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Detection of Fighter Planes in Aerial Images using
YOLO V8

Santosh Kumar Reddy Lekkala
22125736

Abstract

This research explores the efficacy of YOLO v8 in detecting fighter planes in
aerial images, crucial for military defense. YOLO v8 strikes a balance between
speed and accuracy, making it ideal for realtime applications. The study evalu-
ates its performance against previous versions, addressing challenges in identifying
small targets amidst clutter.Using a large dataset and YOLO v8, the mean Av-
erage Precision (mAP) achieved 70 percent, indicating the potential for improved
accuracy. However, computational constraints hampered completion, implying un-
realized potential with more data and training. The achievement of 54 percent
mAP in a difficult situation with 35 lessons emphasizes the need of thorough train-
ing. The study predicts the significance of YOLO v8 in transforming military aerial
surveillance, highlighting the critical balance of precision and speed in fighter air-
craft identification. For realizing potential of YOLO v8, in depth research could
entail amalgamation of added fighter planes intense data training.

1 Introduction

Recently, satellite remote sensing has significantly improved the amount of information
obtained from aerial photos. This technological progress is particularly noteworthy for
military purposes, as ability to accurately identify fighter jets is essential for safeguard-
ing against potential dangers posed to these exceptionally advanced aircraft. Despite
thorough investigation into many ways for identifying objects, including traditional tech-
niques sophisticated deep learning algorithms like as SSD with YOLO, difficulties remain,
notably in recognizing tiny target items within complicated backdrops and identifiable
patterns.This study aims to improve the accuracy of identifying and classifying fighter
aircraft by using capabilities of YOLOvVS, the most recent version developed by ultra-
lytics. The YOLOv8 model achieves a harmonious combination of fast processing and
precise results, making it very well suited for military applications that need realtime
performance. The main aim of this research is to evaluate extent of improvement in pre-
cision gained by YOLOvVS when identifying fighter aircraft in comparison to its previous
versions, in addition to examining any possible limitations. mAP) is main assessment
parameter used to assess success of YOLOv8 implementation. Primary objective is to
completely transform aerial surveillance in military sector, acknowledging vital import-
ance of immediate detection. Countries allocate significant money to their defense, with
fighter planes playing a crucial role in their modern military capabilities. Identification
of these aircraft during aerial surveillance is vital for evaluating potential risks, because



precise identification allows for deployment of countermeasures to reduce such dangers.
The sample images of dataset can be seen in Fig|l] and

Figure 2: Sample Images of planes from Dataset

This study has applications in military airport surveillance of data, effective man-
agement. Despite promising results from deep learning algorithms like YOLO, aerial
combat aircraft identification remains difficult. Zhang et al.’s (2018) aircraft identific-
ation using YOLO with deep learning showed promise, but there’s always potential for
enhancement, particularly when recognizing small target objects in congested clusters
identifiable shapes. Liu et al. (2021) suggested an SSD-based model for aircraft de-
tection, introducing DAFFNet to improve accuracy. However, recognizing small objects
remains a challenging area for development. Jindal et al.’s (2022) study highlighted the
need for well organized datasets and accurate annotations to overcome difficulties in mil-
itary aviation research. Recognizing tiny airplanes in remote sensing photos remains a
challenge for current algorithms, particularly in the presence of complex backgrounds.In
the realm of object detection, two primary types of algorithms exist: one-stage and two
stage. In military contexts, where the detection of fighter aircraft is time critical, two-
stage algorithms, such as RCNN versions, are unsuitable for realtime applications due to
their sluggish processing speed, despite offering high accuracy. On the contrary, one-stage
algorithms like SSD and YOLO provide quicker detection at the expense of some accur-
acy.Previous work using YOLO v) showed encouraging outcomes, but there is room for
improvement, especially in terms of detection speed and accuracy, particularly for remote
sensing applications. Leveraging state-of- the-art YOLOVS, this research aims to contrib-
ute to the progress made in fighter aircraft identification in aerial images. Developed by



ultralytics, YOLOVS is wellsuited for the specific military domain due to its renowned
balance of speed and accuracy.The one-shot approach of YOLOvVS, processing the entire
image at once, proves particularly advantageous for realtime object detection, especially
for fastmoving and structurally complex objects like fighter jets in the air. The research
anticipates that leveraging YOLOv8 will not only enhance detection accuracy but also
redefine the landscape of aerial surveillance within the military context Sample images
of fighter planes are provided in Figure 1 and Figure 2, showcasing the potential impact
of this research on the field. samples images of fighter planes are shown in Figure 77

