

Configuration Manual

MSc Research Project Data Analytics

Nikhil Kadam Student ID: 22110712

School of Computing National College of Ireland

Supervisor: Prof. Aaloka Anant

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name	Nikhil Kadam
Student ID	22110712
Programme	Data Analytics
Year:	2023
Module:	Msc Research Project
Supervisor:	Prof. Aaloka Anant
Submission Due Date:	14-12-2023
Project Title:	Jax base machine learning models for early breast cancer detection
Word Count:	1357
Page Count:	38

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature	Nikhil Kadam

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only				
Signature:				
Date:				
Penalty Applied (if applicable):				

Configuration Manual

Nikhil Kadam Student ID:22110712

1 Introduction

This Configuration Manual lists together all prerequisites needed to duplicate the studies and their effects on a specific setting. A glimpse of the source for Exploratory Data analysis for both tabular and image data and images augmentation is done followed by label encoding, class balancing using Smote, and feature engineering and after that all the algorithms are created, and Evaluations is also supplied, together with the necessary hardware components as well as Software applications. The report is organized as follows, with details relating environment configuration provided in Section 2.

Information about data collection is detailed in Section 3. Exploratory Data Analysis is done in Section 4. Label Encoding and Class Balancing is included in Section 5. In section 6, the Feature Engineering is described. Section 7 provides details of data preprocessing and image augmentation. Details about models that were created and evaluated are provided in Section 8. How the results are calculated and shown is described in Section 9.

2 System Requirements

The specific needs for hardware as well as software to put the research into use are detailed in this section.

2.1 Hardware Requirements

The necessary hardware specs are shown in Figure 1 below. MacOs M1 Chip, macOS 10.15.x (Catalilna) operating system, 8GB RAM, 256GB Storage, 24" Display.

C Hatora Add Add Add Add Add C and Reader Add Reader	• • •	MacBook Pro	
Allority Mainter marter Mainter marter Mainter marter Card Basder Card Basder Mainter marter Mainter marter Card Basder Marter marter 8.8 Card Marter Franker 8.8 Card Marter Franker 7.8 Franker Franker 7.8 Franker Franker 5.8 Marter Franker 5	ATA	Hardware Overview:	
Developer Disables Software Extensions Frameworks Institutions Language Region Logs Managard Client Profession Profession Profession Profession	Apple Pay Audio Audio Canrense Carrilleader Dise Bustern Dise Bustern Dise Bustern Dise Bustern Provide FireWite Herrory Memory Metale SCSI Power Prints SATA SATA SATA UB Honoto	Model Model Model Model Model Chap Del Del Del Del Del Del Del Del Del Del	
Preference Panes Printer Software Profiles	Developer Disabled Software Extensions Fonts Framaworks Installations Language & Region Language & Region Logacy Software Loga		
Raw Support SmartCards Startup Items	Preference Panes Printer Software Profiles Raw Support SmartCards		

Figure 1: Hardware Requirements

2.2 Software Requirements

- Anaconda 3 (Version 4.8.0)
- Jupyter Notebook (Version 6.0.3)
- Python (Version 3.7.6)

2.3 Code Execution

The code can be run in jupyter notebook. The jupyter notebook comes with Anaconda 3, run the jupyter notebook from startup. This will open jupyter notebook in web browser. The web browser will show the folder structure of the system, move to the folder where the code file is located. Open the code file from the folder and to run the code, go to Kernel menu and run all cells.

3 Data Gathering

The dataset is collected from

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic for tabular data. Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. The data is also taken from

https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset for images. The data collected at baseline include breast ultrasound images among women in ages between 25 and 75 years old. This data was collected in 2018. The number of patients is 600 female patients. The dataset consists of 780 images with an average image size of 500*500 pixels.

4 Exploratory Data Analysis

Figure 2 includes a list of every Python library necessary to complete the project.

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from collections import Counter from imblearn.over_sampling import SMOTE import xgboost as xgb from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier import jax import jax.numpy as jnp from jax import grad, jit, vmap from jax import random from jax.scipy.special import logsumexp import glob import shutil import os import cv2 from sklearn import preprocessing import random from sklearn.utils import class_weight import tensorflow from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Dense, Dropout, BatchNormalization, Flatten, Conv2D, MaxPooling2D from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Conv1D, Layer,Attention, GlobalAveragePooling2D from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.inception_v3 import InceptionV3 from keras.applications.densenet import DenseNet121

Figure 2: Necessary Python libraries

Figure 3 represents the block of code to import data as pandas' data frame and print top 10 rows of the data.

lf.	head(10)										
	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	
0	842302	Μ	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	
2	84300903	Μ	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	
1	84358402	Μ	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	
5	843786	Μ	12.45	15.70	82.57	477.1	0.12780	0.17000	0.15780	0.08089	
5	844359	Μ	18.25	19.98	119.60	1040.0	0.09463	0.10900	0.11270	0.07400	
7	84458202	М	13.71	20.83	90.20	577.9	0.11890	0.16450	0.09366	0.05985	
3	844981	Μ	13.00	21.82	87.50	519.8	0.12730	0.19320	0.18590	0.09353	
9	84501001	М	12.46	24.04	83.97	475.9	0.11860	0.23960	0.22730	0.08543	

As seen in Figure 4, the column names and information of the data.

```
df.columns
```

df.info()

<class 'pandas.core.frame.dataframe'=""> RangeIndex: 569 entries, 0 to 568</class>							
Data columns (total 33 colum							
# Column	Non-Null Count	Dtype					
0 id	569 non-null	int64					
1 diagnosis	569 non-null	object					
2 radius_mean	569 non-null	float64					
3 texture_mean	569 non-null	float64					
4 perimeter_mean	569 non-null	float64					
5 area_mean	569 non-null	float64					
6 smoothness_mean	569 non-null	float64					
7 compactness_mean	569 non-null	float64					
<pre>8 concavity_mean</pre>	569 non-null	float64					
9 concave points_mean	569 non-null	float64					
10 symmetry_mean	569 non-null	float64					
11 fractal_dimension_mean	569 non-null	float64					
12 radius_se	569 non-null	float64					
13 texture_se	569 non-null	float64					
14 perimeter_se	569 non-null	float64					
15 area_se	569 non-null	float64					
16 smoothness_se	569 non-null	float64					
17 compactness_se	569 non-null	float64					
18 concavity_se	569 non-null	float64					
19 concave points_se	569 non-null	float64					
20 symmetry_se	569 non-null	float64					
21 fractal_dimension_se	569 non-null	float64					
22 radius_worst	569 non-null	float64					
23 texture_worst	569 non-null	float64					
24 perimeter_worst	569 non-null	float64					
25 area_worst	569 non-null	float64					
26 smoothness_worst	569 non-null	float64					
27 compactness_worst	569 non-null	float64					
28 concavity_worst	569 non-null	float64					
29 concave points_worst	569 non-null	float64					
30 symmetry_worst	569 non-null	float64					
31 fractal_dimension_worst	569 non-null	float64					
32 Unnamed: 32	0 non-null	float64					
dtypes: float64(31), int64(1	l), object(1)						
memory usage: 146.8+ KB							

Figure 4: Data information

In figure 5, the code to generate data statistics.

df.des	ff.describe()									
	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean		
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799		
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720		
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000		
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560		
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540		
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700		
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800		

Figure 5: Data Statistics

The Figure 6, illustrate the plot for the value counts in target column for each class.

