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1 Introduction

Fatigue detection in various contexts, such as transportation and workplace safety, plays a
crucial role in mitigating potential risks associated with impaired alertness and cognitive
performance. As a response to this imperative, machine learning models have been employed
to automate the identification of fatigue-related states, leveraging diverse algorithms to
enhance accuracy and reliability.

In this study, we focus on evaluating the performance of different machine learning models
for fatigue detection. The models considered include Decision Tree, Feed Forward Neural
Network, Deep Learning, K-Nearest Neighbours (KNN), XG Boost and Random Forest.
These models are assessed based on key metrics such as Mean Squared Error (MSE), R-
Squared, Precision, Recall, F1l-score, and Accuracy, providing a comprehensive
understanding of their effectiveness in discerning fatigue patterns.

The outcomes of this evaluation not only contribute valuable insights into the strengths and
limitations of each model but also aid in informing decisions regarding the adoption of
specific fatigue detection methodologies. As we delve into the results, it becomes apparent
how these machine learning techniques can be instrumental in advancing the field of fatigue
detection, promoting safety, and optimizing performance in scenarios where vigilance is
paramount.

2 System Configuration

2.1 System Configuration

The success of fatigue detection models relies significantly on the underlying system
configuration, encompassing both hardware and software components. A robust system
ensures the efficient processing and analysis of data, contributing to the accurate and timely
identification of fatigue states. In this section, we outline the key elements of the system
configuration employed in our evaluation:

2.2 Hardware Configuration:

The hardware infrastructure comprises the computational backbone responsible for executing
the machine learning algorithms and handling the data processing load. In our study, we
utilized a system with the following specifications:

e Processor: [ 12th Gen Intel(R) Core(TM) i5-1235U, 1300 Mhz, 10 Core(s), 12

Logical Processor(s)]

e Installed RAM: [ 16GB ]

e Graphics Processing Unit (GPU): [Intel® Iris® Xe Graphics]
These hardware specifications were chosen to provide ample computational power, ensuring
efficient model training and evaluation.
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2.3 Software Configuration:

The software environment is equally critical, as it dictates the tools, libraries, and frameworks
available for implementing and running machine learning algorithms. The software
configuration in our study included:

e Operating System: [windows 11]

e Programming Language: [Python]

e Machine Learning Libraries: [Scikit-Learn, TensorFlow]

e Data Processing Tools: [Specify Tools for Data Preprocessing]

e Model Evaluation and Analysis: [Scikit-Learn Metrics]
These software components were carefully chosen to create a cohesive and conducive
environment for developing and evaluating fatigue detection models.

3 Installation and Environment Setup

e Python

This project made use of a Python package. Since the majority of Deep Learning and
Machine Learning Projects are supported by its numerous built-in libraries. With a variety of
plots, it makes developing and analysing models easier. Installing the most recent version of
Python on the machine is the first prerequisite. The package installer is capable of being
downloaded  through a web  browser from the  website  reference
https://www.python.org/downloads depending on the operating system. Type ‘python -
version' in the command prompt to confirm Python has been successfully installed from the
website, as shown in figure python below.

Python

& python’ . I (%

About Downloads Documentation Community Success Stories News Events

Functions Defined
- The core of extensible programming is defining functions.

Python allows mandatory and optional arguments, keyword

arguments, and even arbitrary argument lists. More about

defining functions in Python 3

91123581321 34 55 89 144 233 377 610 987
1 2 3 4 5

Python is a programming language that lets you work quickly
and integrate systems more effectively. »» Learn More

e Anaconda
The anaconda package includes a number of IDE that are helpful for writing code and
analyzing outputs from python packages. As seen in the below figure, this package can be
obtained and installed from the website https://www.anaconda.com/products/individual.
Jupyter notebook and its tasks are launched in browser tabs from the anaconda navigator.
Python notebooks are first created and saved in the.ipynb format.
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e Jupyter Notebook
Using the pip command, the python libraries are installed during the execution of code.
Transformers, Scikit-Learn, NLTK, Numpy, Pandas, Tensorflow, Matplotlib, googletrans,
Seaborn, and Plotly are the necessary libraries for this course of action. In this browser, many
different IDEs were available. The model in this project is constructed in Jupyter Notebook.

