

# **Configuration Manual**

MSc Data Analytics Research Project

Preetham Madeti 22142258

School of Computing National College of Ireland

Supervisor: Abdul Qayum

## National College of Ireland



## **MSc Project Submission Sheet**

#### **School of Computing**

| Student Name:  | Preetham Madeti                                                                     |                      |                             |
|----------------|-------------------------------------------------------------------------------------|----------------------|-----------------------------|
| Student ID:    | 22142258                                                                            |                      |                             |
| Programme:     | MSc Data Analytics                                                                  | Year:                | 2023/2024                   |
| Module:        | Research Project                                                                    |                      |                             |
| Supervisor:    | Mr. Abdul Qayum                                                                     |                      |                             |
| Date:          | 31/01/2024                                                                          |                      |                             |
| Project Title: | Implementing a Hybrid System for Accurate URLs with Machine Learning and Deep Learn | ely Dete<br>ning Teo | cting Phishing<br>chniques. |

Word Count: 735

## Page Count: 10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Preetham Madeti

**Date:** 29/01/2024

## PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

| Attach a completed copy of this sheet to each project (including multiple  |  |
|----------------------------------------------------------------------------|--|
| copies)                                                                    |  |
| Attach a Moodle submission receipt of the online project                   |  |
| submission, to each project (including multiple copies).                   |  |
| You must ensure that you retain a HARD COPY of the project, both           |  |
| for your own reference and in case a project is lost or mislaid. It is not |  |
| sufficient to keep a copy on computer.                                     |  |

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

| Office Use Only                  |  |
|----------------------------------|--|
| Signature:                       |  |
| Date:                            |  |
| Penalty Applied (if applicable): |  |

## **Configuration Manual**

# Preetham Madeti 22142258

## Introduction:

This manual provides detailed instructions for configuring and deploying the phishing URL detection system developed in this research project. The system employs a hybrid model integrating machine learning and deep learning techniques to accurately identify phishing URLs.

## **1** System Requirements:

To guarantee efficient model processing and to minimize the duration required, it's crucial to be equipped with the necessary hardware and software resources.

## **1.1. Hardware Requirements:**

The implementation is performed on an HP Pavilion; the configuration of the device is as follows.

| 1.Processor:  | Intel(R) Core (TM) i5-9300H CPU @ 2.40GHz |
|---------------|-------------------------------------------|
| 2.RAM:        | 8.00 GB (7.84 GB usable)                  |
| 3. Hard Disk: | 256GB SSD, 1 TB HDD                       |
| 4.OS          | Windows 10 Pro 64 – bit                   |

## **1.2 Software Requirements:**

Before beginning the model construction phase, the below mentioned software, libraries, and tools were set up and installed on the system.

| Software/Tools | Version | Information                          |
|----------------|---------|--------------------------------------|
| Python         |         | To develop the model python is used  |
|                |         | in this project.                     |
| Anaconda       |         | Anaconda stands as a highly          |
|                |         | favoured platform for the data       |
|                |         | science community, offering          |
|                |         | capabilities for computational work, |
|                |         | managing libraries, and deploying    |
|                |         | models, all within a Windows-        |
|                |         | friendly environment                 |
| Pandas         |         | It is particularly well-suited for   |
|                |         | dealing with tabular data, such as   |
|                |         | data stored in spreadsheets or       |
|                |         | databases.                           |

| NumPy         | NumPy, an open-source tool from          |
|---------------|------------------------------------------|
|               | 2023, is utilized for tackling intricate |
|               | mathematical issues within data.         |
| Sci-kit Learn | This library is employed for tasks       |
|               | like Classification, Regression, and     |
|               | data preprocessing. (Scikit-learn:       |
|               | Machine Learning in Python —             |
|               | scikit-learn 0.24.2 documentation,       |
|               | 2023).                                   |

## 2. Implementation:

In this section there is a complete guide to run the project in any windows system.

