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Abstract

This study focuses on the implementation and comparative analysis of traffic
patterns using deep learning techniques namely LSTM and GRU using two dis-
tinct datasets: traffic sensor data and traffic regional data. The integration of
real time data is pivotal in research, as it aims to enhance the accuracy of traffic
flow predictions. The results delves into implementation of data transformation
techniques, exploratory data analysis, training of model with standard hyper para-
meters, comprehensive evaluation of models using R-squared, Mean Squared Er-
ror (MSE), Mean Absolute(MAE) and Root Mean Squared Error (RMSE) evalu-
ation metrics. The output results revealed that both the models fairly performed
on real time sensor data, they struggled with historical regional due to its vast-
ness,complexity and lack of granularity. The study highlights the significance of
granularity in enhancing predictive capabilities and suggests potential applications
for real-time traffic management systems. Future research aims to enhance forecasts
by integrating more external factors and creating real-time analysis frameworks that
enable quicker reactions to shifting traffic situations. The output results revealed
that both the models performed fairly on real time sensor data with best scores for

GRU: R-squared 0.890899, RMSE 0.229130 and MAE 0.168262 and LSTM: R-
squared 0.893829, RMSE 0.226033 and MAE 0.163932
Regional data

GRU: R-squared 0.404736, RMSE 0.999625 and MAE 0.653231 and LSTM: R-
squared 0.402661, RMSE 1.001367 and MAE 0.676723

Keywords: LSTM, GRU, sensor data, regional data, R-squared, RMSE, MAE

1 Introduction

1.1 Background:

With the rapid growth of urbanization, it has led to unprecedented challenges in man-
aging commutation or transportation systems such as congestion of traffic, becoming a
ubiquitous issue in metropolitan cities. This congestion not only hampers but also has
significant impact on economy, environment and society. Traditional methods to predict
traffic have faced a lot of challenges to cope up with the dynamic nature of urban traffic.
However, with advancement in technology particularly with availability of real-time and
evolution of modernized techniques like deep learning offer a promising solution to tackle



this challengeTedjopurnomo et al.|(2020)). There has been a drastic change in the manage-
ment of transportation systems with introduction of real time data. Real time data can
be sourced from GPS enabled devices, traffic sensors, traffic cameras and many other real
time sensing devices. The detailed description of real time offers insights into traffic pat-
terns, anomalies and congestion dynamics, forming the base for predictive modelling and
proactive traffic management strategies. Deep learning a subset of artificial intelligence is
proven to be a powerful tool for analyzing complex patterns within large dataset. Latest
techniques such as CNN, RNN and its variants such as LSTM or Gated Recurrent Unit
have demonstrated remarkable capabilities. These techniques can efficiently handle tem-
poral and spatial data and make accurate predictions. Traffic prediction involves several
stages such as cleaning, normalization, feature extraction etc from real time data. The pre
processed data are fed into deep learning architectures for training. Model training, valid-
ation and hyper parameter tuning are essential to maintain models performance. Models
performance can be evaluated using evaluation metrics such as RMSE, R2 r-squared and
Mean Absolute Error to assess the accuracy of these modelsChicco et al.| (2021)). Real
world applications of deep learning models in traffic prediction showcase practical utility
of these models. This case study highlights application of deep learning model GRU on
real-time data and region data and optimize travel routes for the user. The accuracy of
applied deep learning model on real-time constrained to junction gives better accuracy
rather than predicting for the entire region. These application can have better impact in
reducing traffic congestion, improving commutation time and enhancing overall mobility.
Looking at the future traffic prediction using real time data holds immense potential.
Advancement in technology such as incorporation or multimodal data sources such as
text or images or audio, edge computing, re-inforcement learning can further improve
accuracy and real time decision making. By integrating deep learning model with real
time data such as data from traffic cameras, satellite and various other sources will pave
way for a sustainable transportation system, ultimately enhancing quality of urban life.

1.2 Research Question and Objective:

How integration of real time data from sources enhance accuracy of prediction of model
in urban regions?

Integration of real time data from various sources can significantly enhance the accuracy
of prediction in urban regions. Real time data extraction from sensors, [oT devices, traffic
cameras and other sources can assist the models ability to capture immediate changes
in traffic patterns, environmental conditions, public sentiment and more. However in
this case study we have considered sensor data from 6 different junctions based in United
Kingdom region. The aim of this research study is to improve precision of urban planning,
resource allocation, improve predicting capabilities for traffic management, leveraging
minute data insights and facilitate sustainable urban development.