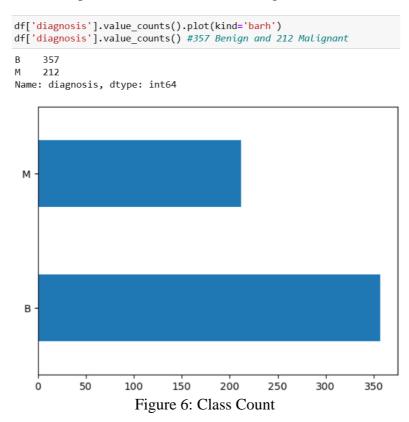


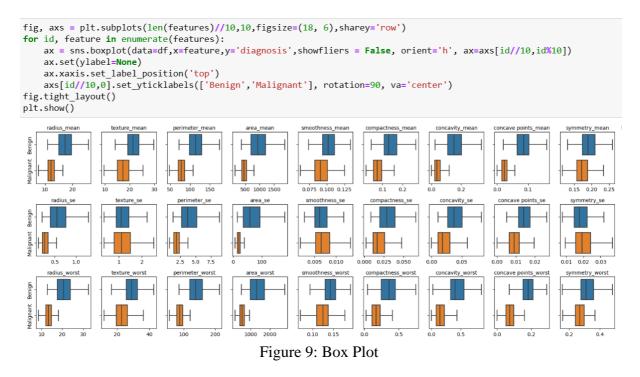
Figure 7 includes a code segment to check for missing values in each column and treatment.

df.isnull().sum()	
id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
<pre>fractal_dimension_se</pre>	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
fractal_dimension_worst	0
Unnamed: 32	569
dtype: int64	

```
df.dropna(axis=1, inplace=True)
df.drop('id', axis=1, inplace=True)
df
```

	diagnosis	radius_mean	texture_mean	perimeter_mean	a
0	М	17.99	10.38	122.80	
1	М	20.57	17.77	132.90	
2	М	19.69	21.25	130.00	
3	М	11.42	20.38	77.58	
4	М	20.29	14.34	135.10	
564	М	21.56	22.39	142.00	
565	Μ	20.13	28.25	131.20	
566	Μ	16.60	28.08	108.30	
567	Μ	20.60	29.33	140.10	
568	В	7.76	24.54	47.92	

569 rows × 31 columns


The Figure 8 represents the block of code to generate the list of features.

len(features)

30

Figure 8: Features

As seen in Figure 9, the box plot for all column to check for outliers.

In figure 10, the code to generate heatmap for correlations.

Figure 10: Correlation heatmap

5 Label Encoding and Class Balancing

The Figure 11, illustrate the section to display data information before label encoding.

df.info()							
<class 'pandas.core.frame.dataframe'=""> RangeIndex: 569 entries, 0 to 568</class>							
_	columns (total 31 column						
#	Column	Non-Null Count	Dtype				
0	diagnosis	569 non-null	object				
1	radius mean	569 non-null	float64				
2	texture mean	569 non-null	float64				
3	perimeter mean	569 non-null	float64				
4	area mean	569 non-null	float64				
5	smoothness_mean	569 non-null	float64				
6	compactness_mean	569 non-null	float64				
7	concavity_mean	569 non-null	float64				
8	concave points_mean	569 non-null	float64				
9	symmetry_mean	569 non-null	float64				
10	fractal_dimension_mean	569 non-null	float64				
11	radius_se	569 non-null	float64				
12	texture_se	569 non-null	float64				
13	perimeter_se	569 non-null	float64				
14	area_se	569 non-null	float64				
15	smoothness_se	569 non-null	float64				
16	compactness_se	569 non-null	float64				
17	concavity_se	569 non-null	float64				
18	concave points_se	569 non-null	float64				
19	symmetry_se	569 non-null	float64				
20	<pre>fractal_dimension_se</pre>	569 non-null	float64				
21	radius_worst	569 non-null	float64				
22	texture_worst	569 non-null	float64				
23	perimeter_worst	569 non-null	float64				
24	area_worst	569 non-null	float64				
25	smoothness_worst	569 non-null	float64				
26	compactness_worst	569 non-null	float64				
27	concavity_worst	569 non-null	float64				
28	concave points_worst	569 non-null	float64				
29	symmetry_worst	569 non-null	float64				
30	fractal_dimension_worst	569 non-null	float64				
dtyp	es: float64(30), object(1)					
memo	ry usage: 137.9+ KB						
	Figure 11: Data Ir	formation					

Figure 11: Data Information

le = LabelEncoder()

df['diagnosis'] = le.fit_transform(df['diagnosis'])

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 31 columns): Column # Non-Null Count Dtype _ _ _ _ _ _ _ _ _ - - - - -0 diagnosis 569 non-null int32 1 569 non-null float64 radius mean float64 2 texture mean 569 non-null 3 perimeter mean 569 non-null float64 569 non-null float64 4 area mean 5 569 non-null float64 smoothness mean 6 compactness mean 569 non-null float64 7 concavity mean 569 non-null float64 8 concave points mean float64 569 non-null 9 symmetry_mean 569 non-null float64 fractal_dimension mean 10 569 non-null float64 11 569 non-null float64 radius se 569 non-null float64 12 texture se 13 perimeter se 569 non-null float64 14 569 non-null float64 area se 15 smoothness se 569 non-null float64 float64 16 compactness se 569 non-null 17 concavity se 569 non-null float64 18 concave points se float64 569 non-null 19 symmetry se 569 non-null float64 20 fractal dimension se 569 non-null float64 21 radius worst 569 non-null float64 22 texture worst 569 non-null float64 23 perimeter_worst 569 non-null float64 569 non-null float64 24 area worst 25 smoothness worst 569 non-null float64 26 compactness worst 569 non-null float64 concavity worst 27 569 non-null float64 28 concave points worst 569 non-null float64 29 symmetry worst 569 non-null float64 fractal dimension worst 569 non-null float64 30 dtypes: float64(30), int32(1) memory usage: 135.7 KB

Figure 12: Label Encoder

The Figure 13, illustrate the class value count pie chart.

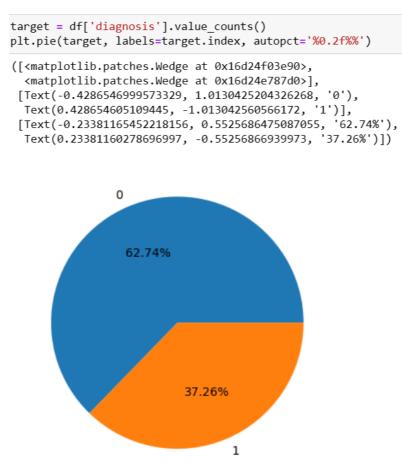


Figure 13: Class Value count

The Figure 14, illustrate the separation of features and target columns int o x and y and checking their shape.