Command: pip install ’LibraryName’

4 Data Collection

To address the objectives of the study, a comprehensive and diverse dataset will be collected
from various workplace environments. The dataset will include information on physiological
measures, work hours, environmental conditions, and employee self-reported fatigue levels.
Data sources may include wearables, sensors, employee surveys, and workplace records. This
approach ensures a holistic representation of workplace conditions and allows the model to
learn patterns from multiple dimensions, contributing to a robust fatigue detection system.

5 Implementation



5.1 Importing Libraries

The implementation part is explained below in detail on how the project was implemented
using Python. Please carry out the instructions step by step. The first step is to preprocess the
provided data before we start the implementation. The libraries required for startup are
displayed in the below picture.

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import numpy

from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.

as np
linear_model impeort LinearRegression

metrics import mean_squared_error, r2_score
preprocessing import StandardScaler

model selection import GridSearchCV

svm import SVC

metrics import accuracy_score, classification_report
tree import DecisionTreeClassifier

model_selection import train_test_split
preprocessing import StandardScaler

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping

from sklearn.

metrics import mean_squared_error, r2_score

import matplotlib.pyplot as plt

Import & load the data in a data frame

Q dr
0 4.

= pd.read_csv("/content/all-samples.csv")

info()

EE <class 'pandas.core.frame.DataFrame'>
RangeIndex: 51741 entries, @ to 51748
Data columns (total 61 columns):

#

W o~ phwMNRE®

Column

RANGE
KURT

SKEW
MEAN_1ST_GRAD
STD_1ST_GRAD
MEAN_2ND_GRAD
STD_2ND_GRAD
ALSC

INSC

APSC

Non-Null Count Dtype

51741 non-null floate4
51741 non-null floate4
51741 non-null floate4
51741 non-null floate4
51741 non-null floaté64
51741 non-null floate4
51741 non-null float64
51741 non-null floate4
51741 non-null floate4
51741 non-null floate4
51741 non-null floate4
51741 non-null float64
51741 non-null floate4



5.2 Data Preprocessing and Data Selection

5.2.1 Data Preprocessing

The preprocessing on the given data containing the excel file is performed as shown in
the figure 5 below, explains the statistical Analysis, correlation, and spreading the regression
points.

# Get summary statistics of the numeric columns
print(df.describe())

MEAN Max MIN RANGE KURT %\
count 51741.000000 51741.000080 51741.000000 51741.000008 51741.000000
mean 0.91e583 9.833285 9.083650 8.929555 3.828619
std 0.9214%1 0.863043 9.087027 B.856098 4.546064
min B.900875 9.600129 9.080031 B.000098 -4.764876
25% 9.902261 0.806965 9.000761 B.006076 8.685914
Se% 0.9042060 9.013511 9.081436 8.912183 2.517461
75% B.909%088 9.831e64 9.083229 B.926463 5.688255
max 8.251087 8.565164 8.865985 ©.512189 27.527457

SKEW MEAN_1ST_GRAD STD_1ST_GRAD MEAN_2ZND_GRAD STD_2ND_GRAD \
count 51741.000080 51741 .0080e8 51741.000000 51741.000808 51741.000000

mean 1.735443 -0.ee8757 9.906278 9.000043 9.805170@
std 8.845085 0.008%41 8.814559 9.807591 0.812289
min -1.853285 -0.134964 9.900000 -9.153228 9.600000
25% 1.144333 -0.000114 9.801101 -9.000116 0.000944
Se% 1.636892 -0.000002 9.902016 9.000006 9.801765
75% 2.241458 0.000896 9.804572 9.800157 9.803987
max 4.987227 ©.157541 ©9.187414 9.111371 0.161786

