

Configuration Manual

MSc Research Project Programme Name

Jagadeesh Komari Student ID: 22150498

School of Computing National College of Ireland

Supervisor: Shubham Subhnil

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Jagadeesh	Komari
---------------	-----------	--------

Student ID: 22150498

Programme: Data Analytics **Year:** 2023

Module: MSc Research project

Lecturer: Sh

Shubham Subhnil

Submission Due

Date: 14/12/2023

Project Title: Exploration of Advanced Machine Learning Algorithms for

Enhanced Fraud Detection in Financial Transactions

Word Count: 412 Page Count: 10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: K,Jagadeesh

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple	
copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Jagadeesh Komari Student ID: 22150498

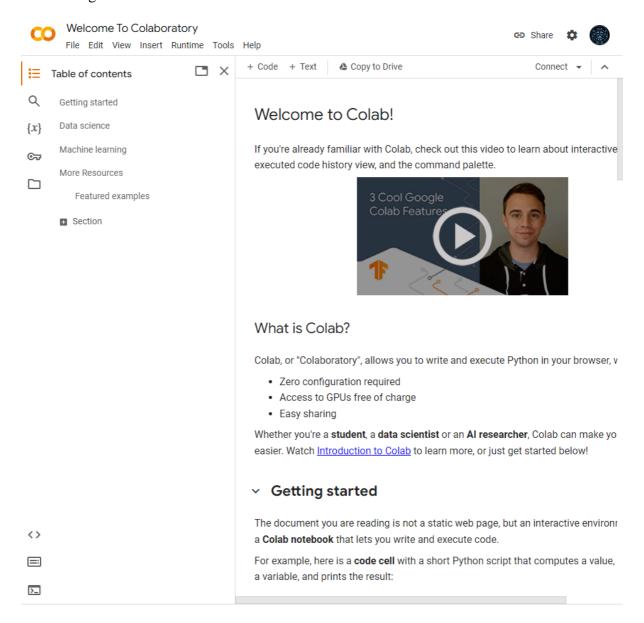
1. Introduction

This manual demonstration about the well derived instructions for setting up and running the code for the process of research which i am working on Exploration of advanced machine learning algorithms for enhanced fraud detection in financial transactions. The project is implemented using the Python and utilizing the Google Colab for its powerful and collaborative computing environment in it. The next sections leads thorough required configurations and tools.

2. System Specification

The Financial transactions fraud detection system was developed and executed through the Google Colab, which is the cloud-based notebook environment. Where the System specifications are not applicable where Colab is an cloud based online service.

3. Software's Used:


The below mentioned following tools are necessary for code execution and running the financial fraud detection system for transactions:

- Google Account (To access the Google Colab)
- Google Colab (https://colab.research.google.com/)
- Python
- Numpy
- Matplotlib
- Seaborn
- Sklearn

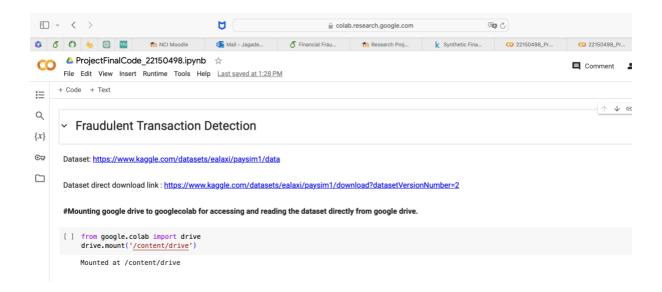
4. Setup the Software:

- ❖ First Ensures that have a google account or not.
- ❖ Then access to the Google Colab using this website: https://colab.research.google.com/
- Creates a new Colab notebook or upload the already written implementation notebook.

❖ Install the required packages or libraries which is necessary for the machine learning algorithms.

5. Setting up the Environment:

- ❖ For Google Colab, there is no need for any explicit environment setup we can access it from any web browser.
- ❖ Assures that you have a stable internet connection to access Colab notebooks and libraries to use them properly without any issues.


6. Source of Dataset

For Financial fraud detection I obtained the dataset form the Kaggle which was suitable for our research to topic of fraud detection.

7. Running of the Application (Financial Fraud Detection)

Open the Colab notebook through any web browser.

Mount the Google drive to google drive and provide access to the drive to read and access the large dataset saved in the google drive.