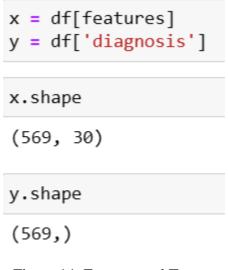


Figure 14: Features and Target

Figure 15 illustrates the use of SMOTE for class balancing.

```
sm = SMOTE()
print("Before ", Counter(y))
Before Counter({0: 357, 1: 212})
```

x, y = sm.fit_resample(x, y)
print("After ", Counter(y))

After Counter({1: 357, 0: 357})

Figure 15: SMOTE

6 Feature Engineering

Figure 16 illustrates the numeric pipeline generation and creation of column transformer.

```
numeric_pipeline = Pipeline(
    steps=[("scale", StandardScaler())]
)
full_processor = ColumnTransformer(
    transformers=[
        ("numeric", numeric_pipeline, x.columns),
    ]
)
```

Figure 16: Generating Pipeline and Transformer

Figure 17 illustrates the code to process features and divide them into training and test set of data.

```
X_processed = full_processor.fit_transform(x)
X_train, X_test, y_train, y_test = train_test_split(X_processed, y,test_size=0.3, stratify=y)
```

```
X_processed.shape
```

(714, 30)

Figure 17: Processing features

Figure 18 illustrates creating hyper parameters list for XGBoost classifier for feature selection and checking for best score and parameter set.

```
param_grid = {
    "max_depth": [1, 2, 3, 4, 5, 7],
    "learning_rate": [0.5, 0.1, 0.01, 0.05],
    "gamma": [0, 0.25, 1, 3, 5, 7],
    "reg_lambda": [0, 1, 10],
    "scale_pos_weight": [1, 3, 5],
    "subsample": [0.8],
    "colsample_bytree": [0.5],
}
xgb_cl = xgb.XGBClassifier(objective="binary:logistic")
grid_cv = GridSearchCV(xgb_cl, param_grid, n_jobs=-1, cv=3, scoring="roc_auc")
_ = grid_cv.fit(X_processed, y)
grid_cv.best_score_
0.9985405927076713
grid_cv.best_params_
{'colsample_bytree': 0.5,
  'gamma': 0,
 'learning_rate': 0.5,
 'max_depth': 3,
 'reg_lambda': 1,
 'scale_pos_weight': 1,
 'subsample': 0.8}
```

Figure 19 illustrates the best features and checking for their probability scores.

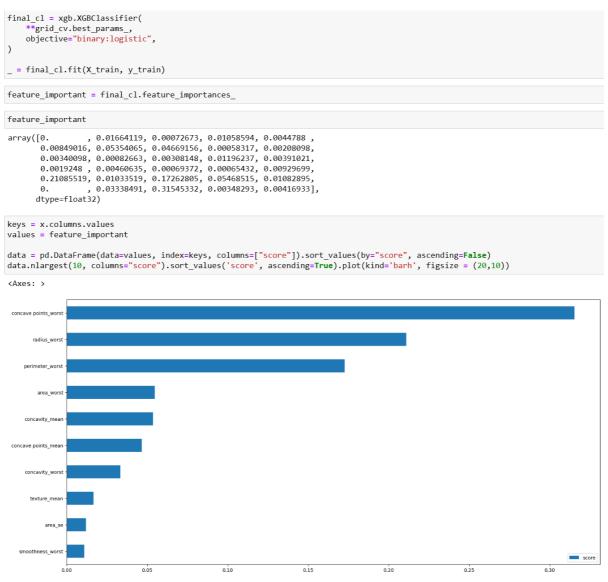


Figure 19: Important features list

Figure 20 illustrates creating a list of 10 most important features and choosing those in final feature set. Also, the code shows train test split of the data to be used for model training and performance evaluation.

```
imp_columns = data.nlargest(10, columns="score").sort_values('score', ascending=True).index.to_list()
imp_columns
```

['smoothness_worst', 'area_se', 'texture_mean', 'concavity_worst', 'concave points_mean',

'concavity_mean',

'area_worst',

'perimeter_worst',

'radius_worst',

'concave points_worst']

```
x = x[imp_columns]
```

х

	smoothness_worst	area_se	texture_mean	concavity_worst	concave points_mean	concavity_mean	area_worst	perimeter_woi
0	0.162200	153.400000	10.380000	0.711900	0.147100	0.300100	2019.000000	184.6000
1	0.123800	74.080000	17.770000	0.241600	0.070170	0.086900	1956.000000	158.8000
2	0.144400	94.030000	21.250000	0.450400	0.127900	0.197400	1709.000000	152.5000
3	0.209800	27.230000	20.380000	0.686900	0.105200	0.241400	567.700000	98.8700
4	0.137400	94.440000	14.340000	0.400000	0.104300	0.198000	1575.000000	152.2000
709	0.137862	40.301547	27.495868	0.327036	0.050219	0.108520	922.712133	113.1012
710	0.142983	25.659590	16.024874	0.285916	0.051020	0.081618	814.935143	109.8899
711	0.158447	17.299787	20.903153	0.409592	0.058531	0.094108	746.083507	104.7227
712	0.154742	34.903080	18.428205	0.438002	0.074444	0.133986	1091.050853	125.7038
713	0.174951	46.810645	20.406514	0.512486	0.105888	0.225173	919.690962	118.8139

714 rows × 10 columns

```
scaler = StandardScaler()
scaler.fit(x)
x = scaler.transform(x)
```

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42)

perfEvaluation = pd.DataFrame()

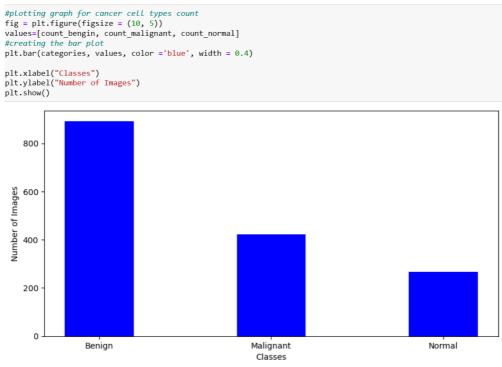
Figure 20: Feature selection and Training and testing data split

7 Image Preprocessing and Augmentation

Figures 21 show the code to create path variable for categories of image and checking for image count.

```
pathbenign = './archive/Dataset_BUSI_with_GT/benign/'
pathmalignant = './archive/Dataset_BUSI_with_GT/malignant/'
pathnormal = './archive/Dataset_BUSI_with_GT/normal/'
```

```
categories = ['Benign', 'Malignant', 'Normal']
print(categories)
```


```
['Benign', 'Malignant', 'Normal']
```

```
#initialization and importing for data analysi
count_bengin=len(os.listdir(pathbenign))
count_malignant=len(os.listdir(pathmalignant))
count_normal=len(os.listdir(pathnormal))
count_bengin, count_malignant, count_normal
```

(891, 421, 266)

Figure 21: Path setup

Figures 22 show the code to create plot of image count.

