

Configuration Manual

MSc Research Project Data Analytics

Benjamin Kelani Student ID: 21226181

School of Computing National College of Ireland

Supervisor: Prof. Cristina Hava Muntean

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Benjamin Kelani				
Student ID:	21226181				
Programme:	Data Analytics		Year:	2023	3
Module:	M.Sc Research	Project			
Lecturer: Submission Due Date:					
Project Title:	Earthquake Mag	gnitude Modelling using Mad	chine Lea	rning	technology
Word Count:	792	Page Count: 8			
pertaining to res contribution will rear of the projec <u>ALL</u> internet ma required to use t	earch I conducton be fully reference ct. terial must be he Referencing S	ation contained in this (my ed for this project. All info ed and listed in the relevar referenced in the bibliogra Standard specified in the re ork is illegal (plagiarism) an	ormation at bibliog aphy second	other raphy tion. plate.	than my own section at the Students are To use other
Signature:	Benjamin Ke	elani			
Date:	14th Decem	ber 2023			
Attach a complet copies)	ed copy of this s	G INSTRUCTIONS AND C	ling mult		
submission, to	each project (inc	eceipt of the online projectuding multiple copies).			
	erence and in cas	ain a HARD COPY of the pose a project is lost or mislaid buter.			
Assignments that are submitted to the Programme Coordinator Office must be placed nto the assignment box located outside the office.					
Office Use Only		<u> </u>			
Signature:					
Date:					
Penalty Applied (it applicable):				

Configuration Manual

Benjamin Kelani 21226181

1 Introduction

This configuration manual includes the hardware and software configurations, libraries and important snippets of codes utilized during the implementation process. The aim of the documentation is to facilitate the reciprocation of this research project which is 'Earthquake Magnitude Modelling Using Machine Learning Technology'.

2 System Requirements

2.1 Hardware Requirements

The system hardware requirements is shown in the Table 1 below.

Table 1: Hardware requirements

Processor	8th Gen intel® Core TM i3-8130U @2.20GHz 2.21 GHz
RAM	8.0 GB (7.87 GB usable)

2.2 Software Requirements

The python programming language is used in the Jupyter notebook and Tableau is also utilized for data visualizations. Software and versions used are shown in Table 2 below.

Table 2: Software and Versions

Software Type	Software Name	Version
IDE	Jupyter notebook	6.4.12
Programming Language	Python	3.9.9
Data Visualization Software	Tableau	2023.3
Productivty and task completion	MS Office	2018

2.2.1 Libraries and Packages

The table 3 below shows all the libraries and versions that were installed for research study.

Table 3: Libraries and versions

Library	Description	Version
Pandas	Data manipulation and analysis	2.1.4
Matplotlib	Data visualisation	2.0
Seaborns	Data Visualization	12.0b3
Warnings	Customizing error display	

Scikit-learn Machine learning tasks	1.3
-------------------------------------	-----

Table 4 contains the packages used for this research project.

Packages	Use
Train_test_split	To split dataset into trainset and test set
LinearRegression	To build a linear regression model
R2_score	To utilizer R-Squared as an evaluation algorithm
Mean_squared_error	To utilize mean squared error as an evaluation algorithm
RandomForestRegressor	To build a random forest model
SVR	To build a support vector machine model
Accuracy_score	To utilize accuracy as an evaluation algorithm

3 Research Implementation

3.1 Data Extraction

The earthquake dataset are obtained from <u>NCEDC</u> Change the header and label to something appropriate. The open-source data does not need a user account to log in. Figure shows the landing page of the NCEDC site.

Figure 1: The landing page to get the earthquake data.

To access the earthquake dataset, the query depicted in figure 2 are run.

Start time:	End time:
1900/01/01,00:00:00	2008/12/31,00:00:00
Help on date and time parameters	
Min Magnitude:	Max Magnitude:
3.0	
Min Depth (km):	Max Depth (km):
Min Latitude:	Max Latitude:
34.5	42
Help on lat/lon parameters	
Min Longitude:	Max Longitude:
-126.0	-117.76
Event Types: Earthquakes Blasts	Include Events with no reported
(Quarry or Nuclear) \bigcirc All Events	Magnitude:
Additional Search Parameters	Output Mechanism
 Min/Max parameters. 	 Send output to my browser.
 Delta parameter. 	Send output to file.
Polygon parameter.	Line limit on output:

Figure 2: Search criteria for the earthquake dataset

To obtain the data, the file be downloaded as shown in figure 3.

Figure 3: Page showing data file download

Sequel to downloading the file, it can be loaded and viewed in jupyter notebook environment as show in figure 4.

Figure 4 : Code snippet to view data information.

3.1.2 Missing Value Check

The data is checked for the presence of any missing value as shown in figure 5. There are no missing values identified.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 18030 entries, 1966-07-01 09:41:21.820000 to 2007-12-28 23:20:2
8.120000
Data columns (total 11 columns):
               Non-Null Count Dtype
# Column
                    18030 non-null float64
0
    Latitude(deg)
    Longitude(deg) 18030 non-null float64
1
                    18030 non-null float64
    Depth(km)
    Magnitude(ergs) 18030 non-null float64
3
    Magnitude_type 18030 non-null object
    No_of_Stations
                    18030 non-null int64
                    18030 non-null int64
6
    Gap
                    18030 non-null int64
7
    Close
8
    RMS
                    18030 non-null float64
9
    SRC
                    18030 non-null object
                    18030 non-null int64
10 EventID
dtypes: float64(5), int64(4), object(2)
memory usage: 1.7+ MB
```

Figure 5: Missing value check

3.2 Data Transformation

The earthquake data gets pre-processed by changing the column names and saving the pre-processed data in a .xslx format as shown in figure 6 and figure 7.

Figure 6: Code snippet of data transformation

```
In [10]: #Saving the file in the xlsx format
    file_name = 'Processed_Earthquakedata.xlsx'
    df.to_excel(file_name)
    print('Data is written to xlsx File successfully.')