Import the Required libaries

Step 1: Import Required Libraries

First, we need to import the required libraries such as pandas, numpy, matplotlib, and seaborn for data visualization, and sklearn for building our predictive model.

```
import the necessary libaries
import pandas as pd  # For data manipulation and analysis
import numpy as np  # For numerical operations
import matplotlib.pyplot as plt # For basic data visualization
import matplotlib.ticker as mticker # For basic data visualization
import seaborn as sns  # For enhanced data visualization
from sklearn.preprocessing import LabelEncoder #For label encoding categorical variable
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split #For splitting the data into train and test
from sklearn.neighbors import KNeighborsClassifier #KNN Classifier
from sklearn.ensemble import RandomForestClassifier # Random forest Classifier
from sklearn.linear_model import LogisticRegression #Logistic Regression Classifier
from sklearn.tree import DecisionTreeClassifier #Decision Tree classifier
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix # For model evaluation
from sklearn.metrics import roc_curve, auc #roc_curve plot
```

❖ Load the Financial Fraud Dataset

Step 2: Load the Dataset from google drive

We will load the Fraudulent dataset into a pandas dataframe using the read_csv() method.

[] dataFrame = pd.read_csv('<u>/content/drive/MyDrive/Fraud</u> Detection/PS_20174392719_1491204439457_log.csv')

Explore the Financial Fraud Dataset

→ Step 3: Explore the Dataset

Before building the model, we need to explore the dataset to understand the data, its structure, and relationships between the features. We can use various pandas methods such as head(), info(), describe(), and shape to get the basic information about the dataset.

3			ne first 5 ro e.head()	ows of the	e data	set										
	st	ер	type	amount	n	ameOrig	oldbalanc	eOrg newbala	anceOrig	name	Dest	oldbalance	eDest	newbala	nceDest	isFraud
0)	1	PAYMENT	9839.64	C123	1006815	1701	136.0 1	60296.36	M197978	7155		0.0		0.0	0
1		1	PAYMENT	1864.28	C1666	6544295	212	249.0	19384.72	M204428	2225		0.0		0.0	0
2	2	1	TRANSFER	181.00	C130	5486145	1	181.0	0.00	C55326	4065		0.0		0.0	1
3	;	1	CASH_OUT	181.00	C840	0083671	1	181.0	0.00	C3899	7010	21	182.0		0.0	1
										14400070						
4	ļ.	1	PAYMENT	11668.14	C204	8537720	415	554.0	29885.86	M123070	1/03		0.0		0.0	0
4		1	PAYMENT	11668.14	C204	8537720	415	554.0	29885.86	M123070	1703		0.0	_	0.0	0
	‡ Vie	ew t	PAYMENT the dataset see.describe()	statistics		8537720	415	554.0	29885.86	M123070	1703	-	0.0	_	0.0	
	‡ Vie	ew t	:he dataset s	statistics	s			wbalanceOrig				lanceDest		isFraud		•
∢ []# d	‡ Vie dataF	· ew t	the dataset s ne.describe()	statistics) am	s		nceOrg ne		oldbala		newba	nlanceDest 62620e+06		isFraud 620e+06	isFlagg	•
∢ [] # d	‡ Vie dataF	ew t	che dataset s ne.describe() step	statistics) am 6.362620	s nount De+06	oldbalar	nceOrg neo	wbalanceOrig	oldbala 6.362	nceDest	newba		6.3620		isFlagg	gedFraud
∢ [] # d	‡ Vie dataF coun	ew tram	the dataset s ne.describe() step 6.362620e+06	statistics) am 6.362620 1.798619	s nount 0e+06	oldbalar 6.36262	nceOrg nei 20e+06 31e+05	wbalanceOrig 6.362620e+06	oldbala 6.362 1.100	inceDest 620e+06	newba 6.3 1.2	62620e+06	6.362	620e+06	isFlagg 6.362 2.51	gedFraud
∢ [] # d	t Vie dataF coun mean	ew t	step 6.362620e+06	6.362620 1.798619	nount 0e+06 0e+05	oldbalar 6.36262 8.33883	nceOrg nei 20e+06 31e+05 13e+06	wbalanceOrig 6.362620e+06 8.551137e+05	oldbala 6.362 1.100 3.399	nceDest 620e+06 702e+06	newba 6.3 1.2 3.6	62620e+06 24996e+06	6.3620 1.290 3.590	620e+06 0820e-03	isFlagg 6.362 2.51	gedFraud 2620e+06 4687e-06