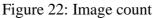


Figure 23 illustrates the code to create a list of images in each category from the folder path.

```
benign = glob.glob(pathbenign+ "*.png")
# Print out the first 5 file names to verify we're in the right folder.
print ("Total of %d images.\nFirst 5 filenames:" % len(benign))
print ('\n'.join(benign[:5]))
```

```
Total of 891 images.

First 5 filenames:

./archive/Dataset_BUSI_with_GT/benign\benign (1).png

./archive/Dataset_BUSI_with_GT/benign\benign (1)_mask.png

./archive/Dataset_BUSI_with_GT/benign\benign (10).png

./archive/Dataset_BUSI_with_GT/benign\benign (10)_mask.png

./archive/Dataset_BUSI_with_GT/benign\benign (100).png
```

```
malignant = glob.glob(pathmalignant + "*.png")
# Print out the first 5 file names to verify we're in the right folder.
print ("Total of %d images.\nFirst 5 filenames:" % len(malignant))
print ('\n'.join(malignant[:5]))
```

```
Total of 421 images.

First 5 filenames:

./archive/Dataset_BUSI_with_GT/malignant\malignant (1).png

./archive/Dataset_BUSI_with_GT/malignant\malignant (1)_mask.png

./archive/Dataset_BUSI_with_GT/malignant\malignant (10).png

./archive/Dataset_BUSI_with_GT/malignant\malignant (10)_mask.png

./archive/Dataset_BUSI_with_GT/malignant\malignant (100).png
```

```
normal = glob.glob(pathnormal + "*.png")
# Print out the first 5 file names to verify we're in the right folder.
print ("Total of %d images.\nFirst 5 filenames:" % len(normal))
print ('\n'.join(normal[:5]))
```

```
Total of 266 images.

First 5 filenames:

./archive/Dataset_BUSI_with_GT/normal\normal (1).png

./archive/Dataset_BUSI_with_GT/normal\normal (1)_mask.png

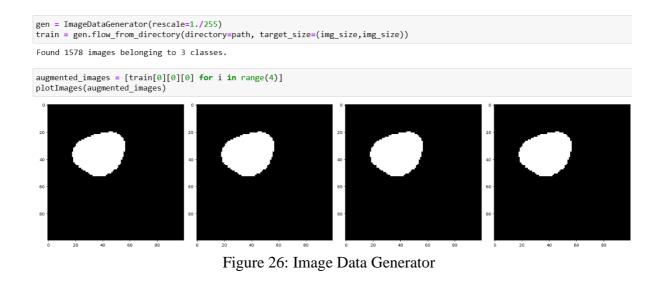
./archive/Dataset_BUSI_with_GT/normal\normal (10).png

./archive/Dataset_BUSI_with_GT/normal\normal (10)_mask.png

./archive/Dataset_BUSI_with_GT/normal\normal (100).png
```

Figure 23: Image list

The Figure 24, illustrate the code to use ImageDataGenerator to generate augmented images for the deep learning models.


Figure 24: Image Data Generator

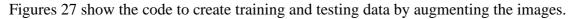

Figures 25 show the code to create training data with width and height shift the images.

Figure 25: Image Data Generator

Figures 26 show the code to create testing data with rescaling the images.

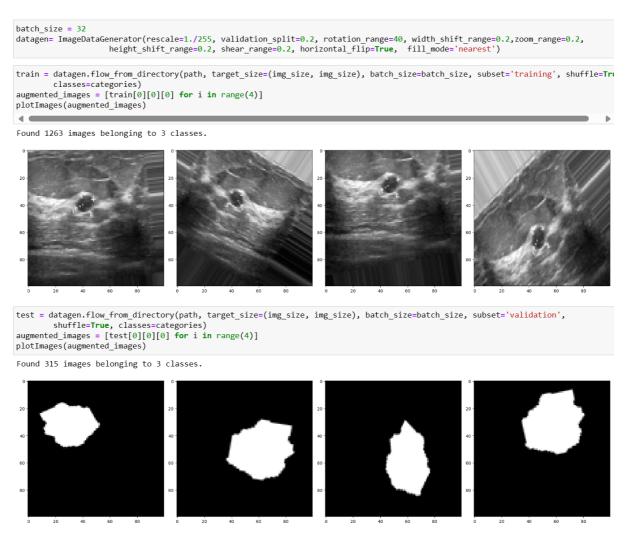


Figure 27: Image Data Generator

8 Machine Learning Models

8.1 Logistic Regression

```
clf = LogisticRegression(random_state=123, max_iter=100).fit(X_train, y_train)
```

ypred = clf.predict(X_test)

acc = np.round(accuracy_score(y_test, ypred)*100, 2)
acc

98.88

```
f1 = np.round(f1_score(y_test, ypred)*100, 2)
f1
```

98.91

```
prec = np.round(precision_score(y_test, ypred)*100, 2)
prec
```

100.0

```
recall = np.round(recall_score(y_test, ypred)*100, 2)
recall
```

97.85

print(classification_report(y_test, ypred))

	precision	recall	f1-score	support
0 1	0.98 1.00	1.00 0.98	0.99 0.99	86 93
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	179 179 179

Figure 28: Implementation of Logistic Regression

8.2 Neural Network

clf = MLPClassifier(hidden_layer_sizes=(128,), activation='tanh', max_iter=1000).fit(X_train, y_train)

ypred = clf.predict(X_test)

```
acc = np.round(accuracy_score(y_test, ypred)*100, 2)
```

98.32

acc

f1 = np.round(f1_score(y_test, ypred)*100, 2)
f1

98.38

prec = np.round(precision_score(y_test, ypred)*100, 2)
prec

98.91

recall = np.round(recall_score(y_test, ypred)*100, 2)
recall

97.85

```
print(classification_report(y_test, ypred))
```

	precision	recall	f1-score	support
0 1	0.98 0.99	0.99 0.98	0.98 0.98	86 93
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	179 179 179

Figure 29: Implementation of Neural Network

8.3 Logistic Regression JAX

y_train = y_train.to_numpy()

```
def logistic(r):
    return 1 / (1 + jnp.exp(-r))
```

```
def predict(c, w, X):
    return logistic(jnp.dot(X, w) + c)
```

c_0 = 1.50
w_0 = 9.0e-1 * jnp.ones(10)

ypred = np.round(predict(c_0, w_0, X_test))

```
acc = np.round(accuracy_score(y_test, ypred)*100, 2)
acc
```

97.77

```
f1 = np.round(f1_score(y_test, ypred)*100, 2)
f1
```

97.85

```
prec = np.round(precision_score(y_test, ypred)*100, 2)
prec
```

97.85

```
recall = np.round(recall_score(y_test, ypred)*100, 2)
recall
```

97.85

print(classification_report(y_test, ypred))

	precision	recall	f1-score	support
0	0.98	0.98	0.98	86
1	0.98	0.98	0.98	93
accuracy			0.98	179
macro avg	0.98	0.98	0.98	179
weighted avg	0.98	0.98	0.98	179