1. Download and Install Anaconda Software in the windows system. (https://www.anaconda.com/products/individual)

|                             | All applications Y ON                                                                                                                                                       | base (root)                                                                                                                       | D                                                                                                                                |                                                                                                                                      |                                                                                                                                    |                                                                                                                               |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ironments                   | •                                                                                                                                                                           | •                                                                                                                                 | •                                                                                                                                | •                                                                                                                                    | •                                                                                                                                  | •                                                                                                                             |
| ning                        | DS                                                                                                                                                                          | O                                                                                                                                 | lab                                                                                                                              | Jupyter                                                                                                                              | $\mathbf{O}$                                                                                                                       | IPy                                                                                                                           |
|                             | DataSpell                                                                                                                                                                   | CMD.exe Prompt<br>0.1.1                                                                                                           | JupyterLab<br>3.4.4                                                                                                              | Notebook<br>6.4.12                                                                                                                   | Powershell Prompt<br>0.0.1                                                                                                         | Qt Console<br>522                                                                                                             |
| munity                      | DetaSpell is an IDE for exploratory data<br>analysis and prototyping machine learning<br>models. It combines the interactivity of<br>Jugyter notebooks with the intelligent | Run a cmd.exe terminal with your current<br>environment from Navigator activated                                                  | An extensible environment for interactive<br>and reproducible computing, based on the<br>Jupyter Notebook and Architecture.      | Web-based, interactive computing<br>notebook environment. Edit and run<br>human-readable docs while describing the<br>data analysis. | Run a Powershell terminal with your<br>current environment from Navigator<br>activated                                             | PyQt GUI that supports inline figures,<br>proper multiline editing with syntax<br>highlighting, graphical calltips, and more. |
|                             | in one user-friendly environment.                                                                                                                                           | Launch                                                                                                                            | Launch                                                                                                                           | Launch                                                                                                                               | Launch                                                                                                                             | Launch                                                                                                                        |
|                             | 0                                                                                                                                                                           | •                                                                                                                                 | •                                                                                                                                | •                                                                                                                                    | •                                                                                                                                  | *                                                                                                                             |
|                             | 1 No. 1                                                                                                                                                                     | X                                                                                                                                 |                                                                                                                                  | 2                                                                                                                                    | Ŭ.                                                                                                                                 | Cloud Infrastructure                                                                                                          |
|                             | Spyder                                                                                                                                                                      | VS Code                                                                                                                           | Datalore                                                                                                                         | Deepnote                                                                                                                             | IBM Watson Studio Cloud                                                                                                            | Oracle Data Science Service                                                                                                   |
| _                           | 5.2.2<br>Scientific Prthon Development<br>EnviRonment, Powerful Python IDE with<br>advanced edibing, interactive testing,                                                   | 1.77.3<br>Streamlined code editor with support for<br>development operations like debugging,<br>task running and version control. | Kick-start your data science projects in<br>seconds in a pre-configured environment.<br>Enjoy coding assistance for Python, SQL, | Deepnote is a notebook built for<br>collaboration. Create notebooks in your<br>browser, spin up your conda environment               | IBM Watson Studio Cloud provides you the<br>tools to analyze and visualize data, to<br>cleanse and shape data, to create and train | OCI Data Science offers a machine learning<br>platform to build, train, manage, and<br>deploy your machine learning models on |
| da Toolbox                  | debugging and introspection features                                                                                                                                        |                                                                                                                                   | and R in Jupyter notebooks and benefit<br>from no-code automations. Use Datalore                                                 | in seconds and share with a link.                                                                                                    | machine learning models. Prepare data and<br>build models, using open source data                                                  | the cloud with your favorite open-source<br>tools                                                                             |
| orged<br>tebooks<br>Taalbox | Launch                                                                                                                                                                      | Launch                                                                                                                            | Launch                                                                                                                           | Launch                                                                                                                               | Launch                                                                                                                             | Launch                                                                                                                        |
| IT THE DOCT                 | •                                                                                                                                                                           |                                                                                                                                   |                                                                                                                                  |                                                                                                                                      |                                                                                                                                    |                                                                                                                               |
|                             | DC                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                  |                                                                                                                                      |                                                                                                                                    |                                                                                                                               |

