===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Programme Name

Neha Kulkarni
Student ID: x22166165

School of Computing
National College of Ireland

Supervisor: Taimur Hafeez

Student Name:
Student ID:
Programme:

Module:

Lecturer:

Submission Due
Date:

Project Title:

Word Count:

‘—
National College of Ireland \ National

Collegef
Ireland

MSc Project Submission Sheet
School of Computing
NEeha KUIKAINI.. ..o
D A T S
MSc in Data Analytics.......cocceevveiiiiiennneen. Year: 2024........

MSc Research Project

TAIMUE Haf@EZ....cee e e
B1/01/2024... e et e aaas
Impact of the high-frequency public transport on the performance
of the Machine Learning model for predicting the rental price in
Dublin

895, Page Count: O..........ccoviiiiiiniien

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

NENA KUIKAINI...ocooiiiiieee e e

31St.JanNUANY.2024..... .o e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Neha Kulkarni
Student ID: x22166165

1 Introduction
This document contains all of the information needed to implement the project titled

” Impact of the high-frequency public transport on the performance of the Machine Learning
model for predicting the rental price in Dublin.” This manual focuses on the critical phases of
the code, from data collecting to the final model building phase evaluation.

2 Hardware Requirement

The project was built on a Windows 64-bit operating system having RAM of 16 GB.Figure 1
shows the system specifications of the system. It is not essential to have high Specifications
for this project; a processor lower than i7 would also be feasible.

Processor 1t tel(f o(Th 1
Installed RAM

Device ID 106BDFAB-A36F-4C14 1-3E8A
Product ID

System type

Pen and touch

Related links Domain or workgroup System protection Advanced system settings

== Windows specifications

Edition
Version
Installed on
OS build

Experience

Figure’ 1. Héfdwéré ICO.nf‘iguration
3 Software Requirement

We have used Jupyter Notebook to code in Python. The version of the Jupyter Notebook is
6.5.2. The version that we used for python is 3.10.9. Figure 2 shows Jupyter Notebook
Version. Figure 3 shows python Version.

About Jupyter Notebook .

Server Information

You are using Jupyter Notebook

The version of the notebook server is: 6.5.2

The server is running on this version of Python

Current Kernel Information

Figure 2 . Jupyter Notebook Version

In [2]: python --version

Python 3.10.9
Figure 3. Python Version

4. Library Package Requirement

We have used different libraries for preprocessing, model building and visualization. The main
libraries are numpy and pandas for the pre-processing. These libraries have the methods for
data transformations. sklearn is used for splitting the test and train data an also for model

building.
Figure 4 shows the list of library and package that we used in this project.

linear algebra and calculus

import numpy as np

data manupulation and processing library, (e.g. pd.read_csv)
import pandas as pd

from matplotlib import pyplot as plt

import seaborn as sns

from plotly import express as px

import csv

import xgboost as xgb

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, fl_score, precision_score, recall_score
from sklearn.model_selection import train_test_split

import datetime

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_squared_error, r2_score

Figure 4 . List of Library

5. Dataset Description

Data used for this research is used from the CSO website (Central Statistics Office). This
dataset is an open-source data which is maintained by the government of Ireland. This site
has historical data for various counties of Ireland. The data is downloaded from the CSO
website in an excel format which has 280980 rows. This data is read by the python code in a

2

data frame to perform the data pre-processing and data cleaning. The data has multiple
features like Year, Location, Number of Bedrooms, Property Type. We have also added new
features to the data by adding three more columns to the dataset which Luas , Dart and Postal

Code.

print("Info of DS1:", filtered_DS1.info())

<class 'pandas.core.frame.DataFrame'>

Int64Index: 574 entries, 264996 to 279784

Data columns (total 8 columns):

Column

Year

Location
UNIT
VALUE

~N~oupbkseWNRERE SO

STATISTIC Label

Number of Bedrooms
Property Type

postcode_dublin

Non-Null Count

Dtype

574
574
574
574
574
574
574
574

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

Figure 5. List of Columns

6. Data Preprocessing and Cleaning

object
int64
object
object
object
object
float64
object

Figure 6 shows the steps how data is loaded and the we filtered the required data. We have
selected data for the year 2022 for this research. We have considered all type of bedroom in
this research. We have considered data only for Dublin County. After filtering the dataset,
the total number of rows left 10704.