Figure 30: Implementation of Logistic Regression JAX

8.4 Neural Network JAX

```
def relu(x):
    return jnp.maximum(0, x)

def predict(c, w, X):
    outputs = jnp.dot(X, w) + c
    activations = relu(outputs)
    return activations

def cost(c, w, X, y, eps=3e-2, lmbd=0.1):
    n = y.size
    p = predict(c, w, X)
    p = jnp.clip(p, eps, 1 - eps)  # bound the probabilities within (0,1) to avoid ln(0)
    return -jnp.sum(y * jnp.log(p) + (1 - y) * jnp.log(1 - p)) / n + 0.5 * lmbd * (
        jnp.dot(w, w) + c * c
    )
```

```
%%time
n_iter = 100
eta = 2e-2
tol = 5e-6
w = w 0
c = c 0
new_cost = float(cost(c, w, X_train, y_train))
cost hist = [new cost]
for i in range(n_iter):
   c current = c
   c -= eta * grad(cost, argnums=0)(c_current, w, X_train, y_train)
   w -= eta * grad(cost, argnums=1)(c_current, w, X_train, y_train)
    new_cost = float(cost(c, w, X_train, y_train))
    cost hist.append(new cost)
    if (i > 20) and (i % 10 == 0):
        if jnp.abs(cost_hist[-1] - cost_hist[-20]) < tol:</pre>
            print(f"Exited loop at iteration {i}")
            break
```

CPU times: total: 4.88 s Wall time: 5.61 s

Figure 31: Implementation of Neural Network JAX

ypred = np.round(predict(c, w, X_test))

```
acc = np.round(accuracy_score(y_test, ypred)*100, 2)
acc
```

49.72

```
f1 = np.round(f1_score(y_test, ypred,average='weighted')*100, 2)
f1
```

51.18

```
prec = np.round(precision_score(y_test, ypred,average='weighted')*100, 2)
prec
```

87.97

```
recall = np.round(recall_score(y_test, ypred,average='weighted')*100, 2)
recall
```

C:\Users\SHILPA\AppData\Roaming\Python\Python311\site-packages\sklearn\me Recall is ill-defined and being set to 0.0 in labels with no true samples or.

_warn_prf(average, modifier, msg_start, len(result))

49.72

```
print(classification_report(y_test, ypred))
```

	precision	recall	f1-score	support
0.0	0.97	0.99	0.98	86
1.0	0.80	0.04	0.08	93
2.0	0.00	0.00	0.00	0
3.0	0.00	0.00	0.00	0
4.0	0.00	0.00	0.00	0
5.0	0.00	0.00	0.00	0
6.0	0.00	0.00	0.00	0
7.0	0.00	0.00	0.00	0
8.0	0.00	0.00	0.00	0
9.0	0.00	0.00	0.00	0
10.0	0.00	0.00	0.00	0
11.0	0.00	0.00	0.00	0
12.0	0.00	0.00	0.00	0
14.0	0.00	0.00	0.00	0
15.0	0.00	0.00	0.00	0
16.0	0.00	0.00	0.00	0
17.0	0.00	0.00	0.00	0
19.0	0.00	0.00	0.00	0
accuracy			0.50	179
macro avg	0.10	0.06	0.06	179
weighted avg	0.88	0.50	0.51	179

Figure 32: Implementation of Neural Network JAX

8.5 CNN

```
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='tanh', input_shape=(img_size, img_size, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.01))
model.add(Flatten())
model.add(Dense(32, activation='sigmoid'))
model.add(Dense(3, activation='sigmoid'))
model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy'])
callback = EarlyStopping(monitor='val_accuracy', patience=1, verbose=1, mode='max')
history = model.fit(train, epochs=10, validation_data=test, shuffle = True, callbacks=[callback])
Epoch 1/10
1
Epoch 2/10
40/40 [===
                 ===============] - 21s 527ms/step - loss: 0.9451 - accuracy: 0.5590 - val_loss: 0.9502 - val_accuracy: 0.
5651
Epoch 2: early stopping
```

```
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Categorical Crossentropy')
ax1.plot(hist['epoch'], hist['loss'], label='Train Error')
ax1.plot(hist['epoch'], hist['val_loss'], label = 'Val Error')
ax1.grid()
ax1.legend()
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy')
ax2.plot(hist['epoch'], hist['accuracy'], label='Train Accuracy')
ax2.plot(hist['epoch'], hist['val_accuracy'], label = 'Val Accuracy')
ax2.grid()
ax2.grid()
ax2.legend()
```

<matplotlib.legend.Legend at 0x16d271a8510>

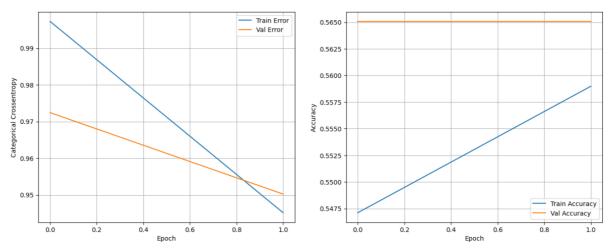


Figure 33: Implementation of CNN

8.6 InceptionNet

create the base pre-trained model base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=(img_size, img_size, 3)) # add a global spatial average pooling layer
x = base_model.output x = Gobs_modelTodepart x = GobslAveragePooling2D()(x) x = Dense(128, activation='relu')(x) predictions = Dense(3, activation='sigmoid')(x) model = Model(inputs=base_model.input, outputs=predictions) for layer in base_model.layers: layer.trainable = True model.compile(optimizer = 'adam', loss= 'categorical_crossentropy', metrics = ['accuracy']) model.summary() 1.576-_____ input_1 (InputLayer) [(None, 100, 100, 3)] 0 [] conv2d_1 (Conv2D) (None, 49, 49, 32) 864 ['input_1[0][0]'] batch_normalization (Batch (None, 49, 49, 32) 96 ['conv2d_1[0][0]'] Normalization) activation (Activation) (None, 49, 49, 32) 0 ['batch_normalization[0][0]'] conv2d_2 (Conv2D) (None, 47, 47, 32) 9216 ['activation[0][0]'] batch_normalization_1 (Bat (None, 47, 47, 32) 96 ['conv2d_2[0][0]'] chNormalization) activation 1 (Activation) (None, 47, 47, 32) 0 ['batch_normalization_1[0][0]' conv2d_3 (Conv2D) (None, 47, 47, 64) 18432 ['activation_1[0][0]'] callback = EarlyStopping(monitor='val_accuracy', patience=1, verbose=1, mode='max')
history = model.fit(train, epochs=10, validation_data=test, shuffle = True, callbacks=[callback])