1.3 Document Structure:

The research document is broken down into seven sections, each of which offers details
on a distinct aspect of the investigation. The second section, which is divided into eight
subsections, summarizes what prior research has been done and highlights the unique
characteristics of this project before closing; in the third segment, the technique utilized
in the study is detailed; and in the fourth section, the design specifications, it provides



information on the procedures and methods used and the project’s key performance
indicators. Section 5 will demonstrate how the technical solution was used for the research
and tools used, Section 6 provides the depth of case studies and how the assessment
procedure helped the research attain its goals. Finally, in section 7 the research paper
will wrap up the topic with the relevant findings and discuss potential future studies.

2 Related Work

In this section we will discuss all the related works related to traffic prediction and analysis
on the same.

2.1 Traffic prediction survey on smart cities

The term ”"smart city” in |Qin et al. (2010) can be referred as use of data and latest com-
munication technologies to analyze and integrate key information from core systems in
operating cities. At the same time, these services can make intelligent responses to differ-
ent types of needs arising in terms of daily livelihood, environmental protection, public
safety as well as industrial and commercial activities. The 2 key aspects among the
notable goals of smart cities are smart transportation systems and smart urban systems
which can significantly influence lives of residents in smart cities. Advanced Traffic Man-
agement Systems (ATM’s) and Intelligent Transportation Systems (ITS’s) are formed on
the principle of integration of information, communication and other technologies and
apply them in the field of transportation to build an integrated system of people, road
and vehicles. These systems constitute a large fully functional, real-time, precise and
efficient transportation management framework An et al. (2011)). Challenges associated
due to rapid growth of urbanization are namely traffic congestion Al-Kadi et al.| (2014),
increase in fuel or energy consumption, enormous emission of pollutants. Intelligent
traffic management systems such as ATMS and ITS can help overcome negative impacts
of city-dwellers. Forecasts can also support traffic centers in managing road networks
and allocating resources systematically, such as opening/closing lanes, dynamic pricing
parkingQian and Rajagopal| (2014)), adaptive traffic lights De Gier et al.| (2011)), high level
of automation [Zhang et al.| (2011)).

2.2 Data from sensors for traffic prediction

Sensors are based on type of sensors which are deployed at a fixed position. Due to fixed
position these sensor always measure at a specific point. They might measure single or
multiple lanes based on the capacity of sensors. The biggest advantage of fixed position
sensors is that it has the ability to capture data of all the vehicles passing by. A moving
sensor can only capture data of one vehicle it is travelling in for example GPS sensors.
Aggregate statistics such as number of vehicles or density flow can be captured using
fixed position sensors. Automated fare collection (AFC) contain fixed position sensors
and data can be harvested from them. AFC’s are used for toll collection. The smart
ticketing data can be important input for the study of urban mobility patternsLi et al.
(2018). There have been more than 10 papers Mohamed et al.| (2016)); [Zhong et al.| (2015,
2016)) which have to deal with smart ticketing but none of them had publicly available
data sets.



2.3 Traffic flow prediction using parametric models

Traffic low prediction is distinguishes between two broad classification namely parametric
and non parametric models. Parametric models are referred as models which have a
structured expression with predetermined assumptions about variable Mao et al.| (2017)).
ARIMA, Kalman filtering, maximum likelihood estimation, Linear Regression [Bao et al.
(2018) are examples of parametric models. Although the characteristics of parametric
models were inflexible, they were applied in the past for traffic characteristics description.
Traffic was prediction ineffectively due to non-linearity and variations in traffic data Tian
and Pan (2015).

2.4 Introduction of deep learning to traffic prediction

Recently deep learning was introduced to traffic prediction and widely accepted approach
for describing traffic systems precisely. Description of distributed and hierarchical features
for complex traffic flow data can be done by using multi layer non-linear structures
of deep learning models. There have been researches done in the area of clustering
approaches for traffic flow prediction Huang et al.| (2014]) for example deep belief networks.
Li et al.|(2019) proposed an intelligent swarm based model to optimize parameters of DBN
and enhance its multiple steps ahead prediction capability. Lv et al. (2014) proposed
attention based model like Stacked Auto-Encoder(SAE) which outperformed Random
Walk approach, Feed-Forward Neural Networks, and Radial Basis Function(RBF). Each
neuron of previously hidden layers are connected to each neuron of next layer hence
adding to density of the model. All the features and characteristics are extracted from
the dataset automatically which results into no assumptions made by Fully connected
network models [Wu et al.| (2018)).