... MIN_ONSET_LOG MIN_ONSET SQRT MAX ONSET_LOG MAX ONSET SQRT
count ... 51741.800000  51741.000000 51741.000000 51741.000000

mean 1.861553 1.455315 3.668287 6.4559491
std 8.540830@ 1.2415%90 9.588332 2.855178
min R 8.538743 8.836777 9.987857 1.216143
25% R ©.785657 1.892633 3.192997 4.833356
Se% ©8.913357 1.221751 3.641@75 6.89367@
75% 1.1@5587 1.421617 4.066938 7.574822
max 5.673982 17.0@35820 5.673982 17.835020
STD ONSET YEO JON MEAN ONSET LOG MEAN ONSET SQRT MasaTLX

# Check for missing values
print(df.isnull().sum())

MEAN
MAax
MIN
RANGE
KURT

D000 9

MEAN_ONSET_LOG
MEAN_ONSET_SQRT
NasaTLX
subject_id
condition
Length: 61, dtype: int64

PO ® -

# Data Visualization
# Example: Plot histograms for numeric columns
numeric_columns = df.select_dtypes(include=['float64', '"int64']).columns
for col in numeric_columns:
plt.figure()
sns.histplot(df[col])
plt.title(f'Histogram of {col}')
plt.show()



# Example: Create a scatter plot
plt.scatter(df["MEAN'], df['MAX'])
plt.xlabel('MEAN")

plt.ylabel('MAX")

plt.title('Scatter Plot between MEAN and MAX')
plt.show()

1: |## Create an interaction feature between 'MEAN' and "MAX'
df[ 'MEAN_MAX_INTERACTION'] = df['MEAN'] * df['MAX']

6 Model Building and Model Evaluation

In our thesis | have build Regression and classification models. Namely, Decision Tree,
Random Forest, linear regression, KNN, Grid Search and XG Boost. And below this | have
attached all the screenshot.

Decision Tree Regressor

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_squared_error, r2_score

1Y Tm e w12 -

# Features for prediction
X = df[['MEAN', 'MAX', 'MIN', 'RANGE', 'KURT', 'SKEW']]

# Target variable
y = df['NasaTLX']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Train a Decision Tree Regressor model
model = DecisionTreeRegressor(random_state=42)
model.fit(X_train, y_train)

# Make predictions on the test set
y_pred = model.predict(X_test)

# Evaluate the model
# Evaluate the model

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Mean Squared Error: 33.83170429558331
R-squared: ©.8437776694428303

Hyperparameter Tuning with Grid Search CV



D from sklearn.model_selection import GridSearchCV

# Define hyperparameters to search
param_grid = {
'max_depth': [None, 5, 10, 15],
‘min_samples_split': [2, 5, 1@],
‘min_samples_leaf': [1, 2, 4]

# Create a GridSearchCV object
grid_search = GridSearchCV(DecisionTreeRegressor(random_state=42), param_grid, cv=5, scoring='neg_mean_squared
grid_search.fit(X_train, y_train)

# Get the best parameters
best_params = grid_search.best_params_
print("Best Hyperparameters:", best_params)

# Train a Decision Tree Regressor with the best hyperparameters
best_model = DecisionTreeRegressor(random_state=42, **best_params)
best_model.fit(X_train, y_train)

# Make predictions and evaluate the best model
y_pred_best = best_model.predict(X_test)

mse_best = mean_squared_error(y_test, y_pred_best)
r2_best = r2_score(y_test, y_pred_best)
print(f'Optimized Mean Squared Error: {mse_best}')
print(f'Optimized R-squared: {r2_best}')

Best Hyperparameters: {'max_depth': None, 'min_samples_leaf': 2, 'min_samples_split': 1@}
Optimized Mean Squared Error: 33.13462653496709
Optimized R-squared: ©.846996517482472