Read Processed CSO RTB Dataset

Open the file and read its contents

DS1 = pd.read_excel(DS1_file_path_processed, sheet_name=sheet_name)

show the shape of dfl
print("Shape of DS1:", DS1.head())

Shape of DS1:

0

1
2
3
4

PWNR S

RTB Average Monthly Rent Report
RTB Average Monthly Rent Report
RTB Average Monthly Rent Report
RTB Average Monthly Rent Report
RTB Average Monthly Rent Report

Property Type
ALl property types
ALl property types Car
ALl property types Graiguecullen
ALl property types Tullow
All property types

2008
2008
2008
2008
2008

Location
Carlow
low Town
, Carlow
, Carlow
Cavan

A1l bedrooms
A1l bedrooms
A1l bedrooms
A1l bedrooms
A1l bedrooms

UNIT VALUE
Euro 748.33
Euro 807.53
Euro 711.35
Euro 719.98
Euro 571.63

STATISTIC Label Year Number of Bedrooms \

#filtered DS1 = DS1[(DS1['Year'] == 2022) & (DS1['Location'] != 'Dublin') & ((DS1['Number of Bedrooms'] == 'One bed'
filtered_DS1 = DS1[(DS1['Year'] == 2022) & ((DS1['Number of Bedrooms'] == 'One bed') | (DS1['Number of Bedrooms'] =

show the shape of df
print(“Shape of DS1:", filtered_DS1.shape)

Shape of DS1: (10704, 7)

Figure 6 . Data loading & Filtering

The below Figure 7 show the data mapping that we created manually for few of the location
that were getting missed because of the postal code issue. We created the mapping and added
the postal code to prevent data loss.

Mapping of values to be replaced

replacement_mapping = {
'‘Balbriggan, Dublin': 'Balbriggan, Dublin K32',
‘Blackrock, Dublin': 'Blackrock, Dublin A94',
'Booterstown, Dublin': 'Booterstown, Dublin A94',
'‘Dalkey, Dublin': 'Dalkey, Dublin A96°',
'Donabate, Dublin': 'Donabate, Dublin K36',
'‘Dun Laoghaire, Dublin': 'Dun Laoghaire, Dublin A96',
'Glenageary, Dublin': 'Glenageary, Dublin A96',
'Howth, Dublin': 'Howth, Dublin 13',
'Killiney, Dublin': 'Killiney, Dublin A96',
'Kinsealy, Dublin': 'Kinsealy, Dublin K36',
'Lucan, Dublin': 'Lucan, Dublin 20',
'Lusk, Dublin': 'Lusk, Dublin K45',
'Malahide, Dublin': 'Malahide, Dublin K36',
'Monkstown, Dublin': 'Monkstown, Dublin A94',
'Mount Merrion, Dublin': 'Mount Merrion, Dublin A94',
'Portmarnock, Dublin': 'Portmarnock, Dublin 13°',
'Rathcoole, Dublin': 'Rathcoole, Dublin 24',
'Rush, Dublin': 'Rush, Dublin K45',
'Saggart, Dublin': 'Saggart, Dublin 24',
'Sandycove, Dublin': 'Sandycove, Dublin A96',
'Shankill, Dublin': 'Shankill, Dublin 18',
'Skerries, Dublin': 'Skerries, Dublin K34',
'Stillorgan, Dublin': 'Stillorgan, Dublin A94',
'Swords, Dublin': 'Swords, Dublin K36'

}

Update values in the 'postcode_dublin' column based on the mapping
filtered_DS1['Location'].replace(replacement_mapping, inplace=True)

Display the updated DataFrame
print(filtered_DS1)

Figure 7 Mapping for Location & Postal Code

7. Model Preparation

We have built 3 Model for Dublin Rental house price predictions and 1 timeseries model for
rent forecast. We have used regression technique and the model that we created are Decision
Tree, K-Nearest Neighbour (KNN), and Gradient Boosting. We have also implemented
timeseries model using ARIMA Grid Search to forecast the Dublin rental price for four years
from 2023 to 2026. All the model building implementation is added in code artifact. Here we
are adding the high level details of the model built and their output.