1.1 Reasearch Question

”What level of accuracy does YOLO v8 achieve in the detection of fighter
jets within aerial images, and what factors influence its performance in this
specific context?”?

1.2 Structure of Report

e Section 1 - Introduction A general introduction of why waste segregation is import-
ant and how can computer vision help improve it.

e Section 2 - Related Work A procedural go through of research required that led to
the research problem and its proposed solution

e Section 3 - Methodology A Methodological approach dividing the project into stages
which are important and need to be completed in order.

e Section 4 - Results & Evaluation All the experimentation performed will be critically
evaluated in this section

e Section 5 - Conclusion & Future Work Insights that have been gained by this
research and possible recommendations that can help improve upon this research
will go in this section.

2 Related Work

2.1 Yolo Related work

2.1 YOLO Related Work 2.1 YOLO Related Work YOLO Related Work Recent advance-
ments in object detection methodologies, particularly those based on the YOLO architec-
ture, showcase a significant leap forward in various domains. Researchers have been dili-
gent in tailoring and optimizing YOLObased models to address specific challenges across
diverse applications, demonstrating the versatility and adaptability of these models. |Gong
et al.| (2022)) introduced SPH YOLOv5, a modification of the YOLOv5 model tailored
explicitly for satellite image analysis. This adaptation, named SPH YOLOvV5, exhibits
superior performance in detecting small objects and navigating complex scenes. Lever-
aging innovative features and attention modules, the model demonstrated its prowess
on datasets like NWPU VHR10 and DOTA. Authors emphasize possibility of further
investigation in incorporation of multispectral data, which presents an opportunity for
further improvement in interpretation of satellite images [Liang et al.| (2022) introduced



Edge YOLO, mobile object detection system designed for edge computing devices. It is
as per YOLO architecture specifically tailored for this purpose. Despite its low computa-
tional capacity, this system has outstanding capability in supporting object identification
as per deep learning into edge settings. With just 8 million parameters, Edge YOLO
accomplishes the astounding feat of finding a balance between speed and accuracy at
the perimeter. Authors recommend extending capability of Edge YOLO to a broader
array of edge computing devices integrating it in other I'TS platforms and scenarios;Wan
et al.| (2023) investigated issue of optical remote sensing image object identification mod-
els underutilizing feature pyramid output. They introduced the YOLO HR approach
as a potential answer to this problem. By recycling output of feature pyramid, this
technique improves efficacy of detection. It employs unique approach by combining mul-
tihead strategy and MAB. In comparison experiments, YOLO HR performed better since
it provides faster results without sacrificing speed. The goal of the research is to find more
feature reuse opportunities and to apply these changes to additional object identification
systems. To address challenge of detecting small objects |Ji et al.| (2023) presented MCS
YOLO v4, a modified version of YOLO v4 model. Model includes three new compon-
ents: detection scale, an EFB module providing contextual data, module for attention
in PANet. While achieving improved accuracy, the increased model parameters impact
realtime detection speed. The study underscores the ongoing effort to strike a balance
between accuracy and speed in future work Hu et al.| (2023)shifted the focus to small
object detection in aerial images with their modification of S-scale YOLOv5. The study
introduces novel architectures, an ESPP feature extraction method, and an CloU loss
function, outperforming existing lightweight models on DIOR and VisDrone datasets.
This study represents a significant advancement, particularly in the context of applica-
tions in agricultural settings. Future work involves further optimization for other plant
species, exploration of hyperspectral images, and analysis of multiple growth stages of
maize. Contributing to the field of intelligent agriculture Pu et al. (2023))(2023) intro-
duced Tassel YOLO, an improved version of YOLOvVT specifically designed for maize
tassel detection and counting. The model achieves high accuracy, realtime detection,
and reduced model parameters, showcasing practical applications in agriculture. Future
plans for optimization for other plant species, exploration of hyperspectral images, and
analysis of multiple growth stages of maize indicate the potential for broader applicab-
ility/,Huangfu and Li (2023) proposed LW YOLO v8 to address the challenge of poor
small target detection in UAV scenarios. The model incorporates the SE module and
GSConv module, outperforming mainstream counterparts with a 36.3 percent mAP@0.5
on the VisDrone2019 dataset. The study emphasizes the need for further optimization
for practical applications, indicating the commitment to refining the model for realworld
scenarios. 2 Wang et al.| (2023) introduced UAV-YOLOVS, an optimized model for UAV
aerial object detection based on YOLOvS. The model incorporates the WloU v3 loss
function, BiFormer attention mechanism, and FFNB block for five scale detection. The
improved model achieves a 7.7 percent accuracy boost without increasing size or para
meters, outperforming similar algorithms. Challenges include increased complexity and
the need for further optimization in computational resource consumption and accuracy
for very small objects. |Liu et al.| (2023)) enhanced remote sensing image target detection,
particularly for aircraft, by optimizing model structure, introducing dilated convolution,
and improving loss function convergence speed. While demonstrating notable improve-
ments, challenges include weather related image issues hindering the extraction of various
aircraft features, a focus for future research. |Zhai et al.| (2023)contributed an enhanced