Random Forest and Gradient Boost Regressor

[ ] from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
# Random Forest Regressor
rf_model = RandomForestRegressor(random_state=42)
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
print(f'Random Forest Mean Squared Error: {mse_rf}')
print(f'Random Forest R-squared: {r2_rf}")

Random Forest Mean Squared Error: 27.847374045877274
Random Forest R-squared: ©.87141169906296215



from sklearn.model_ selection import GridSearchCV

# Define the hyperparameter grid

param_grid = {
'n_estimators': [50, 10, 1568],
'learning_rate': [6.01, 6.1, ©8.2],
'max_depth': [3, 4, 51,
'min_samples_split': [2, 5, 1@],
'min_samples leaf': [1, 2, 4]

I

# Create the GridSearchCV object

grid_search = GridSearchCV(
GradientBoostingRegressor(random_state=42),
param_grid,
cv=5, # You can adjust the number of folds for cross-validation
scoring='neg_mean_squared_error', # Use negative MSE for GridSearchCV
n_jobs=-1 # Use all available CPU cores

# Fit the model to the data
grid_search.fit(X_train, y_train)

# Get the best hyperparameters
best_params = grid_search.best_params_
print(f'Best Hyperparameters: {best_params}')

# Get the best model
best_gb model = grid_search.best_estimator_

# Predict on the test set
y_pred_gb = best_gb_model.predict(X_test)

# Evaluate the model

mse_gb = mean_squared_error(y_test, y_pred_gb)

r2_gb = r2_score(y_test, y_pred_gb)

print(f'Gradient Boosting Mean Squared Error: {mse_gb}')
print(f'Gradient Boosting R-squared: {r2_gb}')

Best Hyperparameters: {'learning_rate': ©.2, 'max_depth': 5, 'min_samples_leaf': 2, 'min_samples_split': 5,
Gradient Boosting Mean Squared Error: 35.11189732514119%
Gradient Boosting R-squared: ©.8378662192714788

Linear Regression

(’ from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Split your dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Standardize the features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Create a Linear Regression model
1r_model = LinearRegression()

# Fit the model to the standardized training data
lr_model.fit(X_train_scaled, y_train)

# Make predictions on the standardized test data
y_pred_lr = lr_model.predict(X_test_scaled)



# Calculate Mean Squared Error (MSE) and R-squared (R2) scores
mse_lr = mean_squared_error(y_test, y_pred_1lr)
r2_lr = r2_score(y_test, y_pred_lr)

# Print the results
print(f'Linear Regression Mean Squared Error: {mse_lr}")
print(f'Linear Regression R-squared: {r2_1lr}')

Linear Regression Mean Squared Error: 215.780©5588621789
Linear Regression R-squared: ©.003974390750546952

Now we will be creating a dataframe from the results dictionary by sorting the dataframeby
Mean Squared Error(ascending order, lower is better)

° import pandas as pd

# Create a dictionary to store the results

results = {
"Model": ["Linear Regression", "Random Forest", "Gradient Boosting", "Optimized Decision Tree", "Decision
"Mean Squared Error (MSE)": [mse_lr, mse_rf, mse_gb, mse_best, mse],

}

# Create a DataFrame from the results dictionary
results_df = pd.DataFrame(results)

# Sort the DataFrame by MSE (ascending order, lower is better)
results_df = results_df.sort_values(by="Mean Squared Error (MSE)")

# Reset the index for a clean ranking
results_df.reset_index(drop=True, inplace=True)

# Display the comparison table
print(results_df)

Model Mean Squared Error (MSE)

e Random Forest . 27.847374
1 Optimized Decision Tree 33.134627
2 Decision Tree 33.831704
3 Gradient Boosting 35.111897
4 Linear Regression 215.708558

Now again we will be creating a dataframe from the results dictionary by sorting the
dataframe by R2 (descending order, higher is better)



D import pandas as pd

# Create a dictionary to store the results

results = {
"Model": ["Linear Regression", "Random Forest", "Gradient Boosting", "Optimized Decision Tree", "Decision
"R-squared (R2)": [r2_1lr, r2_rf, r2_gb, r2_best, r2],