2.5 GRU and LSTM for traffic prediction

GRU architecture was proposed as a RNN variant by Cho et al. (2014). This was proposed
in the year 2014 to solve vanishing gradient problem. Application of GRU to traffic
prediction problem successfully, especially traffic flow estimation in few steps. Results
calculated are superior to SAE, FFNN and SVM. GRU architecture is similar to LSTM
and can produce equally excellent results. However internal structure is simpler and more
rapid than LSTM. The 2 control gates namely reset and update gates are responsible to
overcome the vanishing gradient problem in RNN. The update gate helps to determine
the past information from the time series that need to pass to the future. Keeping
such information helps eliminate the risk of vanishing explosion. Reset gate however
determines to decide how much information to forget. External factors such as weather
conditions, changing populations and social economic events play a important role in
traffic prediction as proposed by many researchers.Determination of optimal time-lags
and hyper parameters value for traffic flow prediction has a stronger applicability like
LSTM with a simpler configuration network |Jia et al.| (2017)). The study Hussain et al.
(2021)) proposed the fundamentals of GRU network with hyperparameter optimization
analysis combined with window tuning steps for time series prediction and obtained
RMSE, MAE as 7.13 and 0.3 respectively. The study Tian et al. (2018) demonstrated
LSTM on PeMS dataset. The study compared traffic flow prediction at two intervals 15
minutes and 60 minutes. For 15 minutes prediction interval, the LSTM model achieved



a MAE and RMSE of 0.385 and RMSE of 7.6 respectively. All of the tests mentioned
above are displayed in tabular format in Table

2.6 Restrictions and Learning from Literature

Section 1 is limited to traffic prediction survey on smart cities and researchers fail to cover
all points on advantages and disadvantages of intelligent transportation systems. Section
2 describes the study of integration of real time data from sensors for traffic prediction.
Sensors installed on AFC’s can be used for traffic prediction on the particular junction
is discussed in second section.While the study focuses on integration of real time data,
it may overlook the challenges and limitations associated with sensor data such as data
quality, sensor placement, maintenance issues. The third section discussed the prediction
of traffic using parametric models namely ARIMA, Kalman filtering, Linear Regression
and many other techniques. However the fourth section discusses the introduction of
traffic prediction using deep learning models. RNN variants namely GRU and LSTM
share a similar architecture and their implementation for traffic prediction is discussed in
section 5. The most important limitation is the deployment and scalability of proposed
traffic prediction models.

References Technique Data Score

Hussain et al.|(2021) GRU PeMS 7.3 for RMSE & 0.3 for
MAE

Tian et al.|(2018) LSTM PeMS 7.6 for RMSE & 0.385
for MAE

Table 1: Comprehensive Summary of Techniques and Scores for Traffic Prediction

3 Methodology

There are 2 types of methodologies available for analysis are KDD( Knowledge discovery
in databases) and Crisp-DM. In this research study we have taken KDD methodology as
this is the most appropriate method for research. The methodology implementation is
shown in the figure [1}

Pre-Processing EDA Modelling Evaluation
. Boxplot and

Sensor Check for Nulls Countplot for Train GRU SRS:rteﬁE?or
Data visualization model on q
stationary data

Check > B i > * | Mean Squared
Correlation SIlatlunarlty ik Error
- Dickey Fuller Test
Train LSTM
; Encode Mormalization model on
Categorical and differencing stationary data MeanE,-fr\rgsrnlute
features application

Figure 1: KDD Methodology



3.1 Data Selection and Understanding:

We have taken two open source datasets namely Traffic Sensor Data, Traffic Regional
Data of United Kingdom region for this research in order to compare traffic sensor data
with traffic data of entire region and perform traffic prediction on the same [[|F] Traffic
sensor data contains data of different traffic sensors installed at different junctions whereas
traffic region data contains traffic data of different regions namely London, Scotland and
Wales. The traffic sensor data contains information ranging from year 2019 - 2020. The
traffic data contains information ranging from 2000 - 2022. The common features among
both the datasets are namely Data and Time, Region/Junction, Motor Vehicle Count
etc. Traffic sensor dataset has 69985 observations and 14 features whereas traffic regional
data has 267636 observations and 35 features.

