ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual
MSc Research Project
MSc in Data Analysis

Soumiya Kanwar
Student ID: X21218323

School of Computing
National College of Ireland

Supervisor: Abid Yaqoob

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee I
reland
School of Computing
Student ... SOUMIYA KGNWAATiiiiiiii ettt eabe e e
Name:
Student ID: DA 31 2 TSP
Programme: Msc in Data Analytics.......cccocouee Year: ..2023.......iiinennn. .
Module: ... RESEAIrCh ProjeCh. ..o e
Lecturer: ADBId Yaqoobh ... e
Submission
Due Date: 14 . deC 2023 s
ProjectComparative Analysis of Machine Learning Models for S&P 500
Title: | d=Ls |t o o) o N
Word Count:............ 768, Page Count: 100

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: ... SOUMIYA KANWaAT ...t s

Date: = ... 1471272023 e e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Soumiya Kanwar
Student ID: x21218323

1 Introduction

This project of Comparative Analysis of Machine Learning Models for S&P 500 Prediction
involved using Python in building deep learning techniques and machine learning algorithms.
This handbook spells out the specification of the system and the way it may be applied.

2 Hardware and Software Configuration

The System requirements that are required on the host device to implement this research is
shown in Figure 1.

@ Device specifications

Device name Somi

Processor Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz
Installed RAM 16.0 GB (15.8 GB usable)

Device ID 64AT78F95-9A48-4C0B-BBDD-3A923F763393

Product ID 00327-30000-00000-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch Pen and touch support with 10 touch points

Related links Domain or workgroup ~ System protection ~ Advanced system settings

Windows specifications

Edition Windows 11 Home Single Language

Version

Installed on

OS build

Experience Windows Feature Experience Pack 1000.22677.1000.0
Microsoft Services Agreement

Microsoft Software License Terms

Figure 1: System Configuration

1

Python 3.10.9 is used for implementation. All the frameworks and libraries required are given

below in Table 1.

IDE Anaconda Navigator() and Jupiter Notebook
Computation GPU

Number of GPU 1

Programming language Python

Modues

Pandas, numpy, matplotlib, seaborn,
yfinance, sklearn

Framework

tensorflow

Table 1: Setup configuration

To access the Jupiter Notebook, you must install Anaconda navigator. You can install it from
https://docs.anaconda.com/free/navigator/index.html. To open the Jupiter notebook, you can
navigate to Jupiter notebook app. It will open a new tab or window in your browser.

For this project we have used 6.5.2 versions of Jupiter Notebook. As in Figure 2

D) ANACONDA NAVIGATOR

™

All applications ~| on base (root) ~| Channels

&P Environments

N Learning Sm—
Jjupyter
o —

— COmmunit.
Comir? X JupyterLab Notebook

Figure 2: Anaconda Navigator

3 Dataset
We have used a library yfinance to import our data (Figure 3).

| # Load the dataset
sp580 = yf.Ticker("~GSPC")

| # Fetching the historical stock data for the S&P 560 with the period set to "max"
sp580 = sp5e0.history(period="max")
sp5@e.head()

| #Deleting the "Dividends" and "Stock Splits" column from the DataFrame
del sp5ee["Dividends"]
del sp5ee["Stock Splits"]
sp508

Figure 3: Data loading
2

https://docs.anaconda.com/free/navigator/index.html

The data set is divided into two distance timeline the first one is covering from 2000 to
present and the second one is covering from the recession. From 2007 to 2009.

We have two different code files:The first one is the data from 2000 to the present and the
other is from 2007 to 2009 that is the recession peroid. (Figure 4 and 5)

M # Using .loc to filter the DataFrame to include only rows from January 1, 208, onwards
sp568 = sp50@.loc["2680-81-81":].copy()
sp5ee

Figure 4: Data from 2000

| sp5ee = sp5e0.loc["2007-01-81":"2809-12-31"].copy()
sp566

Figure 5: Data from 2000

4 Exploratory Data Analysis

Exploratory Data Analysis has done on both the datasets. Including descriptive statistics as it
could give us better understanding of the data. We can see the descriptive statistics for both
the datasets in Figure 6, 7 and 8.

M sp5ee.index
M sp5ee.info

M # Descriptive statistics
sp50@.describe()

M # Visualize the distribution of 'Close' prices over time
plt.figure(figsize=(12, 6))
sns.lineplot(x="Date', y='Close', data=sp5e@)
plt.title('Closing Prices Over Time')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.show()

Figure 5: Exploratory Data Analysis

Open

High

Low

Close

Volume

count
mean
std
min
25%
50%
75%

max

6025.000000
1967.789252
1054.895258

679.280029
1191.170044
1456.630005
2577.750000
4804.509766

Figure 7: Descriptive statistics(2000-present)