# Create a DataFrame from the results dictionary
results_df = pd.DataFrame(results)

# Sort the DataFrame by R2 (descending order, higher is better)
results_df = results_df.sort_values(by="R-squared (R2)", ascending=False)

# Reset the index for a clean ranking
results_df.reset_index(drop=True, inplace=True)

# Display the comparison table
print(results_df)

Model R-squared (R2)

e Random Forest . ©.871411
1 Optimized Decision Tree ©.846997
2 Decision Tree ©.843778
3 Gradient Boosting ©.837866
4 Linear Regression 0.683974

Now the models for Classification will be applied where the target variable will be
‘condition’

o # Features for prediction
X = df[['MEAN', 'MAX', 'MIN', 'RANGE', 'KURT', 'SKEW']]

] df = df.dropna(subset=["condition"])

] from sklearn.model_selection import train_test_split
# Target variable -
y = df['condition’]

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Random Forest Classifier is now performed

10



t’ # Import necessary libraries
import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

# Create the Random Forest classifier
rf_classifier = RandomForestClassifier()

# Define hyperparameters and their possible values for tuning

param_grid = {
'n_estimators': [1ee, 288, 3@e],
'max_depth': [None, 10, 28, 30],
'min_samples_split': [2, 5, 1e],
'min_samples_leaf': [1, 2, 4]

# Initialize GridSearchCV for hyperparameter tuning
grid_search = GridSearchCV(estimator=rf_classifier, param_grid=param_grid, cv=5, scoring='accuracy')

# Fit the model to find the best hyperparameters

grid_search.fit(X_train, y_train)

# Get the best hyperparameters
best_params = grid_search.best_params_
print("Best Hyperparameters:", best_params)

# Create a classifier with the best hyperparameters

best_rf_classifier = RandomForestClassifier(**best_params)

# Train the model with the training data
best_rf_classifier.fit(X_train, y_train)

# Make predictions on the test set
y_pred = best_rf_classifier.predict(X_test)

# Evaluate the model's performance

accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print(classification_report(y_test, y_pred))

Best Hyperparameters: {'max_depth': 2@, 'min_samples_leaf': 1, 'min_samples_split': 18, 'n_estimators': 2@}

Accuracy: ©.965148489338401

precision recall fl-score

e 9.99 1.08 0.99

1 9.94 0.95 0.95

2 9.96 0.95 0.95

accuracy 0.97
macro avg 9.97 0.97 0.97
weighted avg .97 8.97 9.97

support

5194
5119
5210

15523
15523
15523

Now XG Boost model and its respective results will be displayed

11



v xgboost

[ 1 from sklearn.model_selection import train_test_split, GridSearchCV
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report

[ 1 # Create the XGBoost classifier
xgb_classifier = XGBClassifier()

# Define hyperparameters and their possible values for tuning
param_grid = {

'n_estimators': [1ee, 2ee, 30@],

'max_depth': [3, 4, 5],

'learning_rate': [©.01, 0.1, ©.2],

# Initialize GridSearchCV for hyperparameter tuning
grid_search = GridSearchCV(estimator=xgb_classifier, param_grid=param_grid, cv=5, scoring='accuracy')

# Fit the model to find the best hyperparameters
grid_search.fit(X_train, y_train)

# Get the best hyperparameters
best_params = grid_search.best_params_
print("Best Hyperparameters:", best_params)

# Create a classifier with the best hyperparameters
best_xgb_classifier = XGBClassifier(**best_params)

# Train the model with the training data
best_xgb_classifier.fit(X_train, y_train)

# Make predictions on the test set
y_pred = best_xgb_classifier.predict(X_test)

# Evaluate the model's performance

accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print(classification_report(y_test, y_pred))