3.2 Exploratory Data Analysis:

In order to have a better understanding of data and get familiar with most important
characteristics of data, exploratory data analysis is performed where summarization and
visualization of features are taken place |[Paez and Boisjoly| (2023)).

3.2.1 Data Cleaning and Preprocessing:

Noisy data can impair the models performance. Preprocessing and cleaning of data are
essential at this point. Therefore following cleaning and preprocessing procedures are
part of research. As a part of cleaning, nulls have been checked for both the dataset. No
null or NA data was present in traffic sensor data although traffic data had many null
values and hence as a part of treatment null values were dropped. In order to remove
irrelevant features, heatmap was plotted to check collinearity between feature and drop
strongly correlated variable as a part of dimensionality reduction. After implementation
it was found that traffic data had highly correlated variables and were dropped as apart of
treatment. Heatmap for regional data and sensor data can be seen in [3|and [2 respectively.

3.2.2 Plot Vehicles Per Region/Junction:

In order to get a proper understanding of data, we have visualized total count vehicles
per region or junction with the help of Boxplot from Seaborn library. Figure 4| contains
data of count of all the vehicles per junction whereas figure [5| contains count of all motor
vehicles per region.

The below figure [6] shows plotting of all the vehicles count in regional data for each
year ranging from 2000 - 2022

3.2.3 Check Stationarity For Traffic Forecasting:

Stationarity refers to statistical property that remains constant over a period of time
van Greunen and Heymans (2023)). Checking for stationarity involves assessment of time
series data satisfying certain conditions namely constant mean, variance and covariance.
Stationarity check plays a crucial role for several reasons. Many forecasting models are

'https://www.data.gov.uk/dataset/d3a76dbd-9936-4375-9ba6-e2974fafc943/
mill-road-project-traffic-sensor-data/datafile/98358736-af12-46d2-932e-ea6028d82040/
preview

“https://roadtraffic.dft.gov.uk/downloads


https://www.data.gov.uk/dataset/d3a76dbd-9936-4375-9ba6-e2974fafc943/mill-road-project-traffic-sensor-data/datafile/98358736-af12-46d2-932e-ea6028d82040/preview
https://www.data.gov.uk/dataset/d3a76dbd-9936-4375-9ba6-e2974fafc943/mill-road-project-traffic-sensor-data/datafile/98358736-af12-46d2-932e-ea6028d82040/preview
https://www.data.gov.uk/dataset/d3a76dbd-9936-4375-9ba6-e2974fafc943/mill-road-project-traffic-sensor-data/datafile/98358736-af12-46d2-932e-ea6028d82040/preview
https://roadtraffic.dft.gov.uk/downloads
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Data

likely to assume the underlying data as stationary. Hence, if the data is non stationary,
the assumptions may be violated, leading to inaccurate predictions. Traffic data usually
exhibits underlying trends and seasonality. Understanding stationarity helps identify
these components. Traffic sensor data and traffic regional data when checked was found
that the data was not stationary. Methods like normalizing and differencing were applied
to non stationary data to make it stationary. In order to evaluate the results post nor-
malizing and differencing, Dickey Fuller test was used to check the stationarity. Figure
[7 and figure [§] contains graph of non stationary data of sensor data and regional data
respectively.

The below figure [9] and [10] shows output results after applying techniques like differ-
encing and normalizing in the form of a lineplot from searborn library.

Table 2 and Table [3] are output results of Dickey fuller test. This test plays significant
role in time series modelling, which in our case is traffic forecasting. Both the tables
shows output results after application of techniques like Normalizing and Differencing to
make data stationary. In all the cases P-Value is less than 0.05 which means it rejects
null hypothesis and concludes time series data is stationary.
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The Later stage of implementation is selection of model, perform modelling on the selected
model and evaluating the model. Assessment of the model can be done by calculating
accuracy of the data|Amini et al|(2023). We can attain this by splitting dataset into sets
i.e. Training Set and Testing Set. The data from training set can be utilized into training
model whereas data from testing set can be treated as un-labeled data for the model,
used for prediction. The sample data is then compared to real samples to determine the
average model accuracy. The results obtained for all the approaches includes metrics

such as MSE, RMSE, MAE and R-Squared.