7.1 Decision Tree Model — With Existing Features

Below Figure 8 shows the model implementation for Decision Tree model and its accuracy.

filtered_DS1.drop(columns=['VALUE']) # Features
filtered_DS1['VALUE'] # Target variable
encoded = pd.get_dummies(X) # One-hot encoding for categorical features

Data Preprocessing
X =
y:
X

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2, random_state=42)

Technique:Decision Tree & Implementation:sklearn

Model Selection and Training
model = DecisionTreeRegressor(max_depth=3, random_state=0)
model.fit(X_train, y_train)

DecisionTreeRegressor(max_depth=3, random_state=0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Model Evaluation

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

from sklearn.metrics import mean_absolute_error

Calculate Mean Absolute Error (MAE)

mae = mean_absolute_error(y_test, y_pred)
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error: {mse}")
print(f"R-squared: {r2}")

Mean Absolute Error (MAE): 243.27308039527944
Mean Squared Error: 114375.54880711871
R-squared: 0.6592007852449989

Figure 8 Decision Tree Model Implementation with existing features

7.2 KNN Model — With Existing Features

Below Figure 9 shows the model implementation for KNN model and its accuracy.

Technique:KNN & Implementation:sklearn

from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score

Create a KNN regression model (you can specify the number of neighbors 'n_neighbors')
knn_model = KNeighborsRegressor(n_neighbors=5) # Adjust the number of neighbors as needed

Fit the model to the training data
knn_model.fit(X_train, y_train)

Make predictions on the testing data
y_pred = knn_model.predict(X_test)

Calculate evaluation metrics

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

from sklearn.metrics import mean_absolute_error

Calculate Mean Absolute Error (MAE)

mae = mean_absolute_error(y_test, y_pred)
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
print(f"R-squared (RZ): {r2}")

Mean Absolute Error (MAE): 205.23460869565216
Mean Squared Error (MSE): 90391.71478100869
R-squared (R?): 0.730664239524869

Figure 9 KNN Model Implementation with existing features

7.3 Gradient Boosting Model — With Existing Features

Below Figure 10 shows the model implementation for Gradient Boosting model and
its accuracy.

Technique:XGBoost & Implementation:sklearn

import xgboost as xgb
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, r2_score

Create an XGBoost regression model
xgb_model = XGBRegressor(n_estimators=100, learning_rate=0.1, max_depth=3)

Fit the model to the training data
xgb_model.fit(X_train, y_train)

Make predictions on the testing data
y_pred = xgb_model.predict(X_test)

Calculate evaluation metrics

mse = mean_squared_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

from sklearn.metrics import mean_absolute_error

Calculate Mean Absolute Error (MAE)
mae = mean_absolute_error(y_test, y_pred)
print(f"Mean Absolute Error (MAE): {mae}")

print(f"Mean Squared Error (MSE): {mse}")
print(f"'R-squared (Rz): {r2}")

Mean Absolute Error (MAE): 156.22881861413046
Mean Squared Error (MSE): 53077.48629731726
R-squared (R?): 0.8418476165583285

Figure 10 Gradient Boosting Model Implementation with existing features

6

7.4 ARIMA Timeseries Model — Using Gridsearch

The below figure 12 shows the implementation of timeseries model using grid search
to forecast the rental price in Dublin from year 2023 to 2026.

Function to perform grid search and find the best ARIMA parameters
def grid_search_ARIMA(time_series_data):

Define the range for p, d, and q

p_values = range(®, 3)

d_values = range(@, 2)

q_values = range(0, 3)

Generate all possible combinations of p, d, and q
orders = list(product(p_values, d_values, q_values))

best_aic = float('inf') # Initialize with a large value
best_order = None

Perform grid search
for order in orders:
try:
model = ARIMA(time_series_data, order=order)
fit_model = model.fit()

Use AIC as the criterion to evaluate the model
aic = fit_model.aic

Update the best parameters if the current model has a lower AIC
if aic < best_aic:

best_aic = aic

best_order = order

except Exception as e:
continue # Ignore if the model fitting fails

return best_order

Function to forecast population for each county with the best ARIMA order
time_series_data = filtered_DS1['VALUE']

Perform grid search to find the best ARIMA order
best_order = grid_search_ARIMA(time_series_data)

Fit an ARIMA model with the best order
model = ARIMA(time_series_data, order=best_order)

Figure 12 Timeseries Model Impletemention

Below Figures 13 Shows the code snippet for nest four years forecast for Dublin
Rental price for One, Two and Three Bedrooms.