YOLOv8 model for accurate UAV target detection, considering size, background, and
light variations. The model introduces a high resolution detection head, reduces para-
meters for efficiency, and incorporates a GAM attention mechanism. Experiments on the
TIB Net dataset show improved precision, recall, and mAP, with reduced parameters.
However, there’s a tradeoff with decreased FPS and potential challenges in complex air
space backgrounds, guiding future research for improved accuracy and inference speed.
Tang et al.| (2023)) tackled challenges in detecting ultra low pixel objects, specifically tiny
people, in the TinyPerson dataset. Improvements to YOLOvV7 include recursive gated
convolution, a tiny object detection module, and a coordinate attention mechanism. The
proposed TOD YOLOv7 model outperforms mainstream detectors, achieving a 9.5 per-
cent AP in the TinyPerson task, making it suitable for efficient detection of tiny people in
remote scenes. The study contributes valuable insights to tiny object detection research.
Wu et al.| (2023 proposed the enhanced YOLOvVT model, featuring tailored anchor boxes,
a new multiscale feature fusion module, and improved data preprocessing, excels in ship
detection and recognition. Achieving a remarkable mAP of 90.15 percent, it outperforms
existing methods, particularly excelling in identifying small fishing boats, showcasing
its practical applicability in maritime scenarios.Kumar and Muhammad| (2023)) proposed
an enhanced YOLOvS8 based object detection approach by combining severe weather
datasets through transfer learning. Utilizing diverse datasets, including fog, rain, snow,
night, and sand, the merged dataset significantly improves detection accuracy compared
to individual datasets. The findings suggest the potential for further improvements with
additional datasets and environmental factors to individual datasets. The findings sug-
gest the potential for further improvements with additional datasets and environmental
factors|Al Mudawi et al. (2023))introduced an innovative approach for vehicle identifica-
tion and classification in aerial images. It employs noise removal and FCM segmentation
before utilizing YOLOvVS for detection. Extracted features undergo SIFT, KAZE, and
ORB for training a DBN classifier, achieving promising accuracies of 95.6 percent and
94.6 percent on VEDAI and VAID datasets. Future improvements involve expanding
vehicle classes and incorporating additional features for enhanced accuracy in diverse
traffic environments. |Afonso et al.| (n.d.) assessed the performance of YOLOv5 and
YOLOvVS regression based algorithms for vehicle and license plate detection in Intelli-
gent Transportation Systems (ITS). YOLOvS slightly outperformed YOLOv5 with lower
training time. Future plans involve implementing a license plate character recognition
model and conducting embedded tests on a Raspberry Pi for realtime applications in
parking system monitoring and access control.