2. Open the Jupyter Notebook from Anaconda.

| 💭 Jupyter                                              |        | Quit          | Logout    |
|--------------------------------------------------------|--------|---------------|-----------|
| Files Running Clusters                                 |        |               |           |
| Select items to perform actions on them.               |        | Upload        | New 🕶 🖸   |
| □ 0 🔹 🖿 / Desktop                                      | Name 🕹 | Last Modified | File size |
| ۵                                                      |        | seconds ago   |           |
| C Batch - 17                                           |        | 3 years ago   |           |
| CV and Cover Letter                                    |        | a month ago   |           |
| C Data Analytics                                       |        | 2 months ago  |           |
| Data Governance and Ethics (H9DGE)                     |        | a month ago   |           |
| C Documents                                            |        | 22 days ago   |           |
| C Final Year Project                                   |        | 6 months ago  |           |
| D DJOBS                                                |        | 7 months ago  |           |
| Ch My files                                            |        | 8 months ago  |           |
| Preetham M - Rajalakshmi Institute Of Technology - B.E |        | 3 years ago   |           |
| Copy                                                   |        | 5 months ago  |           |

- 3. After opening jupyter notebook click on the new notebook (python 3).
- 4. In notebook, Import all the required libraries.

```
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from urllib.parse import urlparse, parse_qs
from collections import Counter
```

from sklearn.metrics import classification\_report as urlphish\_hyrder\_E1
from sklearn.metrics import confusion\_matrix as urlphish\_hyrder\_E2
from sklearn.metrics import ConfusionMatrixDisplay as urlphish\_hyrder\_E3
import time as urlphish\_hyrder\_E4

from sklearn.model\_selection import GridSearchCV as urlphish\_hyrder\_E5

```
from sklearn.metrics import classification_report as urlphish_hyrder_E1
from sklearn.metrics import confusion_matrix as urlphish_hyrder_E2
from sklearn.metrics import ConfusionMatrixDisplay as urlphish_hyrder_E3
import time as urlphish_hyrder_E4
from sklearn.model_selection import GridSearchCV as urlphish_hyrder_E5
from sklearn.ensemble import AdaBoostClassifier as urlphish_hyrder_E6
from sklearn.ensemble import GaussianNB as urlphish_hyrder_E7
from sklearn.naive_bayes import GaussianNB as urlphish_hyrder_E8
from sklearn.neural_network import MLPClassifier as urlphish_hyrder_E10
from sklearn.ensemble import VotingClassifier as urlphish_hyrder_E11
```

5. Import the Provided Dataset.

urlphish\_hyrd = urlphish\_hyrde.read\_csv('phishing\_site\_urls.csv')

6. Next Step will be Pre Processing Step will be performed using following Code.

```
']: urlphish_hyrd.info()
   <class 'pandas.core.frame.DataFrame'>
RangeIndex: 549346 entries, 0 to 549345
   dtypes: object(2)
   memory usage: 8.4+ MB
   pick null data out
i]: urlphish_hyrd.isna().any()
3]: URL
             False
   Label
             False
   dtype: bool
   pick duplicate data out
]: urlphish_hyrd.duplicated()
·]: 0
              False
              False
    1
    2
              False
   3
              False
   4
              False
              ...
True
   549341
    549342
               True
    549343
               True
    549344
               True
    549345
               True
   Length: 549346, dtype: bool
```

6. Exploratory Data Analysis has been Performed and Visualisation has been done using

## following Code





```
urlphish_hyrd['url_length'] = urlphish_hyrd['URL'].apply(len)
plt.hist(urlphish_hyrd['url_length'], bins=50)
plt.title('Histogram of URL Lengths')
plt.xlabel('URL Length')
plt.ylabel('Frequency')
plt.show()
```