Table 2: ADF test results for Sensor Data
Junctions p-value ADF Statistic Stationarity

Junction 1 3.604 x 1023 -12.45 Yes
Junction 2 3.540 x 104 -12.94 Yes
Junction 3 9.458 x 1072° -13.43 Yes
Junction 4 2.193 x 1025 -13.57 Yes
Junction 5 4.413 x 1074 -12.89 Yes
Junction 6 2.759 x 10~ -12.99 Yes

Table 3: ADF test results for Regional Data
Regions p-value ADF Statistic Stationarity

Region 1 0.0 -58.07 Yes
Region 2 0.0 -49.69 Yes
Region 3 0.0 -58.07 Yes

4 Design Specification

The design specification module comprises detailed requirements, limitations and ob-
jectives of deep learning system,considered to be one of the initial stages of product
management. The design specification outlines the foundational elements for implement-
ing deep learning model, architecture, framework, and associated requirements. This
module also includes details on methods and algorithms which will be applied including
systems expected performance. Procedures execution phase is explained in great detail
in this stage. The optimal model is chosen and applied to practice data in two stages
of modelling study. Evaluation matrix are selected based on responses to inquiry for
research.

4.1 Modelling Techniques:
4.1.1 Long Short Term Memory RNN:

Artificial Neural Networks are influenced from biological learning systems and comprised
of loosely modelled basic functions. Biological learning systems are complex webs of
interconnected neurons. The most standard type of neural networks are feed forward
neural networks. The architecture of these networks are organised in the form of layers
which are input layer, output layer and one intermediate hidden layer. Feed forward
neural networks are limited to static classification task. An extension towards dynamic
classification can be done by feeding signals from previous timestamps back into the
network. These networks are known are Recurrent Neural Network (RNN). The only
constraint of RNN networks are vanishing gradient which limits them to look back into
the time approximately ten time stamps. This issue was resolved by LSTM RNN neural
networks and have a capability to learn more than 1000 timestamps |Staudemeyer and
Morris (2019).The LSTM are represented by the following formula given below.



4.1.2 Gated Recurrent Unit RNN:

The GRU’s reduces the gating signals from LSTM RNN. The 2 gates are called update
gate and reset gate. Both GRU and Simple RNN share similar parameterization. Increase
in weights are also updated using BTT (backpropogation through time) stochastic gradi-
ent descent. Hence all hidden states are reflected in latest state variables. Moreover, the
adaptive parameter updates all involved components of the internal state of the system.

4.2 Model Evaluation:

Both the models have been evaluated using these three evaluation metrics.

4.2.1 R-Squared:

R-squared is a statistical measure that represents proportion of variance of dependent
variables are explained by independent variable or variables. Values of R2 usually range
from 0 to 1 where higher values indicate better fit of model.

4.2.2 Mean squared Error:

MSE is also a statistical measure of average squared difference between actual and pre-
dicted values. The equation can be explained as average of squared differences between
predicted and actual values. MSE are not negative and values equal or closer to zero
indicate perfect predictions.

4.2.3 Mean Absolute Error:

MAE is a statistical measure where the average magnitude of error in set of prediction is
calculated, irrespective of direction. All the aspects of MAE are similar to MSE except
they are less sensitive to outliers because unlike MSE it does square the errors in the
calculation.

5 Implementation

This section consists of all the implementation part which includes transformation of
data, apply modelling, output results calculated etc.

Note: This research project consists of two datasets and has separate im-
plementations of both the datasets. Two datasets are Traffic Sensor Data

and Traffic Regional Data namely. Particular implementation name will be
mentioned in the section name.

5.1 Tools Used:

This section contains a list of tools used for this research study.

10



5.1.1 Hardware Specifications:

Specifications of the system used for this study are Intel Core i5 processor, 8GB RAM
and 512GB ROM.