2.2 Other Related Work

In the rapidly evolving landscape of cutting edge object detection methodologies/Chen,
Chen, Yang, Xuan, Song, Xie, Pu, Song and Zhuang (2022)) presented a ground break-
ing solution, LabelMatch, designed to tackle the persistent challenge of label mismatch
in semi supervised object detection. Skillfully addressing both distribution level and
instancelevel mismatches, LabelMatch incorporates a redistribution mean teacher for ad-
aptive label distribution and a proposal self assignment method for precise instance level
handling. Meanwhile,Han et al.| (2022)put forth FCT, an innovative few shot object detec-
tion model integrating fully cross transformers. The model showcases its efficacy through
the use of asymmetric batched cross attention. In the domain of dense object detection,Li
et al.| (2022)) innovatively introduced dual weighting (DW), an adaptive label assignment



for accurate dense object detection. DW assigns individual weights dynamically, breaking
from conventional methods, and incorporates a new box refinement operation. Exper-
iments on MS COCO with ResNetb0 demonstrated DW’s effectiveness, setting a new
state-of-the-art. However, societal concerns, particularly in military and privacy applic-
ations, necessitate cautious consideration before widespread deployment.Chen, Li, Chen,
Wang, Zhang and Hua| (2022)) unveiled DSL, a model that surpasses existing methods
through adaptive filtering and aggregated teacher strategies. Transitioning to vehicle de-
tection and classification. [Kaur and Singh| (2023) provided a comprehensive overview of
deep learning (DL) techniques, contributing valuable insights to the evolving landscape
of neural networks in this domain. Their study serves as a cornerstone for understanding
the intricacies of DL in the context of vehicle related applications. Each of these studies
represents a significant stride in their respective fields, propelling the frontier of 3 object
detection and deep learning applications. Wang et al.| (2022) introduced TranEffidet, a
fusion of EfficientDet and Transformer methods, showcasing superior accuracy and mean
average precision (mAP) compared to individual approaches. However, article recog-
nized constraints in feature extraction, particularly whilst handling complicated aspects
of objects, like fighter planes.

Overall, this compilation of academic papers constitutes comprehensive investigation
in complexities of object identification approaches. These research contribute to contin-
ued improvement and development of object recognition approaches by resolving label
mismatches, developing innovative fewshot detection models, and exploring social factors
in label assignments. Environment is always changing, driven by need for precision,
effectiveness, and flexibility in numerous uses of deep learning.

3 Methodology

Study progresses via five essential stages: beginning with Data Collection, advancing to
Data Preprocessing, including Data Augmentation approaches. Intentional selection of
CRISP-DM model is based on its best suitability for implementing YOLO v8. Systematic
approach of this model facilitates research, enabling optimal processing of data at every
phase. By leveraging the strengths of CRISP-DM, the research aims for a robust and
effective implementation of YOLO v8, promising a comprehensive and methodical ex-
ploration of the chosen object detection model. Modelling and Model Evaluation. These
stages are illustrated in Figure

Data Data Model

Data Collection Preprocesshill Augmentation Modelling Evaluation

Figure 3: Stages of Modelling

3.1 Data Collection

In this project, a diverse dataset of fighter aircraft images has been gathered from Kaggle,
encompassing various resolutions. A uniform resolution of 640x640 pixels is developed
for ensuring compatibility with YOLO. Dataset, which has total size of 12 gigabytes,



consists of mixture of photographs corresponding Excel files. Files provide vital data
regarding aircraft, including its classifications descriptions. Purpose of this carefully
selected dataset is to enhance object identification capabilities of YOLO v8 for fighter
jets. It seeks to provide a thorough uniform training environment for model