Best Hyperparameters: {'learning_rate': @.2, 'max_depth': 5, 'n_estimators': 300}
Accuracy: ©.9645687045029956

precision recall fl-score  support

2] .99 9.99 .99 5194

1 8.95 9.95 8.95 511¢s

2 8.96 9.95 e.95 5218

accuracy 8.96 15523
macro avg 8.96 9.96 8.96 15523
weighted avg 8.96 .96 8.96 15523

Now Decision Tree Classifier and its associated results will be displayed
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v Decision Tree

[ 1 from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import train_test_split

# Create the Decision Tree classifier
dt_classifier = DecisionTreeClassifier(random_state=42)

# Train the model with the training data
dt_classifier.fit(X_train, y_train)

# Make predictions on the test set
y_pred = dt_classifier.predict(X_test)

# Evaluate the model's performance
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

D # Display classification report
print(classification_report(y_test, y_pred))

E} Accuracy: ©.9571603427172583
precision recall fl-score  support
2] 0.99 0.99 0.99 5124
1 8.92 0.95 0.94 5119
2 9.95 0.93 0.94 521e
accuracy 0.96 15523
macro avg 0.96 2.96 0.96 15523
weighted avg 9.96 0.96 0.96 15523

Now KNN and its associated results will be displayed

v KNN model

[ 1 from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Create a scaler
scaler = StandardScaler()

# Fit and transform on the entire dataset
X_scaled = scaler.fit_transform(X)

# Split the scaled data into training and testing sets
X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
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# Experiment with different values of k

for k in range(3, 11):
knn_classifier = KNeighborsClassifier(n_neighbors=k)
knn_classifier.fit(X_train_scaled, y_train)
y_pred = knn_classifier.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy with k={k}: {accuracy}')

E Accuracy with k=3: ©.9880718933195983
Accuracy with k=4: ©.9887923726083875
Accuracy with k=5: ©.8920956000773046
Accuracy with k=6: ©.8854602847387747
Accuracy with k=7: ©.8795335953101849
Accuracy with k=8: ©.8738271218461895
Accuracy with k=9: ©.8669071760057979
Accuracy with k=18: ©.8586613412355859

Classification Report for KNN

, from sklearn.metrics import classification_report

# Assuming you have already trained and predicted with your KNN classifier
knn_classifier.fit(X_train_scaled, y_train)
y_pred = knn_classifier.predict(X_test_scaled)

# Display classification report
print("Classification Report:")
print(classification_report(y_test, y_pred))

} Classification Report: .
precision recall fl-score  support
e 8.87 @.85 0.86 5194
1 8.82 2.85 0.84 5119
2 .88 9.87 9.87 5210
accuracy 0.86 15523
macro avg 2.86 2.86 9.86 15523
weighted avg 2.86 Q.86 0.86 15523

Now Deep Learning and its associated results will be displayed

v Deep Learning

[ 1 import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

# Assuming df is your preprocessed DataFrame
X = df.drop(['condition'], axis=1)
y = df['condition'] # Target variable

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=6.2, random_state=42)
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# Standardize the features

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Reshape data for LSTM (samples, time steps, features)
X_train_reshaped = np.reshape(X_train_scaled, (X_train_scaled.shape[8], 1, X_train_scaled.shape[1]))
X_test_reshaped = np.reshape(X_test_scaled, (X_test_scaled.shape[@], 1, X_test_scaled.shape[1]))

# Build the LSTM model

model_lstm = Sequential()

model_lstm.add(LSTM(64, activation='relu', input_shape=(1, X_train_scaled.shape[1])))
model_lstm.add(Dense(1l, activation='linear')) 2

# Compile the model
model_lstm.compile(optimizer='adam', loss='mean_squared_error')

# Set up early stopping to prevent overfitting

early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
° # Train the model
history_lstm = model_lstm.fit(X_train_reshaped, y_train, epochs=100, batch_size=32, validation_data=(X_test_re