50% 2.390000e+02 7.487194e+04 1.420800e+04 0.000000e+00 1.327057e+05 2.146614e+05 0.000000e+00

75% 3.350000e+02 2.087215e+05 1.073152e+05 1.442584e+05 9.430367e+05 1.111909e+06 0.000000e+00

max 7.430000e+02 9.244552e+07 5.958504e+07 4.958504e+07 3.560159e+08 3.561793e+08 1.000000e+00

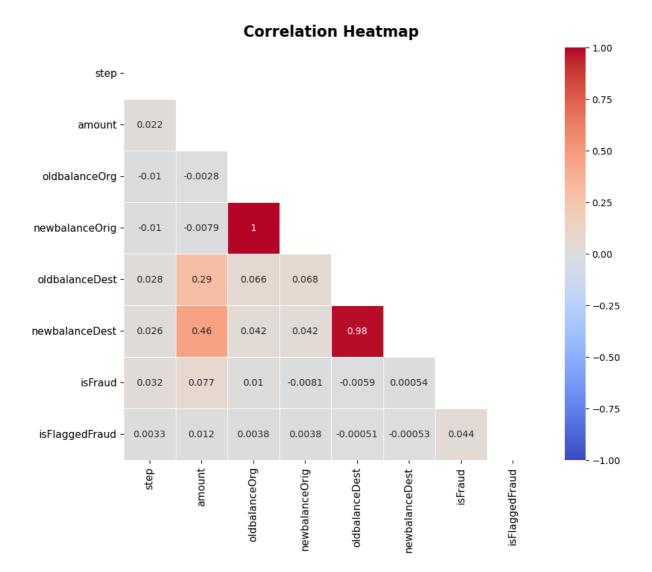
0.000000e+00

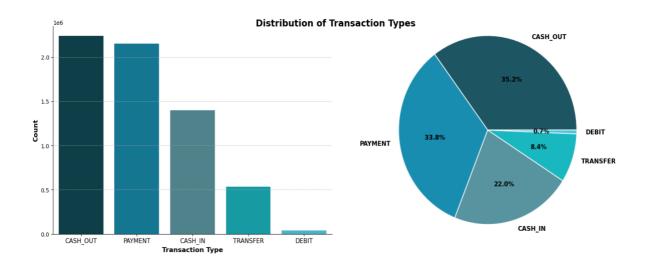
0.000000e+00

❖ Data Cleaning and Preprocessing of the Financial Fraud Dataset

Step 4: Data Cleaning and Preprocessing

In this step, we will clean and preprocess the dataset by handling missing values, removing duplicates, and converting categorical variables into numerical ones.


```
↑ ↓ ⊖ 目 ‡ 見 🗎 :
# Check for missing values
   dataFrame.isnull().sum()
step
                   0
   type
   amount
                   0
   nameOrig
                   Θ
   oldbalanceOrg
                   0
   newbalanceOrig
                  0
   nameDest
   oldbalanceDest
                   0
   newbalanceDest 0
   isFraud
   isFlaggedFraud 0
   dtype: int64
```


EDA of the Financial Fraud Dataset

Step 5: Exploratory Data Analysis

EDA helps us to understand the data distribution, relations between the features and the important insights which can helps to understand the dataset clearly. We use various plots to visualize the dataset.

```
V ⊖ 目 ‡ 🖟 📋 :
                                                                   \Delta
plt.figure(figsize=(10, 8))
   mask = np.triu(np.ones_like(data_h.corr(numeric_only=True), dtype=np.bool_))
   heatmap = sns.heatmap(data_h.corr(numeric_only=True),
                     mask=mask,
                     vmin=-1,
                     vmax=1,
                     center=0,
                     annot=True,
                     cmap="coolwarm", # You can change the colormap if needed
                     linewidths=.5)
   heatmap.set_title('Correlation Heatmap', pad=12, fontsize=16, fontweight='bold')
   heatmap.tick_params(axis='both', labelsize=11)
   plt.show()
```


Feature engineering to select the appropriate features for the Financial Fraud detection from the dataframe