3.2 Data Preprocessing

During data preparation step, a specialized code file is used to classify photos in their
corresponding categories. To enhance dataset quality, images not featuring fighter planes
in the sky are systematically removed. The labeling process is facilitated by the use of the
roboflow tool, effectively identifying and annotating fighter aircrafts within the images.
The resulting annotations are stored in a YAML file, streamlining the integration of
labeled data into the training pipeline. Data augmentation strategies are then applied,
encompassing transformations like flipping, cropping, and rotation. This augmentation
enriches the dataset by introducing diverse perspectives, contributing to the model’s
adaptability and robustness when confronted with previously unseen data, ultimately
optimizing its performance in fighter aircraft detection. The dataset is around 12000
images in initial stages will be split in multiple ratios to determine which will provide
better accuracy.It was split into 70:20:10, When splitting training and testing data.The
final data set achieved after cleaning was around 5000 images of 35 different classes
with 1750 total annotated images with 50 images of each class. we randomly choose
samples while ensuring the ratio of images in each class remains consistent. This approach
maintains a balanced representation of classes in both the training and testing datasets.

3.3 Data Augmentation

After partitioning the data into training, validation, and testing sets, the subsequent step
involves the implementation of data augmentation. This approach aims to improve variety
of training data, specifically to tackle anomalies in class distribution among pictures.
Several augmentation techniques are utilized into this study to accomplish this goal,
including rotation, horizontal flipping, scaling, brightness change, as well as contrast
modulation. Rotation is action of shifting pictures over angle, usually 90 or 180 degrees.
The purpose of both vertical and horizontal flipping is to create mirror images. Scale
allows for the introduction of randomness by choosing lower picture dimension from an
assortment of specified values. Altering brightness contrast within specified limits also
makes the training sample more comprehensive diversified. As a result, model is able to
generalize to different kinds of data more effectively.

3.4 Modelling
3.4.1 Yolo Architecture

Modifications to YOLO V8 model’s structure have been substantial, and they represent
leap forward for object recognition methods. This version primarily replaces the earlier,
less contemporary CSP module with the more sophisticated CSPDarknet53 backbone.
2 C2f modules that have been included into this redesigned backbone are ConvModules
Bottle Neck. Hence, it enhances procedure for feature extraction. Network layers are
strengthened using batch normalization SiLLU activation functions to enhance learning
capacity stability.Yolo V8 Architecture is shown in Figure4]
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By connecting its core structure with the upper section, the architecture expands into
three tiers that seamlessly integrate components from different network layers. This in-
novative approach enables the model to gather both contextual information and intricate
features from hierarchical levels. Notably, the leader of the YOLO v8 network handles
classification, identification, and regression separately. The primary element predicts
item positions along with neighboring boxes, eliminating anchors in object identification
pipelines—a noteworthy paradigm shift. YOLO v8 adopts soft NMS, a significant depar-
ture from the standard NMS, enhancing its ability to handle overlapping bounding boxes,
a common challenge in item identification.This new and improved approach, incorporat-
ing a more forgiving suppression method, safeguards crucial bounding boxes, leading to an
overall enhancement in performanceThe introduction of Tiny YOLO v8 meets the grow-
ing demand for efficient computing by providing a version designed for limited resources.
Balancing productivity and essential features, Tiny YOLO v8 demonstrates its adaptab-
ility to different computing conditions, emphasizing its practicality. The YOLO v8 model
reflects a commitment to enhancing and redefining object detection. The enhancements in
architecture not only elevate effectiveness and precision but also demonstrate a nuanced
understanding of the intricacies involved in object identification. YOLO v8 surpasses
existing systems by revolutionizing feature extraction, connection, and post-processing
techniques, thereby setting a new standard in the field of object identification. Serving as
a catalyst, YOLO v8 inspires further exploration and advancements in the development
of robust, adaptable, and effective techniques for object detection.