Epoch 1/10 40/40 [------] - 137s 3s/step - loss: 0.9313 - accuracy: 0.6215 - val_loss: 1.9058 - val_accuracy: 0.52 06 Epoch 2/10 40/40 [------] - 113s 3s/step - loss: 0.6633 - accuracy: 0.7308 - val_loss: 10.8329 - val_accuracy: 0.5

40/40 [=========] - 108s 3s/step - loss: 0.6297 - accuracy: 0.7458 - val_loss: 65.8379 - val_accuracy: 0.3 492 Epoch 3: early stopping

hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6)) ax1.set_vlabel('Epoch') ax1.set_vlabel('Categorical Crossentropy') ax1.plot(hist['epoch'], hist['loss'], label='Train Error') ax1.plot(hist['epoch'], hist['val_loss'], label = 'Val Error') ax1.grid() ax1.legend() ax2.set_vlabel('Epoch') ax2.set_vlabel('faccuracy') ax2.plot(hist['epoch'], hist['accuracy'], label='Train Accuracy') ax2.plot(hist['epoch'], hist['val_accuracy'], label = 'Val Accuracy') ax2.grid() ax2.grid() ax2.legend()

<matplotlib.legend.Legend at 0x16d3101b190>

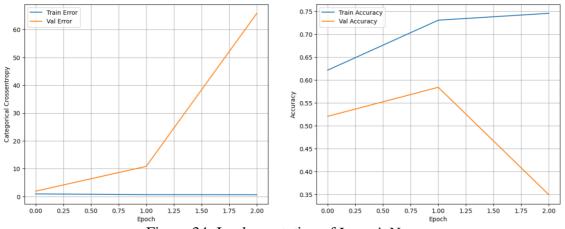
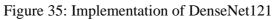



Figure 34: Implementation of InceptioNet

8.7 DenseNet121

del: "densenet121"			
ayer (type)	Output Shape	Param #	Connected to
put_2 (InputLayer)	[(None, 100, 100, 3)]	0	
ro_padding2d (ZeroPaddin		0	[] ['input_2[0][0]']
D) nv1/conv (Conv2D)	(None, 50, 50, 64)	9408	['zero_padding2d[0][0]']
nv1/bn (BatchNormalizati	(None, 50, 50, 64)	256	['conv1/conv[0][0]']
) nv1/relu (Activation)	(None, 50, 50, 64)	Ø	['conv1/bn[0][0]']
ro_padding2d_1 (ZeroPadd		0	['conv1/relu[0][0]']
g2D)	(New 25 25 (4)	0	
<pre>seNet = model.output seNet = Flatten()(denseNe seNet = Dense(256, activa seNet = Dropout(0.02)(der put_layer = Dense(3, activa)</pre>	ation='relu')(denseNet)		
el = Model(inputs=model.i	input, outputs=output_lay	er)	
el.compile(optimizer = 'a el.summary()	adam', loss= 'categorical	_crossentropy'	<pre>, metrics = ['accuracy'])</pre>
el: "model_1"			
/er (type)	Output Shape	Param #	Connected to
out_2 (InputLayer)	[(None, 100, 100, 3)]	0	[]
o_padding2d (ZeroPaddin))	(None, 106, 106, 3)	0	['input_2[0][0]']
nv1/conv (Conv2D)	(None, 50, 50, 64)	9408	['zero_padding2d[0][0]']
w1/bn (BatchNormalizati	(None, 50, 50, 64)	256	['conv1/conv[0][0]']
nv1/relu (Activation)	(None, 50, 50, 64)	0	['conv1/bn[0][0]']
ro_padding2d_1 (ZeroPadd g2D)	(None, 52, 52, 64)	0	['conv1/relu[0][0]']
-14 (Marcharolinean)	(New DE DE CA)	^	
lback = EarlyStopping(mo			ose=1, mode='max') e = True, callbacks=[callback])
tory = model.fit(train. e	.poono 10, failaacion_aac	,	
och 1/10	======================================	n - loss: 3.91	91 - accuracy: 0.5590 - val loss: 4.2982 - val accuracy: 0.
ch 1/10 40 [
ch 1/10 40 [ch 2/10 40 [
ch 1/10 40 [ch 2/10 40 [ch 2: early stopping] - 197s 5s/ste		
<pre>http://doi.org/10.00000000000000000000000000000000000</pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6)	p - loss: 4.30	
<pre>http://doi.org/action.org/ac</pre>	<pre>ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist('loss'], label='Train E</pre>	p - loss: 4.30	
<pre>bch 1/10 /40 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy')</pre>	p - loss: 4.30	91 - accuracy: 0.5590 - val_loss: 4.2982 - val_accuracy: 0.
<pre>bch 1/10 /40 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['loss'], label='Train E ist['val_loss'], label = 'V</pre>	p - loss: 4.30	
<pre>ch 1/10 40 [====================================</pre>	<pre>ry.history) poch plots(1, 2, figsize=(16, 6) al crossentropy') ist['loss'], label='Train E ist['val_loss'], label= ' \v) ist['accuracy'], label='Train</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
ch 1/10 40 [====================================	<pre>ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['loss'], label='Train E ist['val_loss'], label = 'V)</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>ch 1/10 40 [=</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>ch 1/10 40 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
ch 1/10 40 [=	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>ch 1/10 40 [</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>ch 1/10 d0 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>h 1/10 a0 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Error') val Error') = 'Val Accuracy') = 'Val Accuracy	<pre>//) 0.7 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0. //) 0.565 0.564 0.564 0.564</pre>
<pre>h 1/10 a0 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Error') val Error') = 'Val Accuracy') = 'Val Accuracy	<pre>//) 0.7 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0. //) 0.565 0.564 0.564 0.564</pre>
<pre>h 1/10 a0 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Frror') (al Error') nin Accuracy')	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
<pre>ch 1/10 40 [====================================</pre>	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Error') val Error') = 'Val Accuracy') = 'Val Accuracy	<pre>//) 0.7 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0. //) 0.565 0.564 0.564 0.564</pre>
ch 1/10 40 [====================================	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Error') val Error') = 'Val Accuracy') = 'Val Accuracy	007 - accuracy: 0.5645 - val_loss: 4.2982 - val_accuracy: 0.
ch 1/10 40 [=	<pre>] - 197s 5s/ste ry.history) poch plots(1, 2, figsize=(16, 6) al Crossentropy') ist['oss'], label='Train E ist['val_loss'], label='Trai ist['accuracy'], label='Trai ist['val_accuracy'], l</pre>	p - loss: 4.30)) Error') val Error') = 'Val Accuracy') = 'Val Accuracy	<pre>//) //) //) //) //) //) //) //) //) //)</pre>

8.8 VGG19

model = VGG19(include_top=False, weights='imagenet', input_shape=(img_size, img_size, 3))
model.summary()

Model: "vgg19"