7. After Data Pre Processing the Data Splitting is Performed before Building a Model

In [11]: from sklearn.model\_selection import train\_test\_split as urlphish\_hyrderios

```
hish_hyrd_R = 99
hish_hyrd_Sa = 0.4
#.....train= 60% .......
inputN_hybrid, inputS_hybrid, outputN_hybrid, outputS_hybrid = urlphish_hyrderios(input_hybrid, output_hybrid, test_size=hish_hyr
hish_hyrd_Sb = 0.5
#.....test= 20% ,validation= 20% .......
inputV_hybrid, inputS_hybrid, outputV_hybrid, outputS_hybrid = urlphish_hyrderios(inputS_hybrid, outputS_hybrid, test_size=hish_hyr
print(inputN_hybrid.shape)
print(inputS_hybrid.shape)
4
```

#### 8. Hybrid Models Implementation has been Performed with the following Code

```
In [16]:
           urlphish_vrt = {'voting': ['soft', 'hard']}
           urlphish_hyrder_m1 = urlphish_hyrder_E7(criterion= 'entropy', n_estimators= 20, n_jobs= 10)
           urlphish_hyrder_m2 = urlphish_hyrder_E10(activation= 'relu', learning_rate= 'constant', solver= 'adam')
           urlphish_vrtr = urlphish_hyrder_E11(estimators=[('randomforest', urlphish_hyrder_m1), ('mlp', urlphish_hyrder_m2)])
           urlphish_vrtr = urlphish_hyrder_E5(urlphish_vrtr, urlphish_vrt, cv=2)
urlphish_vrtr.fit(inputN_hybrid[:1000], outputN_hybrid[:1000])
           print(urlphish_vrtr.best_params_)
           print("score_value : ", urlphish_vrtr.best_score_)
            {'voting': 'soft'}
            score_value : 0.801
In [17]: urlphish_hyrder_a = urlphish_hyrder_E4.time()
hyrder_A = urlphish_hyrder_E11(estimators=[('randomforest', urlphish_hyrder_m1), ('mlp', urlphish_hyrder_m2)], **urlphish_vrtr.be
           hyrder_A.fit(inputN_hybrid, outputN_hybrid)
           urlphish_hyrder_b = urlphish_hyrder_E4.time()
print("\n Training-----time :", urlphish_hyrder_b-urlphish_hyrder_a,"\n")
           urlphish_hyrder_a = urlphish_hyrder_E4.time()
           P_hybrid = hyrder_A.predict(inputV_hybrid)
           print(urlphish_hyrder_E1(outputV_hybrid, P_hybrid))
E2 = urlphish_hyrder_E2(outputV_hybrid, P_hybrid)
E3 = urlphish_hyrder_E3(confusion_matrix = E2, display_labels = [0, 1])
           E3.plot()
           urlphish_hyrder_b = urlphish_hyrder_E4.time()
           print("\n validation-----time :", urlphish_hyrder_b-urlphish_hyrder_a,"\n")
```

#### 9. The Accuracy is considered as evaluation factor after Model Implementation

```
urlphish_hyrder_a = urlphish_hyrder_E4.time()
hyrder_A = urlphish_hyrder_E11(estimators=[('randomforest', urlphish_hyrder_m1), ('mlp', urlphish_hyrder_m2)], **urlphish_vrtr.be
hyrder_A.fit(inputN_hybrid, outputN_hybrid)
urlphish_hyrder_b = urlphish_hyrder_E4.time()
print("\n Training-----time :", urlphish_hyrder_b-urlphish_hyrder_a,"\n")
urlphish_hyrder_a = urlphish_hyrder_E4.time()
P_hybrid = hyrder_A.predict(inputV_hybrid)
print(urlphish_hyrder_E1(outputV_hybrid, P_hybrid))
E2 = urlphish_hyrder_E2(outputV_hybrid, P_hybrid)
E3 = urlphish_hyrder_E3(confusion_matrix = E2, display_labels = [0, 1])
E3.plot()
urlphish_hyrder_b = urlphish_hyrder_E4.time()
print("\n validation------time :", urlphish_hyrder_b-urlphish_hyrder_a,"\n")
```