3.4.2 Model Building

Model was constructed utilizing Google Colab as coding environment, having Jupyter
being used for task of categorizing photographs in their appropriate classes. The YOLO
model m was used for precise effective speed detection, striking compromise between
rapidity and precision. Classified photographs were then saved into Google Drive for
simple retrieval. The dataset was split into three subsets: 70 percent for training, 20
percent for validation, and 10 percent for testing, following a standard model evaluation.
Importing all YOLOvVS libraries ensured smooth implementation. Model improved its
item recognition and categorization skills in 3 training sessions spanning 25, 50, and 100
epochs. We refined twice—without adding data and with. Consistency required 640x640
resolution throughout this procedure. This methodical approach to model building, in-
cluding careful iterations and exact dataset partition, produced a robust and customized
YOLOvVS8 model for quick object identification.

4 Results and Evaluation

This solution is evaluated using mAP, typical object identification model measure. It
examines IOU, Precision, Recall, Precision-Recall Curve, and performance (Average Pre-
cision). For our experiments, we tested model for 25, 50, and 100 epochs. Our best
mAP was 54 percent all through this excursion. Our best results were achieved utilizing
default YOLO v8 architectural settings without data augmentation. After dataset aug-
mentation, findings were less acceptable. Model performed well without augmentation,
using YOLO v8 framework’s default parameters.This shows dataset’s inherent proper-
ties match model’s parameters when unchanged. After adding augmentation strategies
to dataset, model performed poorly. These results demonstrate model’s sensitivity to



dataset fluctuations and relevance of knowing how data alteration techniques like aug-
mentation affect it. This information is essential for object detection success.

4.1 Precision

maP (mean average Precision) of YOLO v8 measures its object detection and pinpointing
accuracy. At a precision rate of 54 percent, model accurately predicts 54 percent of
bounding boxes, demonstrating its positive instance detection.maP graphs can be seen

in Fig[5a] and Fig
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Figure 5: P curve

4.2 Recall

Recall measures a model’s ability to discover all actual items in a dataset. Also known
as sensitivity or true positive rate. It’s calculated by comparing model’s correct items
to total number of true and missing things. In object detection, a higher recall means
the model is good at catching most of the actual objects in the dataset. But, here’s the
catch: aiming for high recall might lead to more mistakes, like wrongly spotting things
that aren’t there.The R curve graphs can be seen in Fig[6al and Fig [6b|

TP
Recall = TP+ FN) (2)

In the recall confidence curve analysis, when confidence (c) is 0, the recall (r) is
0.83, suggesting a high ability to correctly identify positive instances. However, when
confidence is 1, the recall drops to 0, indicating that at maximum confidence, the model
fails to identify any positive instances, signifying potential trade-offs between confidence
levels and recall performance.

When precision is high at 0.87, there’s a complete lack of recall, meaning the model
correctly identifies instances but misses some. Conversely, when recall is 1 with a precision
of 0.2, it catches all instances but also incorrectly identifies many. The maP achieved for
during this period is 0.541 for all classes.PR graph can be seen in Fig|[7]
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4.3 F1 Score

The F1 score is like finding a sweet spot between being careful and thorough. It’s handy
when making mistakes in spotting things (false positives) and missing things (false neg-
atives) are both important. In tasks like finding objects, where getting it right and not
missing anything are crucial, F1 score helps strike that balance.The images of F1 curve
are shown in Fig[8al and Fig

F1Score = 2 % (Precision * Recall)/(Precision + Recall) (3)

11
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Figure 8: F1 curve

4.4 Confusion Matrix

In object detection, a confusion matrix acts like a report card for how well a model spots
things in images. It sums up the model’s predictions, showing when it gets it right (True
Positive and True Negative) or messes up (False Positive and False Negative). From
these, we can calculate important measures like precision, recall, and F'1 score, helping
us see where the model shines and where it could do better. It’s like breaking down
the model’s performance into different aspects to understand how well it’s working in
spotting objects in images.

