the Anaconda application. The applic-
ation provides an extensive set of software designed to perform diverse needs. Jupyter
notebook is launched which offers an envirnoment where we can execute the code in
cells and visualise the results. Numerous exceptional Python libraries are available for
comprehensive data analysis purposes. These libraries enhance the capability to explore,
process, and derive insights from datasets efficiently. Figure |3| shows the interface of an

Anaconda navigator.

{D) ANACONDA NAVIGATOR
LajfiEme [Atapplications “| on [base oot “] (channets
nEnvironments a &

‘ Learning @

an Community DataSpell

DataSpell is an IDE for exploratory data
analysis and prototyping machine learning
models. It combines the interactivity of
Jupyter notebooks with the intelligent
Python and R coding assistance of PyCharm
in one user-friendlv environment.

- N\
install |
J

AnacondaToalbex
supercharged

local notebooks,
Click the Taolbox
tile to Install.

Qt Console

As32
PyQt GUI that supports inline figures, proper
multiline editing with syntax highlighting,
graphical calltips, and more.

Documentation

Anaconda Blog @
You
v g -

)

JupyterLab

A344

An extensible environment for interactive

and reproducible computing, based on the
Jupyter Notebook and Architecture.

Launch

@

RStudio

A1.044

A set of integrated tools designed to help
you be more productive with R. Includes R
essentials and notebooks.

Launch

OUpgrade Now

c

. (d
Jupyter

L)
Notebook

A 6402

Web-based, interactive computing notebook
. Editand run h dabl
docs while describing the data analysis.

Launch B
AWy
=

Spyder

A533
Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Launch

Figure 3: Anaconda Interface

Figure [is the main page of the jupyter notebook. The new ipynb file is created to

begin coding.

Figure [5[represents the code file of the project. The file is executed using the command

restart and run all

! Jupyter notebook: https://jupyter.org
2SmartDraw: https://cloud.smartdraw.com//?flags=129

https://jupyter.org
https://cloud.smartdraw.com//?flags=129

Z Jupyter

Files Running Clusters

Select items to perform actions on them.

Quit Logout

Upload New - || &

0/~ W/ Name ¥ Last Modified | File size
[Desktop 2 hours ago
[Documents 24 days ago

O Downloads

11 minutes ago

0 Movies ayear ago
O Music 19 days ago
O opt ayear ago
[Pictures 9 months ago
[Public ayear ago
[VirtualBox VMs ayear ago

[bankCusChurn_KNNPredictions_R.csv
[bankCusChurn_RFPredictions_R.csv
DdiR

Dd2.R

7 months ago 4.69 kB
7 months ago 4.68 kB
7 months ago 1.54 kB
7 months ago 1.56 kB

Figure 4: Jupyter Notebook

" JUpyter thesis Last Checkpoint: 26/10/2023 (autosaved) A [Logout
File Edit View Insert Cell | Kernel | Widgets Help Trusted | Python 3 (ipykernel) O
Inte t I}, (T
B+ @+ v pag P oo | =
Restart [e]
Restart & Clear Output
Restart & Run Al
MSc Resear Reconnect
Restart the Kernel and re-un the notebook
| Shutdc...”
Data Analyti
Change kernel »
Predictit ysis or Hoad in India: A Machine Learning
Approach

Harini Manjunatha - x22169288

Required Imports
In [1]: import numpy as np
import pandas as pd

#Dataset import
import csv

#Hodel build
from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import GridSearchCV

from sklearn. linear_model import LinearRegression

from sklearn.model_selection import GridSearchCV

Analysis
import seaborn as sns

import matplotlib.pyplot as plt
smatplotlib_inline

Figure 5: Code File on jupyter notebook

5 Project Development

5.1

Figure |§| shows the list of all necessary library imports used in the project. The numpyE|
and pandas E| libraries enable efficient manipulation and analysis of data through function-
alities like arrays, matrices, and data structures like DataFrames. Scikit-learn modules
E|, regression models like RandomForestRegressor, DecisionTreeRegressor, LinearRegres-
sion and GridSearchCV are imported to construct, evaluate, and tune machine learning
models.