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	[(None, 100, 100, 3)]	0
block1_conv1 (Conv2D)	(None, 100, 100, 64)	1792
block1_conv2 (Conv2D)	(None, 100, 100, 64)	36928
<pre>block1_pool (MaxPooling2D)</pre>	(None, 50, 50, 64)	0
block2_conv1 (Conv2D)	(None, 50, 50, 128)	73856
block2_conv2 (Conv2D)	(None, 50, 50, 128)	147584
<pre>block2_pool (MaxPooling2D)</pre>	(None, 25, 25, 128)	0
block3_conv1 (Conv2D)	(None, 25, 25, 256)	295168
block3_conv2 (Conv2D)	(None, 25, 25, 256)	590080
block3_conv3 (Conv2D)	(None, 25, 25, 256)	590080
block3_conv4 (Conv2D)	(None, 25, 25, 256)	590080
<pre>block3_pool (MaxPooling2D)</pre>	(None, 12, 12, 256)	0
block4_conv1 (Conv2D)	(None, 12, 12, 512)	1180160
block4_conv2 (Conv2D)	(None, 12, 12, 512)	2359808
block4_conv3 (Conv2D)	(None, 12, 12, 512)	2359808
block4_conv4 (Conv2D)	(None, 12, 12, 512)	2359808
<pre>block4_pool (MaxPooling2D)</pre>	(None, 6, 6, 512)	0
block5_conv1 (Conv2D)	(None, 6, 6, 512)	2359808
block5_conv2 (Conv2D)	(None, 6, 6, 512)	2359808
block5_conv3 (Conv2D)	(None, 6, 6, 512)	2359808
block5_conv4 (Conv2D)	(None, 6, 6, 512)	2359808
block5_pool (MaxPooling2D)	(None, 3, 3, 512)	0

Total params: 20024384 (76.39 MB) Trainable params: 20024384 (76.39 MB) Non-trainable params: 0 (0.00 Byte)

```
# Unfreeze the last few layers for fine-tuning
for layer in model.layers[:-4]:
    layer.trainable = False
# apply Global Average Pooling to the last layer of the pretrained model
x = GlobalAveragePooling2D()(model.output)
x = Flatten()(x)
x = Dense(512, activation='relu')(x)
predictions = Dense(3, activation='softmax')(x)
```

```
model = Model(inputs=model.input, outputs=predictions)
```

model.compile(optimizer	=	'adam',	loss=	'binary_crossentropy',	metrics =	['accuracy'])
model.summary()						

Model: "model_2"

Layer (type)	Output Shape	Param #
<pre>input_3 (InputLayer)</pre>	[(None, 100, 100, 3)]	0
block1_conv1 (Conv2D)	(None, 100, 100, 64)	1792
block1_conv2 (Conv2D)	(None, 100, 100, 64)	36928
<pre>block1_pool (MaxPooling2D)</pre>	(None, 50, 50, 64)	0
<pre>block2_conv1 (Conv2D)</pre>	(None, 50, 50, 128)	73856
<pre>block2_conv2 (Conv2D)</pre>	(None, 50, 50, 128)	147584
<pre>block2_pool (MaxPooling2D)</pre>	(None, 25, 25, 128)	0
block3_conv1 (Conv2D)	(None, 25, 25, 256)	295168
<pre>block3_conv2 (Conv2D)</pre>	(None, 25, 25, 256)	590080
<pre>block3_conv3 (Conv2D)</pre>	(None, 25, 25, 256)	590080
<pre>block3_conv4 (Conv2D)</pre>	(None, 25, 25, 256)	590080
<pre>block3_pool (MaxPooling2D)</pre>	(None, 12, 12, 256)	0
<pre>block4_conv1 (Conv2D)</pre>	(None, 12, 12, 512)	1180160
<pre>block4_conv2 (Conv2D)</pre>	(None, 12, 12, 512)	2359808
<pre>block4_conv3 (Conv2D)</pre>	(None, 12, 12, 512)	2359808
<pre>block4_conv4 (Conv2D)</pre>	(None, 12, 12, 512)	2359808
<pre>block4_pool (MaxPooling2D)</pre>	(None, 6, 6, 512)	0
<pre>block5_conv1 (Conv2D)</pre>	(None, 6, 6, 512)	2359808
<pre>block5_conv2 (Conv2D)</pre>	(None, 6, 6, 512)	2359808
<pre>block5_conv3 (Conv2D)</pre>	(None, 6, 6, 512)	2359808
<pre>block5_conv4 (Conv2D)</pre>	(None, 6, 6, 512)	2359808
<pre>block5_pool (MaxPooling2D)</pre>	(None, 3, 3, 512)	0
<pre>global_average_pooling2d_4 (GlobalAveragePooling2D)</pre>	(None, 512)	0
flatten_3 (Flatten)	(None, 512)	0
dense_7 (Dense)	(None, 512)	262656
dense_8 (Dense)	(None, 3)	1539

Total params: 20288579 (77.39 MB) Trainable params: 7343619 (28.01 MB) Non-trainable params: 12944960 (49.38 MB)

callback = EarlyStopping(monitor='val_accuracy', patience=1, verbose=1, mode='max')
history = model.fit(train, epochs=10, validation_data=test, callbacks=[callback])

Epoch 1/10
40/40 [=========] - 151s 4s/step - loss: 0.5393 - accuracy: 0.6041 - val_loss: 0.8241 - val_accuracy: 0.71
75
Epoch 2/10
40/40 [========] - 181s 5s/step - loss: 0.3603 - accuracy: 0.7387 - val_loss: 0.3684 - val_accuracy: 0.72
38
Epoch 3/10
40/40 [========] - 179s 4s/step - loss: 0.3104 - accuracy: 0.7593 - val_loss: 0.3232 - val_accuracy: 0.78
10
Epoch 4/10
40/40 [========] - 185s 5s/step - loss: 0.2836 - accuracy: 0.8044 - val_loss: 0.3063 - val_accuracy: 0.78

Figure 37: Implementation of VGG19

hist = pd.DataFrame(history.history) hist['epoch'] = history.epoch fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6)) ax1.set_xlabel('Epoch') ax1.set_ylabel('Categorical Crossentropy') ax1.plot(hist['epoch'], hist['loss'], label='Train Error') ax1.plot(hist['epoch'], hist['val_loss'], label = 'Val Error') ax1.grid() ax1.legend() ax2.set_xlabel('Epoch') ax2.set_ylabel('Accuracy') ax2.plot(hist['epoch'], hist['accuracy'], label='Train Accuracy') ax2.plot(hist['epoch'], hist['val_accuracy'], label = 'Val Accuracy') ax2.legend()

<matplotlib.legend.Legend at 0x16d46533910>

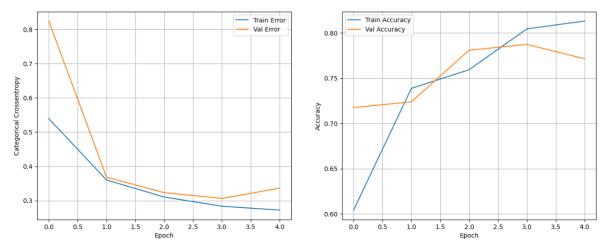


Figure 38: Implementation of VGG19

9 Model result

This section explains the performance of the models.