Open

6025.000000
1979.423061
1060.225735

695.270020
1198.479980
1464.939941
2586.500000
4818.620117

High

6025.000000
1955.286397
1049.332851

666.789978
1184.160034
1446.060059
2565.939941
4780.040039

Low

6025.000000
1968.061445
1055.138051

676.530029
1191.329956
1456.630005
2579.850098
4796.560069

Close

6.025000e+03
3.325329e+09
1.508857e+09
3.560700e+08
2.082360e+09
3.442760e+09
4.158470e+09
1.145623e+10

Volume

count
mean
std
min
25%
50%
75%

max

756.000000
1214.998584
253.106839
679.280029
963.327515
1288.234985
1443.935028

1564.979980

756.000000
1225.432288
251.246626
695.270020
979.697479
1300.164978
1450.224945
1576.089966

756.000000
1203.390212
254 737279
666.789978
943.437500
1274.859985
1433.212463
1555.459961

756.000000
1214.750793
252.949807
676.530029
954.457520
1288.664978
1444.347504
1565.150024

Figure 8: Descriptive statistics (2007-2009)

7.560000e+02
4.613678e+09
1.575373e+09
1.219310e+09
3.387888e+09
4.381810e+09
5.632375e+09

1.145623e+10

5 Implementation

5.1 Long short-term Memory

A Sequential model using Keras is defined and returned by the create_Istm_model function.
The model consists of two layers: a single unit sigmoid activation function after a fifth layer
of LSTM containing 50 units, with a ReLU activation function preceding it. According to
Figure 9.

| # Creating LSTM
def create_lstm_model(input_shape):
model = Sequential()
model.add(LSTM(units=5@, input_shape=input_shape, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model

Preprocess data for LSTM
scaler = MinMaxScaler(feature_range=(@, 1))
scaled_data = scaler.fit_transform(sp5e@[["Close", "Volume", "Open", "High", "Low"]])

Create sequences for LSTM
sequence_length = 18
sequences = []

targets = []

for i in range(len(scaled_data) - sequence_length):
sequence = scaled_data[i : (i + sequence_length)]
target = sp5@8["Target"].values[i + sequence_length]
sequences.append(sequence)
targets.append(target)

Figure 9: creating LSTM model.
The Model was Trained on different epochs. (Figure 10)

M # Train LSTM model
lstm_model = create_lstm_model(input_shape=(X_train.shape[1], X_train.shape[2]))
lstm_model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))

M # Evaluate LSTM model
lstm_scores = lstm_model.evaluate(X_test, y_test)
print(f"LSTM Model - Loss: {lstm_scores[@]}, Accuracy: {lstm_scores[1]}")

M # Make predictions with LSTM model
lstm_preds = (lstm_model.predict(X_test) > ©.5).astype(int)

Figure 10: Training model (epochs = 10)

5.2 Random Forest Classifier and Logistic Regression

| model

rfc(n_estimators=200, min_samples_split=5@, random_state=1)

| train = sp5@@.iloc[:-100]
test = sp5@0.iloc[-100:]

woon

| predictors = ["Close","Volume", "Open", "High","Low"]
model.fit(train[predictors], train["Target"])

| preds= model.predict(test[predictors])

| preds = pd.Series(preds, index=test.index)
preds

| precision_score(test["Target"], preds)

| combined = pd.concat ([test["Target"], preds], axis=1)
combined.plot()

Figure 11. Traning Random Forest Classifier (2000- present)

M from sklearn.linear_model import LogisticRegression
model = LogisticRegression(random_state=1)

M model.fit(train[predictors], train["Target"])

M preds= model.predict(test[predictors])

M preds = pd.Series(preds, index=test.index)
preds

M precision_score(test["Target"], preds)

M combined = pd.concat ([test["Target"], preds], axis=1)
combined.plot()

<Axes: xlabel='Date'>

Figure 12. Traning Logistic Regression

M train = sp5@@.iloc[:-75]
test = sp500.iloc[-75:]

Figure 13.Creating training and testing datasets

Figure 14 shows, predict function accepts the training set, the test set, the predictors list, and
a machine learning algorithm. It fits the model on training data, predicts on test data, and then
returns a DataFrame with the actual targets and predictions of interest for additional
investigation.

M def predict(train, test, predictors, model):
model.fit(train[predictors],train["Target"])
preds = model.predict(test[predictors])
preds pd.Series(preds, index = test.index, name="Predictions")
combined = pd.concat ([test["Target"], preds], axis=1)
return combined

Figure 14: Define predict function

Figure 15 and 16 shows the backtest function performs a rolling-window backtest on a time
series dataset using a machine learning model, generating predictions for specified predictors
at intervals defined by the start index, step size, and concatenating the results into a Pandas
DataFrame.

| def backtest(data, model, predictors, start =250, step=25):
all predictions = []

for i in range(start, data.shape[8], step):
train = data.iloc[@:i].copy()
test = data.iloc[i:(i+step)].copy()
predictions = predict(train, test, predictors, model)
all_predictions.append(predictions)
return pd.concat(all_predictions)

Figure 15 : backtest funtion for (2007-2009)

def backtest(data, model, predictors, start =2508, step=250):
all predictions = []

for i in range(start, data.shape[@], step):
train = data.iloc[@:i].copy()
test = data.iloc[i:(i+step)].copy()
predictions = predict(train, test, predictors, model)
all predictions.append(predictions)
return pd.concat(all_predictions)

Figure 16: backtest funtion for (2000 — present)

Figure 17 and 18 state that, the data under the “close” column is used to ratio against target-
divided columns with rolling average/trends measured. These are additional features or
information associated with raw data that highlight average values over a particular
timescale.