Importing necessary library

3Numpy: https://numpy.org
4Pandas: https://pandas.pydata.org
5Scikit-learn: https://scikit-learn.org/stable/

https://numpy.org
https://pandas.pydata.org
https://scikit-learn.org/stable/

Required Imports

In [1]: import numpy as np
import pandas as pd

#Dataset import
import csv

#Model build

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import GridSearchCV

Analysis

import seaborn as sns

import matplotlib.pyplot as plt
%matplotlib inline
sns.set_style("darkgrid")
import seaborn as sns

import plotly.graph_objs as go
import plotly.express as px
sns.set(

import plotly.express as px
from tabulate import tabulate

Figure 6: Library Imports]

5.2 Import dataset
Figure [7|is the code snippet used for importing the dataset.

Importing dataset of state wise road accident based on time occurance
between the year 2001 - 2021

In [2]: df=pd.read_csv('/Users/harinim/Downloads/new.csv"')

Figure 7: Dataset Import

5.3 Model Building

The dataset is spli into two sets. One for training and another for testing. Data from the
year 2001 to 2020 is used for training whereas data of 2021 is used for testing. The code
snippet which splits the data is shown in the Figure

In [1:
train_data = df[df['Year'] <= 2020]1[['Year', 'State'll
train_labels = df[df['Year'] <= 2020][['6-9", '9-12', '12-15','15-18','18-21",'21-24',
'0-3','3-6']1]1 # Multiple target variables

test_data = df[df['Year'] == 2021][['Year',6 'State'll
test_labels = df[df['Year'] == 2021][['6-9', '9-12', '12-15','15-18','18-21','21-24",
'0-3','3-6"'11 # Multiple target variables

Figure 8: Dataset Splitting

The code snippet in Figure [J] identify and eliminate outliers from the dataset using
the z-score method.

Then code snippet in the Figure [L0| implements a Random Forest regression model
using scikit-learn’s RandomForestRegressor ﬂ It initiates a grid search for the best hyper-
parameters using GridSearchCV |Z| to optimize the model’s performance. The code eval-

6Scikit-learn: https://scikit-learn.org/stable/
"Grid search: https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

In [1: # Outlier detection
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
numeric_columns. remove('Year'
Outlier detection using z-score method for each numeric column
outlier_threshold = 3
outlier_indices = []
for col in numeric_columns:
mean = df[coll.mean()
std_dev = df[col].std()
outliers = df[(df[coll - mean).abs() > outlier_threshold * std_dev]
outlier_indices.extend(outliers.index.tolist())

unique_outlier_indices = list(set(outlier_indices))
df_outliers = df.drop(unique_outlier_indices)

print("Indices of Detected Outliers:", unique_outlier_indices)

Figure 9: Outlier detection

uates the model’s performance metrics using Mean Absolute Error (MAE), R-squared,
Root Mean Squared Error (RMSE) for each target variable in test set.

Model 1 - Random forest

Define the parameter grid to search
param_grid =
'n_estimators': [1e@, 200, 3ee],
'max_depth': [None, 10, 20,15],
'min_samples_split': [2, 5, 1e],
‘min_samples_leaf': [1, 2, 4]

g

Initialize the Random Forest Regressor
rf_regressor = RandomForestRegressor(random_state=42)

Initialize Grid Search Cross Validation
grid_search = GridSearchCV(estimator=rf_regressor, param_grid=param_grid,
scoring='neg_mean_squared_error', cv=5, verbose=1, n_jobs=-1

Perform the grid search
grid_search.fit(train_data, train_labels)

best_params = grid_search.best_params_
print(f'Best Hyperparameters: {best_params}')

best_rf_regressor = grid_search.best_estimator_
predictions = best_rf_regressor.predict(test_data)
results = []
Validate the model
for i, col in enumerate(train_labels.columns):
mae = mean_absolute_error(test_labels[col], predictions([:, i])
mse = mean_squared_error(test_labels[col], predictions[:, il)
r2 = r2_score(test_labels[col], predictions[:, il)
rmse = np.sqrt(mse)
Append the results to the list
results.append ({
'Time': col,
'‘MAE': mae,
‘R-squared': r2,
'RMSE': rmse
1