Data is written to xlsx File successfully.
```

Figure 7: Snippet showing saving of preprocessed data in .xlsx form.

3.3 Feature Selection and Data Split

Feature Selection is carried out to select important features for the model, this process is done using the correlation heatmap as shown in the figure 8.

Figure 8: Correlation heatmap for feature selection

The most important features are selected, and the data is split into train and test as shown in figure 9.

```
from sklearn.model_selection import train_test_split

# Selecting the relevant columns through inference from the correlation table
X = df[['Latitude(deg)', 'Longitude(deg)', 'Depth(km)', 'No_of_Stations']]
y = df['Magnitude(ergs)']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```

Figure 9: Feature Scaling and Data splitting

3.4 Model Building

Various statistical and machine learning models are utilized in this research, and they include multiple linear regression, support vector machines, random forest and naïve bayes model. Figure 10 shows the development of the random forest model.

```
from sklearn.ensemble import RandomForestRegressor

# Initializing a random forest regressor with 100 trees
rf = RandomForestRegressor(n_estimators=100, random_state=42)

# Fit the regressor to the training data
rf.fit(X_train, y_train)

RandomForestRegressor(random_state=42)

# Prediction of the target variable on the test data
y_prediction = rf.predict(X_test)
```

Figure 10: Random Forest Model Development

The SVM model is developed as shown in figure 11 below

```
from sklearn.svm import SVR

# Selecting the subset size of the training data
subset_size = 500
X_train_subset = X_train[:subset_size]
y_train_subset = y_train[:subset_size]

# Creating the SVM model
svm = SVR(kernel='rbf', C=1e3, gamma=0.1)

# Train the model on the subset of data
svm.fit(X_train_subset, y_train_subset)

# Evaluate the model on the test set
score = svm.score(X_test, y_test)
print("Test score:", score)

Test score: -2.62732111259047
```

Figure 11: Support Vector Machines Model Development

The snippet below shows the development of the naïve bayes model.

```
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score, confusion_matrix, classification_report from sklearn.preprocessing import LabelEncoder, MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
  Convert the magnitude column to categorical data
df['Magnitude_Category'] = pd.cut(df['Magnitude(ergs)'], bins=[0, 5, 6, 7, np.inf], labels=['Minor', 'Moderate', 'Strong', 'Major
# Encode Magnitude Category
le = LabelEncoder()
df['Magnitude_Category_Encoded'] = le.fit_transform(df['Magnitude_Category'])
# Normalize latitude and longitude values
scaler = MinMaxScaler()
df[['Latitude(deg)', 'Longitude(deg)']] = scaler.fit_transform(df[['Latitude(deg)', 'Longitude(deg)']])
# Select features
X = df[['Latitude(deg)', 'Longitude(deg)', 'No_of_Stations']]
y = df['Magnitude_Category_Encoded']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Train the Gaussian Naive Bayes model on the training data
gnb = GaussianNB()
gnb.fit(X_train, y_train)
```

Figure 12: Naïve Bayes Model Development

The mulitple linear regression model is built as shown in the figure 13 below.

```
MULTIPLE LINEAR REGRESSION

from sklearn.linear_model import LinearRegression
  regressor = LinearRegression()
  regressor.fit(X_train, y_train)

LinearRegression()

LinearRegression()

LinearRegression()
```

Figure 13: Linear Regression Model Development

3.5 Model Evaluation

The most popular evaluation metrics for regression tasks includes Mean Square Error and R-Square Chico D (2021). These metrics are utilized coupled with accuracy as a metric. Figure 14 shows the evaluation of the linear regression model, figure 15, figure 16 and figure 17 shows the evaluation of the random forest model, support vector machine model and naïve bayes model respectively

```
# Predict on the testing set
y_pred = regressor.predict(X_test)

# Compute R^2 and MSE
r2 = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)

scores['mse'].append(mse)
scores['R^2'].append(r2)

print("R^2: {:.2f}, MSE: {:.2f}".format(r2, mse))
```

Figure 14: Evaluation of Linear Regression Model

```
# Prediction of the target variable on the test data
y_prediction = rf.predict(X_test)

# Evaluation of the performance of the model using R^2 score and mean squared error
mse = mean_squared_error(y_test, y_prediction)
r2 = r2_score(y_test, y_prediction)

scores['mse'].append(mse)
scores['R^2'].append(r2)

print('Mean Squared Error is: ', mse)
print('R^2 Score is: ', r2)
```

Figure 15: Evaluation of Random Forest Model

```
# Prediction on the test dataset
y_pred_svm = svm.predict(X_test)

# Compute the R^2 and MSE
r2_svm = r2_score(y_test, y_pred_svm)
mse_svm = mean_squared_error(y_test, y_pred_svm)

scores['mse'].append(mse_svm)
scores['R^2'].append(r2_svm)

print("SVM R^2: {:.2f}, MSE: {:.2f}".format(r2_svm, mse_svm))
```

Figure 16: Evaluation of Support Vector Machine Model

```
#GAUSSIAN ACCURACY
accuracy = accuracy_score(y_test, y1_pred)
print('Accuracy:', accuracy)
```

Figure 17: Evaluation of Naïve-Bayes Model

The RSE values of the model is as a result of the correlation between the independent variables of the dataset and the dependent variables (Magnitude) Figure 18 shows the correlation matrix of the data.

Figure 18: Correlation matrix.

References

Chicco, D., Warrens, M.J. and Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. *PeerJ Computer Science*, 7, p.e623.