5.1.2 Software Tools:

In this research case study we leveraged comprehensive suite of software tools for data
analysis and predictive modelling. The primary IDE used is Jupyter Notebooks, widely
used platform for data science tasks. Core Programming language is Python, known for
its extensibilty and support for data manipulation and analysis. For data visualization, we
used Python’s inbuilt packages namely Matplotlib and Seaborn. These packages enable
us to effectively give insights on data through visual representation.

5.2 Data Transformation 1 - Traffic Sensor Data:

This section consists all the implementation techniques related to only Traffic Sensor
Data.

5.2.1 Label-Encoding Categorical Data:

Categorical features namely CountlineName (name of the junction) and direction (dir-
ection of vehicles) are relevant features and must be label encoded. We have imported
Label encoder pre defined function from Sciket-Learn package for label encoding categor-
ical data.

5.2.2 Junction-Wise Data Aggregation, Normalization and Differencing:

The dataset has 6 junctions and separate dataframe was prepared for each junction to
predict traffic separately. Irrelevant features namely Car, Pedestrian, Cyclist, Motorbike
etc. were added into a single feature named as total count and dropped. Descriptive stat-
istics were calculated for each dataframe junction to get an overview of the data.Separate
junction dataframes were subjected to techniques such as Normalization and Differencing
to make the data stationary and ready for prediction. Parameterized normalization func-
tion was created with Dataframe (Junction Dataframe) and Column(total count column)
as input arguments. A parameterized differencing function was also defined with interval
as an additional argument. We have considered a week’s difference as an interval.

5.3 Data Transformation 2 - Traffic Regional Data:

This section consists all the implementation techniques related to only Traffic Sensor
Data.

5.3.1 Region-Wise Data Aggregation, Normalization and Differencing:

The dataset has 3 regions and separate dataframe was prepared for each region to predict
traffic separately. Irrelevant features were added into a single feature named as all motor
vehicles and dropped. Descriptive statistics were calculated for each dataframe region to
get an overview of the data.Separate region dataframes were subjected to techniques such
as Normalization and Differencing to make the data stationary and ready for prediction.
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Parameterized normalization function was created with Dataframe (Region Dataframe)
and Column(all motor vehicles column) as input arguments. A parameterized differencing
function was also defined with interval as an additional argument.

5.4 Training Model and Hyperparameters:

To determine the difference, prediction for sensor and regional data was performed using
both GRU and LSTM models with identical settings.Transformed data is then splitted
and fed into the respective models for training. The model is trained for 50 epochs with
a batch size of 32. Training and validation loss are plotted to visualize the epoch pattern.
Model makes prediction X-test and returns predicted values. We have used RMSE, MAE
and R-squared to evaluate models performance. PredictionsPlot provides a visualization
of model’s performance by plotting actual vs predicted values.

5.4.1 Hyperparameters for GRU model

GRU model function constructs a GRU based neural network model for traffic prediction.

e The model contains 3 layers of GRU with tanh activation. The first layer has 100
units and return sequences. The second layer has 50 units and also return sequences
whereas the third GRU layer has 50 units but does not return sequences.

e To prevent overfitting, dropout layers have been added after each GRU layer.

e RMSprop optimizer with a learning rate of 0.001 is used. RMSprop have the ability
to handle vanishing/exploding gradients, adapt to learning rates, prevent oscillation
etc and hence are considered effective for training RNN.

e An early stopping callback is implemented with learning rate of 0.001 and patience
of 10 epochs. This setting helps in stopping training when validation loss has
reached a threshold value and hence prevent overfitting.

5.4.2 Hyperparameters for LSTM model

LSTM model function constructs a LSTM based neural network model for traffic predic-
tion.

e The model contains 5 layers of GRU with tanh activation. The first layer has 128
units and return sequences. The second and third layers has 64 units,fourth layer
has 32 units and also return sequences whereas the fifth GRU layer has 32 units
but does not return sequences.

e To prevent overfitting, dropout layers have been added after each GRU layer.The
value is set to 0.2 which means 20 percent are randomly ignored which in turn
provides a form of regularization.

e Adam optimizer is used with LSTM with a learning rate of 0.001. Adam due to
its efficiency and adaptive learning rate properties is a best fit for training neural
networks.

e An early stopping callback is implemented with learning rate of 0.001 and patience
of 10 epochs. This setting helps in stopping training when validation loss has
reached a threshold value and hence prevent overfitting.