9.1 Model Scores

<pre>modelScores.columns = ['Models',</pre>					
moc	delScores				
	Models	Accuracy			
0	CNN	56.507939			
0	InceptionNet	30.793652			
0	Dense Net	56.507939			
0	VGG19	76.507938			

Figure 39: Model Performance Image

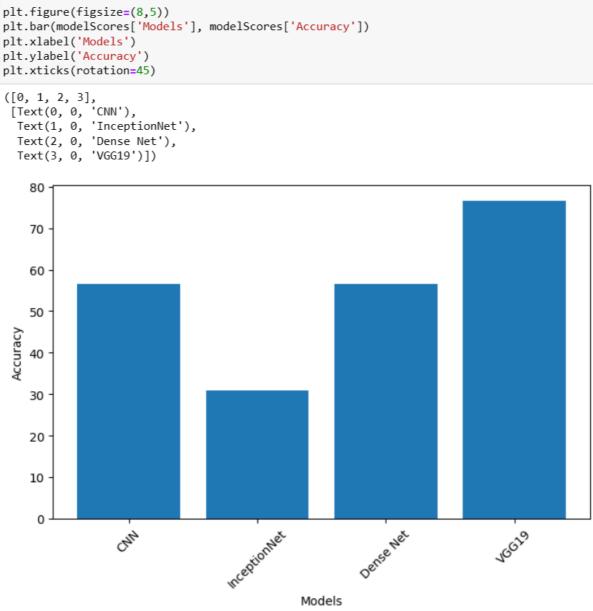


Figure 40: Model Performance Image

perfEvaluation.columns =['Model', 'Accuracy', 'F1-Score', 'Precision', 'Recall']
perfEvaluation

	Model	Accuracy	F1-Score	Precision	Recall
0	Logistic Regression ML	98.88	98.91	100.00	97.85
0	Neural Network ML	98.32	98.38	98.91	97.85
0	Logistic Regression JAX	97.77	97.85	97.85	97.85
0	Neural Network JAX	49.72	51.18	87.97	49.72

```
plt.plot(perfEvaluation['Model'], perfEvaluation['Accuracy'])
plt.bar(perfEvaluation['Model'], perfEvaluation['Accuracy'])
plt.xlabel('Models')
plt.ylabel('Scores')
plt.xticks(rotation=45)
```

([0, 1, 2, 3], [Text(0, 0, 'Logistic Regression ML'), Text(1, 0, 'Neural Network ML'), Text(2, 0, 'Logistic Regression JAX'), Text(3, 0, 'Neural Network JAX')])

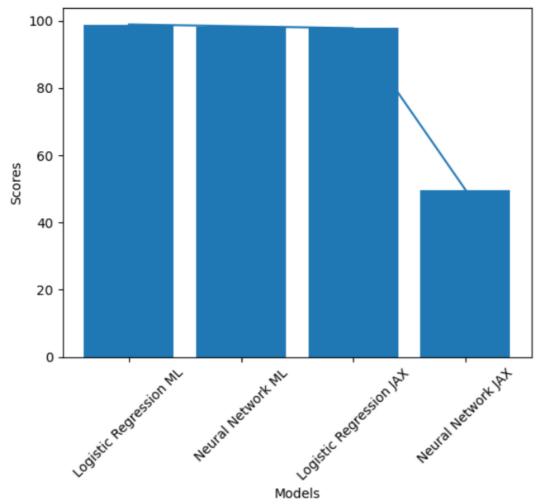


Figure 41: Model Performance Data

```
plt.plot(perfEvaluation['Model'], perfEvaluation['F1-Score'])
plt.bar(perfEvaluation['Model'], perfEvaluation['F1-Score'])
plt.xlabel('Models')
plt.ylabel('Scores')
plt.xticks(rotation=45)
```

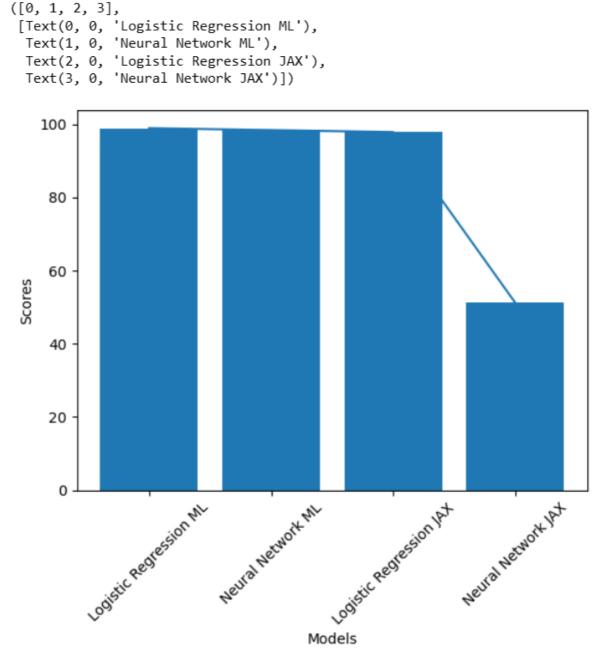


Figure 42: Model Performance Data

```
plt.plot(perfEvaluation['Model'], perfEvaluation['Precision'])
plt.bar(perfEvaluation['Model'], perfEvaluation['Precision'])
plt.xlabel('Models')
plt.ylabel('Scores')
plt.xticks(rotation=45)
```

```
([0, 1, 2, 3],
[Text(0, 0, 'Logistic Regression ML'),
Text(1, 0, 'Neural Network ML'),
Text(2, 0, 'Logistic Regression JAX'),
Text(3, 0, 'Neural Network JAX')])
```

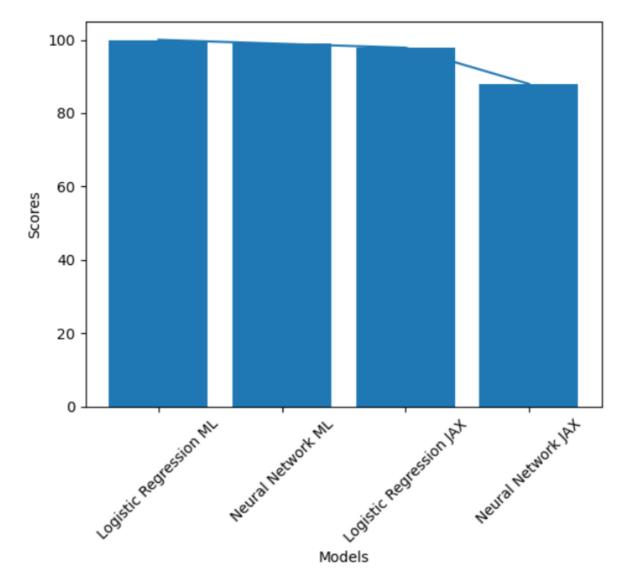


Figure 43: Model Performance Data

References

UCI Machine Learning Repository

Breast Ultrasound Images Dataset (kaggle.com)

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm

https://www.geeksforgeeks.org/introduction-convolution-neural-network/