Create a DataFrame from the results list
results_df = pd.DataFrame(results)

print(tabulate(results_df, headers='keys', tablefmt='fancy_grid'))

Figure 10: Random Forest Regressor Model

Figure (11| visualizes the distribution of differences between the actual and predicted
values from the regression model. Normal distribution plot provides an immediate un-
derstanding of the spread and density of prediction errors. The inclusion of vertical
lines denoting the mean difference and standard deviations aids in interpreting the cent-
ral tendency and variability of these prediction errors, offering valuable insights into the
model’s performance and the nature of discrepancies between actual and predicted values.

The Predicted output from the best performing model is visualised to understand the
data pattern. The code snippet of the visualisation is given in Figure

Calculate the differences between actual and predicted values
differences = test_labels.values - predictions

Flatten the differences array for plotting
differences_flat = differences.flatten()

Plot the normal distribution

plt.figure(figsize=(12, 6))

sns.histplot(differences_flat, kde=True, color='blue', stat='density"')
plt.title('Difference between Actual and Predicted Values')
plt.xlabel('Difference')

plt.ylabel('Density')

Add a vertical line at mean and standard deviations

mean_diff E np.mean(differences_flat)

std_dev_diff = np.std(differences_flat)

plt.axvline(mean_diff, color='red', linestyle='dashed', linewidth=1)
plt.axvline(mean_diff + std_dev_diff, color='green', linestyle='dashed', linewidth=1)
plt.axvline(mean_diff - std_dev_diff, color='green', linestyle='dashed', linewidth=1)

Add legend and show plot
plt.legend(['Mean', 'Mean + 1 Std Dev', 'Mean - 1 Std Dev'])
plt.show()

Figure 11: Normal distribution

In [1: # Parallel Coordinates Plot for State-wise Accident - 2822
plt.figure(figsize=(10, 6))
sns.set_theme(style="whitegrid")
sns. lineplot(data=df_regrouped.T, palette="tabl@", linewidth=3)
plt.xticks(rotation=90)
plt.title('State-wise Accident - 20822')
plt.xlabel('Time Intervals')
plt.ylabel('Accident Count')
plt.legend(title='States', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()

In [1: # Area Plot for each state's data
for state in df_regrouped.index:
plt.figure(figsize=(10, 6))
plt.fill_between(df_regrouped.columns, df_regrouped.loc[state])
plt.title(f'Data for {state}')
plt.xlabel('Time Period')
plt.ylabel('Value')
plt.show()

In []:

Calculating total accidents for each state in the year 2022
accidents_2022 = df_regrouped.sum{axis=1)

Sorting states based on total accidents in descending order
sorted_states = accidents_2022.sort_values(ascending=False)

Selecting top 10 states with the highest accident rate
top_states = sorted_states.head(10)

Selecting bottom 18 states with the lowest accident rate
bottom_states = sorted_states.tail(10)

Pie chart for top 10 states with highest accident rate
plt.figure(figsize=(10, 8))

plt.pie(top_states, labels=top_states.index, autopct='%1.1f%%', startangle=148)
plt.title('Top 1@ States with Highest Accident Rate in 2022')

plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.show()

Pie chart for bottom 1@ states with lowest accident rate

plt.figure(figsize=(10, 8))

plt.pie(bottom_states, labels=bottom_states.index, autopct='%1.1f%%', startangle=140)
plt.title('Bottom 10 States with Lowest Accident Rate in 2022')

plt.axis{'equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.show()

Figure 12: Predicted result Visualisation

	Introduction
	System Specification
	Hardware specification
	Software specification

	Software Used
	Installation
	Project Development
	Importing necessary library
	Import dataset
	Model Building