Here’s a breakdown of the terms in the context of object detection:

e True Positive (TP):The model correctly predicted the presence of an object in an
image.
e True Negative (TN):The model correctly predicted the absence of an object in an

image.

e False Positive (FP):The model incorrectly predicted the presence of an object when
it is not actually present. This is also known as a ”false alarm” or "Type I error.”

e False Negative (FN): The model incorrectly predicted the absence of an object when
it is actually present. This is also known as a "miss” or ”Type II error.”

The Confusion matrix is shown in Fig[J)
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4.5 Discussion

The assessment involved 50 diverse images representing various classes, but discrepancies
arose as some were accurately classified while others weren’t, possibly due to an insuf-
ficient number of training images. Achieving a higher mean Average Precision (mAP)
and accurate classification demands a more robust training regimen with a larger data-
set. This enhancement in performance and precision can be realized through extensive
training and an increased number of diverse images. However, such improvements come
with a computational cost, requiring substantial computing power for the model to ef-
fectively learn and generalize from a more extensive dataset. This underscores the crucial
relationship between training data, computational resources, and the overall success of
the model in accurately identifying and classifying objects, emphasizing the need for a
comprehensive and well-resourced training approach in object detection tasks.Validation
prediction results are shown in Fig and overall results graph are shown in Fig
Some of the prediction images are shown Fig[12|Fig[I3 and Fig

[b]
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Figure 11: Overall Results of Training

14



J20 0.41

(b) J20 Plane

Figure 12: Predicted Planes

(a) F4 Plane (b) F22 Plane
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Figure 14: Predicted Planes

5 Conclusion and Future Work

In conclusion, this thesis underscores YOLO v8’s effectiveness in detecting fighter planes
within aerial images, positioning it as a strong choice for such tasks. Nevertheless, a
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critical trade-off surfaces between the precision and speed of detection. To address this,
the YOLO m model was introduced to strike a balance, leveraging its nuanced capabilities.

The experimentation involved training with an extensive dataset, surpassing 3000 im-
ages, employing diverse augmentation techniques. During training, the mean Average
Precision (mAP) reached an impressive 70 percent, indicating the model’s potential. Un-
fortunately, computational constraints curtailed the completion of this exhaustive train-
ing regimen. It is our conviction that given the opportunity to continue training with an
even larger dataset and heightened data augmentation, YOLO v8 can realize its maximum
potential.

The obtained result showcased a mAP of 54 percent, considering the complexity of
the task involving 35 distinct classes. Achieving optimal performance in object detection,
especially in scenarios like identifying fighter planes, demands intensive training. The
multifaceted nature of aerial images, compounded by the diversity among the 35 classes,
necessitates a sophisticated learning process.Future works includes inclusion of upcoming
fighter planes and feature extraction and traing with intesive data to reach the maximum
potential of YOLO v8.

References

Afonso, M. H., Teixeira, E. H., Cruz, M. R., Aquino, G. P. and Boas, E. C. V. (n.d.).
Vehicle and plate detection for intelligent transport systems: Performance evaluation
of models yolovh and yolov8.

Al Mudawi, N., Qureshi, A. M., Abdelhaq, M., Alshahrani, A., Alazeb, A., Alonazi, M.
and Algarni, A. (2023). Vehicle detection and classification via yolov8 and deep belief
network over aerial image sequences, Sustainability 15(19): 14597.

Chen, B., Chen, W., Yang, S., Xuan, Y., Song, J., Xie, D., Pu, S., Song, M. and
Zhuang, Y. (2022). Label matching semi-supervised object detection, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14381—
14390.

Chen, B., Li, P., Chen, X., Wang, B., Zhang, L. and Hua, X.-S. (2022). Dense learning
based semi-supervised object detection, Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 4815-4824.

Gong, H., Mu, T., Li, Q., Dai, H., Li, C., He, Z., Wang, W., Han, F., Tuniyazi, A., Li,
H. et al. (2022). Swin-transformer-enabled yolov5 with attention mechanism for small
object detection on satellite images, Remote Sensing 14(12): 2861.