M # Calucating Mean
horizons = [2,5,60,250,1000]
new_predictors = []

for horizon in horizons:
rolling averages = sp560.rolling(horizon).mean()

ratio_column = f"Close_Ratio_{horizon}"
sp508[ratio_column] = sp5@8[“"Close"] / rolling_averages["Close"]

trend_column = f"Trend_{horizon}"
spSee[trend_column] = sp500.shift(1l).rolling(horizon).sum()["Target"]

new_predictors += [ratio_column, trend_column]

M sp5@e=sp588.dropna()
sp5ee

Figure 17: Calucating Mean (2000 — present)

| # Calucating Mean
horizons = [2,5,7,10,14]
new_predictors = []

for horizon in horizons:
rolling_averages = sp500.rolling(horizon).mean()

ratio_column = f"Close_Ratio_{horizon}"
sp5ee[ratio_column] = sp5@8["Close"] / rolling_averages["Close"]

trend_column = f"Trend_{horizon}"
sp5ee[trend_column] = sp500.shift(1).rolling(horizon).sum()["Target"]

new_predictors += [ratio_column, trend_column]

Figure 18: Calucating Mean (2007 —2009)

The function predict trains a machine learning model on the training data, makes predictions
on the test data using specified predictors, converts predicted probabilities into binary
predictions based on a threshold of 0.5, 0.6 and 0.7 creates a Pandas Series with the
predictions, and returns a DataFrame combining the actual target values from the test data
with the predicted values.as we can see in Figure 10.

| def predict(train, test, predictors, model):
model.fit(train[predictors],train["Target"])
preds = model.predict_proba(test[predictors]) [:,1]
preds[preds>= .5] =1
preds[preds< .5] = @
preds = pd.Series(preds, index = test.index, name="Predictions")
combined = pd.concat ([test["Target"], preds], axis=1)
return combined

Figure 19: define predict function (thershold = 0.5)

Note: For Logistic recession model simalier steps have been taken
as Random Forest Classifier

6 Conclusion
In order to execute the entire code in Jupyter, Just click on Run All from the Cell Menu.
As shown in the Figure 20.

[, Stock market volatil | [#] IEEE Reference & — 1. Final_project/ & sp500-Jupyter X & rsp500 - Jupyter N ChatGPT

] © localhost

: Ju pyter sp500 Last Checkpoint: a day ago (autosaved)]

File Edit View Insert Cell Kernel Widgets Help Not Trusted ‘ Pythc

+ < A B 1+ b Run Cells [ctri-Enter|
preds[Run Cells and Select Below [shift-enter|

preds Run Cells and Insert Below Enter| | namef"Predictions")
combin 3], axis=1)
return RunAll
Run All Above
In [76]: M prediction RynAll Below tors)
In [77]: M prediction (g Type N
out[77]: e.e 209
1.0 43 Current Outputs »
Name: Pred , Output »
In [78]: Pl # Calculate precision score
precision = precision_score(predictions["Target"], predictions["Predictions"])

print(f"Precision Score: {precision}")

Calculate Mean Squared Error (MSE)
mse = mean_squared_error(predictions["Target"], predictions["Predictions"])
print(f"Mean Squared Error (MSE): {mse}")

Calculate Root Mean Squared Error (RMSE)
rmse = np.sqrt(mse)
print(f"Root Mean Squared Error (RMSE): {rmse}")

Precision Score: ©.5368663594470046
Mean Squared Error (MSE): ©.5229793977812995
Root Mean Squared Error (RMSE): ©.7231731450913395

Figure 20: Jupiter File Menu

7 Exploratory Data Analysis Visualization

The line graph of the closing charge over the years is shown in Figures 21 and 22. As we will
see, prices commenced to fall in the middle of 2007 and reached rock bottom within the

middle of 2009.

5000

Closing Prices Qver Time

4000 A

3000 A

Close Price

2000 A

1000 4

T T T T T T T
2000 2004 2008 2012 2016 2020 2024
Date

Figure 21: Closing price over time (2000-present)

Closing Prices Over Time

1600 A

1400 4

1200 4

Close Price

1000 4

800 -

T T T T T T T T T T
2007-01 2007-05 2007-09 2008-01 2008-05 2008-09 2009-01 2009-05 2009-09 2010-01
Date

Figure 22: Closing price over time (2007-2009)

10