Forecast future values (change ‘steps' as needed)
forecast_steps = 1 #2023
forecast_values_2023 = fit_model.get_forecast(steps=forecast_steps).predicted_mean
forecasted_row_2023 = pd.DataFrame({
'VALUE': forecast_values_2023.iloc[-1],
'Year': 2023,
'STATISTIC Label': ['RTB Average Monthly Rent Report'],
'Number of Bedrooms': ['Three bed'],
‘Property Type': ['All property types'l,
‘Location’: ['Dublin'],
'UNIT': ['Euro']
}, index=[0])

forecast_values_2024 = fit_model.get_forecast(steps=2).predicted_mean
forecasted_row_2024 = pd.DataFrame({

'VALUE': forecast_values_2024.iloc([-1],

'Year': 2024,

'STATISTIC Label': ['RTB Average Monthly Rent Report'l,

‘Number of Bedrooms': ['Three bed'],

‘Property Type': ['All property types'],

‘Location’: ['Dublin'],

'UNIT': ['Euro']
}, index=[0])

forecast_values_2025 = fit_model.get_forecast(steps=3).predicted_mean
forecasted_row_2025 = pd.DataFrame({

'VALUE': forecast_values_2025.iloc[-1],

‘Year': 2025,

‘STATISTIC Label': ['RTB Average Monthly Rent Report'],

'Number of Bedrooms': ['Three bed'],

‘Property Type': ['All property types'],

'Location': ['Dublin'],

'UNIT': ['Euro']
}, index=(0])

forecast_values_2026 = fit_model.get_forecast(steps=4).predicted_mean
forecasted_row_2026 = pd.DataFrame({

'VALUE': forecast_values_2026.iloc[-1],

‘Year': 2026,

'STATISTIC Label': ['RTB Average Monthly Rent Report'l,

‘Number of Bedrooms': ['Three bed'],

‘Property Type': ['All property types'],

‘Location': ['Dublin'],

'UNIT': ['Euro'])
}, index=[0])

filtered_DS1 = pd.concat([filtered_DS1, forecasted_row_2023, forecasted_row_2024, forecasted_row_2025, forecasted_ro
filtered_DS1
filtered_DS1.to_excel('Three_Bed_Forecasted.xlsx', index=False)

Figure 13 Timeseries Model Forecast for Next Four Years

7.5 Rent Forecast Visualisation

The below figure 14 shows the graphical visualization for Dublin rent forecast for
next 4 years for One bedroom type.

Rent Forecast#One Bed

g
I I I
Year

Figure 14 Dublin Rent Forecast for Next four years

7.6 Decision Tree Model with Addition Features

The Figure 15 shows the additional features that we added in the dataset and we
implemented the models and checked their accuracy.
Below Figure 15 shows addition features that we added in the dataset.

grouped_data = filtered_luas_stops_data.groupby('Postcode').agg({'Luas's 'sum', 'Dart': 'sum'}).reset_index()

Display the grouped data
print(grouped_data)

Postcode Luas Dart

@ Dublin 01 12

1 Dublin 02 8 3
2 Dublin 03 0 1
3 Dublin 04 0 3
4 Dublin 05 0 1
5 Dublin 06 4 0
6 Dublin 07 9 0
7 Dublin 08 6 0
8 Dublin 12 3 0
9 Dublin 13 0 6
10 Dublin 14 3 0
11 Dublin 15 0 0
12 Dublin 16 1 0
13 Dublin 18 11 1
14 Dublin 22 1 0
15 Dublin 24 10 0
16 Dublin A94 0 4
17 Dublin A96 0 5
18 Dublin A98 0 1
19 Dublin K36 0 1
20 Dublin K45 0 0

Figure 14 . Additional Features in the data

8. Model Comparison and Evaluation

The below Table 1 shows the model comparison of the all the implemented models
with existing features and with additional features. The output shows that the Gradient
Boosting with additional Features is the best-performing model.

This model has the lowest MAE (Mean Absolute Error) and MSE (Mean Square
Error) and the highest R2 of 0.87%.

Model MAE MSE R?
Decision Tree 243.27 114375.54 0.65
KNN 205.23 90391.71 0.73
Gradient Boosting 156.22 53077.48 0.84
Decision Tree 248.28 123987.72 0.63
KNN 250.98 126372.53 0.62
Gradient Boosting 144.90 43550.23 0.87

Table 1 Model Comparison

	1 Introduction
	2 Hardware Requirement
	3 Software Requirement
	4. Library Package Requirement
	5. Dataset Description
	6. Data Preprocessing and Cleaning