∨ Step 6: Feature Engineering

The parameter values of the columns are get categorized to the numerical dataset for the best actuality for the model training.

```
[ ] #encode the string objects to the categorical values to numerical values
    encoder = {}
    for i in dataFrame.select_dtypes('object').columns:
        encoder[i] = LabelEncoder()
        dataFrame[i] = encoder[i].fit_transform(dataFrame[i])

[ ] x = dataFrame.drop(columns=['isFraud'])
    y = dataFrame['isFraud']

[ ] #scale the dataset
    scaler = MinMaxScaler()
    x = scaler.fit_transform(x)
```

❖ Splitting of the data into the training and testing

Step 7. Split of the Training and Testing data into the dependent and independent features with 80 % percent of the training data and 20 % percent of data for testing

```
[ ] # Split the data into features (X) and labels (y)
    X = dataFrame[['step', 'type', 'amount', 'oldbalanceOrg', 'newbalanceOrig', 'nameDest', 'oldbalanceDest', 'is
    y = dataFrame['isFraud']

[ ] # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20,random_state=0)
```

❖ Model Initialization and Training

Step 8. Model Initialization & Training (Here the Model get Initialized and trained) with the model evaluation for all Machine learning Models.

K-Nearest Neighbors Classifier

```
#Initialize and train one of the K-Nearest Neighbors Model for Classification of Fraud Transaction

knn_classifier = KNeighborsClassifier()
knn_classifier.fit(X_train,y_train)

*KNeighborsClassifier
KNeighborsClassifier()
```

Decision Tree Classifier

Logistic Regression Classifier

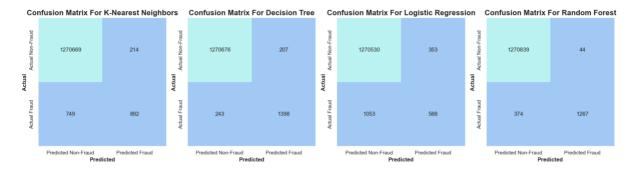
```
[ ] #Initialize and train one of the (Logistic Regression Model) for Classification of Fraud Transaction
logistic_regression_model = LogisticRegression()
logistic_regression_model.fit(X_train,y_train)
* LogisticRegression
LogisticRegression()
```

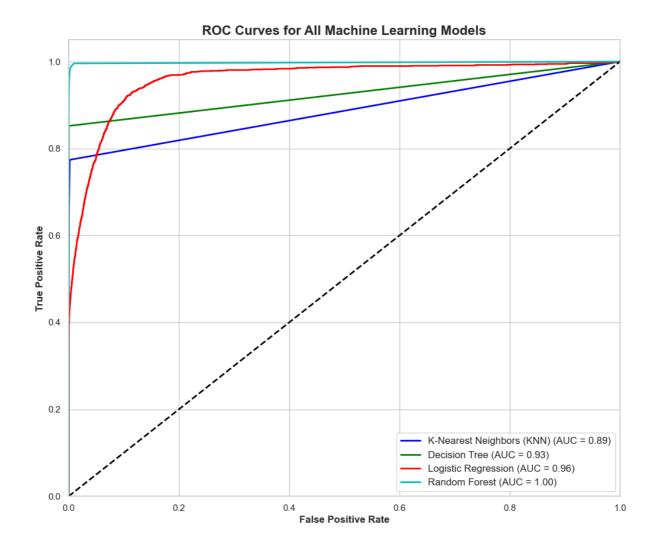
Random Forest Classifier

```
[ ] #Initialize and train one of the (Random Forest Model) for Classification of Fraud Transaction
    random_forest_model = RandomForestClassifier()
    random_forest_model.fit(X_train,y_train)
* RandomForestClassifier
RandomForestClassifier()
```

♦ Model Evaluation

▼ Step 9. Comparision of Metrics Results for all Machine learning Models.


```
# models
models = {


"K-Nearest Neighbors (KNN)": knn_classifier,

"Decision Tree": dt_classifier,

"Logistic Regression": logistic_regression_model,

"Random Forest": random_forest_model
```


This manual describes as a detailed manual for configuration, code running, for the exploration of advanced machine learning algorithms for the application enhanced fraud detection in financial transactions using the Google Colab.

References

Google Account: https:/gmail.com/

Google Colab: https://colab.research.google.com/

Kaggle: https://www.kaggle.com/