Training-----time : 768.395833492279

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.87      | 0.55   | 0.67     | 22821   |
| 1            | 0.88      | 0.98   | 0.93     | 78618   |
| accuracy     |           |        | 0.88     | 101439  |
| macro avg    | 0.88      | 0.76   | 0.80     | 101439  |
| weighted avg | 0.88      | 0.88   | 0.87     | 101439  |

| prir<br>E2 =<br>E3 =<br>E3.p | nt(urlphis<br>= urlphish<br>= urlphish<br>plot()<br>phish_hyrd | rder_A.predic<br>h_hyrder_E1(o<br>_hyrder_E2(ou<br>_hyrder_E3(co<br>er_b = urlphi | :t(inputS_<br>butputS_hy<br>utputS_hyl<br>onfusion_r<br>ish_hyrder | _hybrid)<br>ybrid, P_hy<br>brid, P_hyt<br>matrix = E2<br>r_E4.time() | /brid))<br>prid)<br>2, display_la             | bels = [0, 1])    |    |
|------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-------------------|----|
| prin                         | nt("\n tes                                                     | ting1                                                                             | cime : .                                                           | uriphish r                                                           | ivruer p-urip                                 | hish hyrder a, "\ | n" |
| prir                         | nt("\n tes                                                     | precision                                                                         | recall                                                             | f1-score                                                             | support                                       | hish_hyrder_a,"\  | n  |
| prir                         | nt("\n tes                                                     | precision<br>0.87                                                                 | recall 0.55                                                        | f1-score<br>0.68                                                     | support<br>22845                              | hish_hyrder_a,"\  | n  |
| prir                         | nt("\n tes<br>0<br>1                                           | precision<br>0.87<br>0.88                                                         | recall<br>0.55<br>0.98                                             | 0.68<br>0.93                                                         | support<br>22845<br>78595                     | hish_hyrder_a,"\  | n  |
| prir                         | nt("\n tes<br>0<br>1<br>accuracy                               | precision<br>0.87<br>0.88                                                         | recall<br>0.55<br>0.98                                             | f1-score<br>0.68<br>0.93<br>0.88                                     | support<br>22845<br>78595<br>101440           | hish_hyrder_a,`\  | n  |
| prir                         | nt("\n tes<br>0<br>1<br>accuracy<br>macro avg                  | precision<br>0.87<br>0.88<br>0.88                                                 | recall<br>0.55<br>0.98<br>0.76                                     | f1-score<br>0.68<br>0.93<br>0.88<br>0.80                             | support<br>22845<br>78595<br>101440<br>101440 | hish_hyrder_a,`\  | n  |

Total Execution Time:

• The overall duration taken to train the dynamic model was 768.395 seconds, while the time taken to test the data using the trained model amounted to 0.575 milliseconds.

The concluding code files are included within three distinct project files, titled 'Phishing URL Data Cleaning.ipynb', 'Implementing ML-DL Models.ipynb', and 'Hybrid Model with ML-DL Models.ipynb', respectively.

## References

Anaconda. 2021. Anaconda | The World's Most Popular Data Science Platform. [online] Available at: .<https://www.anaconda.com/>.

Numpy.org. 2021. NumPy. [online] Available at: <a href="https://numpy.org/>">https://numpy.org/>.

Scikit-learn.org. 2021.

scikit-learn machine learning in Python — scikit-learn 0.24.2

documentation. [online] Available at: <a href="https://scikit-learn.org/stable/">https://scikit-learn.org/stable/</a>>.