12



6 Evaluation

Accoring to project pipeline, evaluation plays a critical role that helps gauge models
performance and confirm the model is operating as intended. In the discussion section
we have considered and compared output with best evaluation metrics score from all the
cases. Here are the list of case studies listed and discussed below.

GRU model’s performance on Traffic Sensor Data

LSTM model’s performance on Traffic Sensor Data

GRU model’s performance on Traffic Regional Data

LSTM model’s performance on Traffic Regional Data

6.1 Case 1: GRU model’s performance on Traffic Sensor Data

Overall results of this case study with evaluation metrics is shown in a tabular format in

figure [11]

Junction RMSE R-Squared MAE

0 Junction1 0306659  0.739601 0.225379
1 Junction2 0.267021 0.705212 0.184387
Junction? 0.261878  0.794658 0.191852
Junctiond = 0.228130  0.890899 0.165262
Junction® 0274593  0.674920 0187274

(2 B -V L T X |

Junctiong  0.271293  0.717538 0.173206

Figure 11: GRU Sensor Data Output

After the transformation of data, the GRU model is then executed on the test data
of Sensor dataset with the hyper parameters mentioned above. All the 6 junctions trans-
formed dataframe is subjected to the GRU model. The dataset was executed for 50
epochs with a batch size of 32. In order to avoid overfitting an early stopping was added
with a min delta value of 0.001 and patience 10. The evaluation metrics results across 6
different junctions indicate varied performance of the prediction model. However junction
4 outperforms all the other junctions and lowest errors, signifying excellent predictive ac-
curacy. Followed by junction 3 with strong results. R-squared for junction 4 accounts for
approximately 89 percent of variance in data whereas 79 percent for junction 3. Junc-
tion 2,5 and 6 display moderate performance with Junction 2 have a slight edge over
others with balance of predictive power and lower errors. Overall GRU performs fairly
on the sensor data with some junctions showing notably higher precision in prediction.
As junction 4 has best model performance among all the junctions, figures which include
evaluation plot[I3] and training and validation loss graph have been displayed below
for junction 4. According to the evaluation plot, we can see that predicted and original
value follow a similar trend.
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Figure 12: TV Loss Plot for GRU Sensor Data
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Figure 13: Evaluation Plot for GRU Sensor Data

6.2 Case 2: LSTM model’s performance on Traffic Sensor Data

Overall results of this case study with evaluation metrics is shown in a tabular format in

figure

Junction RMSE R-Squared MAE

0 Junction1 0.285303  0.774607 0.210253
1 Junction2 0218244 0803162 0.158405
2 Junctiond 0.221888  0.852534 0.154549
3 Junctiond 0.226033  0.893829 0.163932
4 Junctions 0.252805  0.724461 0.172743
5 Junctiond 0.190241 0.861108 0.126074

Figure 14: LSTM Sensor Data Output

LSTM model is applied to test data of Sensor Data with hyperparameters mentioned.
All the 6 junctions transformed dataframe is subjected to the LSTM model. As LSTM
and GRU both are variant of Recurrent Neural Networks, they follow a similar trend and
give similar output results. As per the above output results, junction 4 data outperforms
and gives a similar 89 percent high accuracy. As junction 4 is the best performing
model, training and validation loss plot and evaluation plot for junction 4 is displayed
in figure and [16| respectively. However as per tabular output results of LSTM data,
LSTM performed better than GRU as the minimum accuracy achieved was 72 percent
in comparison of GRU model which was 67 percent. Hence we can conclude that LSTM
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can identify underlying patterns better and give accurate predictions
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Figure 15: TV Loss Plot for LSTM Sensor Data

Figure 16: Evaluation Plot for LSTM Sensor Data

6.3 Case 3: GRU model’s performance on Traffic Regional Data

Overall results of this case study with evaluation metrics is shown in a tabular format in

figure

Region RMSE R-Squared MAE

0 Region1 1.002521 0.401282 0.682273
1 Region2 0931422  0.363964 0.629490
2 Region3 0999625  0.404736 0653231

Figure 17: GRU Regional Data Output

After the transformation of Regional Data, the GRU model is then subjected to
Regional dataset on test data. As the dataset is very vast, we have divided the dataset
into 3 regions. Similar to sensor data, dataset was executed for 50 epochs with a batch
size of 32. Hyperparameters of Sensor Data and Regional Data are same in order to
compare data and output. As there is no major difference in the output of all the 3
regions, we can say that there is no varied performance of prediction model. The output
of Region 3 is marginally better than Region 1 and Region 2. Region 3 is 0.3 percent
better than Region 1 and 3 percent better than Region 2. Similarly other evaluation
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metrics parameters namely RMSE and MAE also do not have a major difference in the
output as seen in the tabular output result format. Region 3 Traning and validation loss