Han, G., Ma, J., Huang, S., Chen, L. and Chang, S.-F. (2022). Few-shot object detection
with fully cross-transformer, Proceedings of the IEEE/CVF conference on computer
viston and pattern recognition, pp. H321-5330.

Hu, M., Li, Z., Yu, J., Wan, X., Tan, H. and Lin, Z. (2023). Efficient-lightweight yolo:
Improving small object detection in yolo for aerial images, Sensors 23(14): 6423.

Huangfu, Z. and Li, S. (2023). Lightweight you only look once v8: An upgraded you
only look once v8 algorithm for small object identification in unmanned aerial vehicle
images, Applied Sciences 13(22): 12369.

16



Ji, S.-J., Ling, Q.-H. and Han, F. (2023). An improved algorithm for small object detec-
tion based on yolo v4 and multi-scale contextual information, Computers and FElectrical
Engineering 105: 108490.

Kaur, R. and Singh, S. (2023). A comprehensive review of object detection with deep
learning, Digital Signal Processing 132: 103812.

Kumar, D. and Muhammad, N. (2023). Object detection in adverse weather for autonom-
ous driving through data merging and yolov8, Sensors 23(20): 8471.

Li, S., He, C., Li, R. and Zhang, L. (2022). A dual weighting label assignment scheme for
object detection, Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition, pp. 9387-9396.

Liang, S., Wu, H., Zhen, L., Hua, Q., Garg, S., Kaddoum, G., Hassan, M. M. and Yu, K.
(2022). Edge yolo: Real-time intelligent object detection system based on edge-cloud
cooperation in autonomous vehicles, IEEE Transactions on Intelligent Transportation
Systems 23(12): 25345-25360.

Liu, Z., Gao, Y., Du, Q., Chen, M. and Lv, W. (2023). Yolo-extract: improved yolovh
for aircraft object detection in remote sensing images, IEEFE Access 11: 1742-1751.

Pu, H., Chen, X., Yang, Y., Tang, R., Luo, J., Wang, Y. and Mu, J. (2023). Tassel-yolo:
A new high-precision and real-time method for maize tassel detection and counting
based on uav aerial images, Drones 7(8): 492.

Tang, F., Yang, F. and Tian, X. (2023). Long-distance person detection based on yolov7,
FElectronics 12(6): 1502.

Terven, J. and Cordova-Esparza, D. (2023). A comprehensive review of yolo: From yolov1
to yolov8 and beyond, arXiv preprint arXiw:2304.00501 .

Wan, D., Lu, R., Wang, S., Shen, S., Xu, T. and Lang, X. (2023). Yolo-hr: Improved
yolovh for object detection in high-resolution optical remote sensing images, Remote
Sensing 15(3): 614.

Wang, G., Chen, Y., An, P., Hong, H., Hu, J. and Huang, T. (2023). Uav-yolov8: A
small-object-detection model based on improved yolov8 for uav aerial photography
scenarios, Sensors 23(16): 7190.

Wang, Y., Wang, T., Zhou, X., Cai, W., Liu, R., Huang, M., Jing, T., Lin, M., He,
H., Wang, W. et al. (2022). Transeffidet: aircraft detection and classification in aerial
images based on efficientdet and transformer, Computational Intelligence and Neuros-
cience 2022.

Wu, W., Li, X., Hu, Z. and Liu, X. (2023). Ship detection and recognition based on
improved yolov7., Computers, Materials & Continua 76(1).

Zhai, X., Huang, Z., Li, T., Liu, H. and Wang, S. (2023). Yolo-drone: An optimized
yolov8 network for tiny uav object detection, Electronics 12(17): 3664.

17



	Introduction
	Reasearch Question
	Structure of Report

	Related Work
	Yolo Related work
	Other Related Work

	Methodology
	Data Collection
	Data Preprocessing
	Data Augmentation
	Modelling
	Yolo Architecture
	Model Building


	Results and Evaluation
	Precision
	Recall
	F1 Score
	Confusion Matrix
	Discussion

	Conclusion and Future Work