plot and Evaluation plot of actual vs predicted values are displayed in figure |18 and
respectively. As the dataset of region is vast, there may be probable noise or underlying
patterns in the data which are not correctly identified by the model.
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Figure 18: TV Loss Plot for GRU Sensor Data

Figure 19: Evaluation Plot for GRU Sensor Data

6.4 Case 4: LSTM model’s performance on Traffic Regional
Data

Overall results of this case study with evaluation metrics is shown in a tabular format in

figure

Junction RMSE R-Squared MAE

0 Region1 1.001367  0.402660 0676723
1 Region2 0974499  0.372905 0534605
2 Region3 1.006856  0.396093 0648143

Figure 20: LSTM Regional Data Output

LSTM model was subjected to all the 3 regions. A major difference was not observed
in the outputs of both the models. Unlike the case of sensor data where junction 4
outperformed for both the models, Region 1 in this case shows marginally better results
than other Regions. However, Region 2 has under-performed in both the cases of Regional
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Data. A downward trend of epoch loss has been observed throughout the research study.
Evaluation Plot for both the models has also found out to be similar for both the models.
RMSE and MAE also do not have huge difference in the output similar to GRU model.
Training and Validation loss plot and Evaluation plot for Region 1 is plotted in figure
and [22 respectively. As the dataset is vast for LSTM as well, LSTM failed to identify
underlying patterns in the data, hence resulting in poor prediction.

Loss over Epochs

110 —— Training Loss
Validation Loss

Loss

Figure 21: TV Loss Plot for LSTM Regional Data

Figure 22: Evaluation Plot for LSTM Regional Data

6.5 Discussion

As per the output results, a major difference is found in the output of both the dataset
i.e. Models have been correctly predicting real time data approximately 50 percent more
better than regional data (historical data). The probable reason as to why there is major
difference in the output result could be with nature of datasets. Sensor data is found to
be more granular than regional data, hence offering high resolution of information. The
granularity in the data can help the models to capture temporal patterns which seem
to be more diluted in the case of aggregated regional data. Although with granularity
comes with more noise in the data, if LSTM and GRU are able to filter or interpret noise
effectively, they may provide better predictions at sensor level rather than regional level.
A regional data may contain multiple junctions/traffic sensor data, often encompassing
larger area. Due to this it may introduce more variability in data across different loca-
tions. Complex patterns of sensor data are recognized well by LSTM and GRU models
due to their complex architecture. One of the reason for better performance models on
sensor could be the feature exhibited by the sensor data are more relevant for prediction
compared to those used for regional data. Overall the project is addressing the research
question and prediction is giving better results for real time data rather than regional
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or historical data. In this project, it was assumed that there could have been incorrect
entries in the regional data for the extremely low results. The results show the traffic
prediction at multiple junctions or regions, this information could be use by local bodies
to manage the congestion and ensure a smooth flow of vehicles.

7 Conclusion and Future Work

7.1 Conclusion:

The comparative analysis of LSTM and GRU models on traffic sensor data and regional
data indicate choice of model is directly dependent on the granularity of data. Also
the granularity of data can provide a conducive environment for the models to lever-
age their strengths in modeling temporal sequences, leading to better predictive results.
In contrast, huge data from regional datasets introduced more complexities that were
not correctly identified by the model, hence resulting less accurate predictions and low
evaluation metrics result.

7.2 Future Works:

e Incorporation of Additional Data: External factors such as bad weather, spe-
cial events and traffic regulations might improve predictive capabilities of model.

e Real Time Analysis: Developing a real time analysis framework, enabling traffic
management and more immediate responses to changing conditions.

e Adaptive Traffic Signal Management: Future efforts could focus on integrating
predictive model with traffic signal systems. By understanding the vehicle flow
patterns, we can introduce dynamic traffic signal timing, hence optimizing traffic
flow and reducing congestion.
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