# Make predictions on the test set
y_pred_lstm = model_lstm.predict(X_test_reshaped).flatten()

# Evaluate the LSTM model
mse_lstm = mean_squared_error(y_test, y_pred_lstm)
r2_lstm = r2_score(y_test, y_pred_lstm)

print(f'LSTM Mean Squared Error: {mse_lstm}')
print(f'LSTM R-squared: {r2_lstm}')

# Plot training and validation loss over epochs for LSTM
plt.plot(history_lstm.history['loss'], label='Training Loss (LSTM)')
plt.plot(history_lstm.history['val_loss'], label='Validation Loss (LSTM)')
plt.xlabel('Epochs’')

plt.ylabel('Mean Squared Error')

plt.title('Training and Validation Loss (LSTM)')

plt.legend()

plt.show()

There are 100 epochs for Deep Learning and | have added only one with its MSE and R2 as
the complete epochs will be present in the code file

1294/1294 [==============================] - 4s 3ms/step - loss: ©.0148 - val_loss: ©.8174
Epoch 66/100
1294/1294 [==============================] - 4s 3ms/step - loss: 9.0149 - val_loss: ©.8149
Epoch 67/100
1294/1294 [==============================] - 65 5ms/step - loss: ©.0149 - val_loss: ©.8175
Epoch 68/1@0
1294/1294 [==============================] - 45 3ms/step - loss: 0.0144 - val_loss: ©.0148
Epoch 69/100
1294/1294 [==============================] - 45 3ms/step - loss: 0.0141 - val_loss: ©.0156
Epoch 70/1080
1294/1294 [==============================] - 65 5ms/step - loss: ©.6142 - val_loss: ©.8220
Epoch 71/1@6
1294/1294 [==============================] - 45 3ms/step - loss: ©.6139 - val_leoss: ©.8172
Epoch 72/1@@
1294/1294 [==============================] - 45 3ms/step - loss: ©.8144 - val_loss: ©.8200
Epoch 73/1@6
1294/1294 [==============================] - 65 5ms/step - loss: 0.8136 - val_loss: ©.8166
Epoch 74/1e6
1294/1294 [==============================] - 4s 3ms/step - loss: 0.8135 - val_less: ©.8213
Epoch 75/1e0
1294/1294 [==============================] - 4s 3ms/step - loss: 9.0137 - val_loss: ©.0185
Epoch 76/100
1294/1294 [==============================] - 65 4ms/step - loss: 9.0133 - val_loss: ©.8155

Frnnrh 77/1006
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Epocn Y9/ 1lub
1294/1294 [==============================] - 4s 3ms/step - loss: ©.8184 - val_loss: ©.8129
Epoch 1@e/100

1294/1294 [=

] - 4s 3ms/step - loss: ©.0112 - val_loss: ©.8123
] - 1s 2ms/step

LSTM Mean Squared Error: ©.0123469630810165694

LSTM R-squared: ©.9815161485885857

Training and Validation Loss (LSTM)

0.5 1 —— Training Loss (LSTM)
—— Validation Loss (LSTM)
0.4 1
._ |
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Now Feed Forward Neural Network and its results will be displayed

v

[]

feedforward neural network for regression

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt

# Build the neural network model

model = Sequential()

model.add(Dense(64, activation='relu', input_shape=(X_train.shape[1],)))
model.add(Dense(32, activation='relu'))

model.add(Dense(1l, activation='linear'))
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° # Compile the model
model.compile(optimizer='adam', loss='mean_squared_error’)

# Set up early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='val_loss', patience=18, restore_best_weights=True)

# Train the model
history = model.fit(X_train_scaled, y_train, epochs=100, batch_size=32, validation_data=(X_test_scaled, y_test

# Make predictions on the test set
y_pred = model.predict(X_test_scaled).flatten()

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

# Plot training and validation loss over epochs
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epochs')

plt.ylabel('Mean Squared Error')

plt.title('Training and Validation Loss')

plt.legend()

plt.show()

E Epoch 22/1ee o
1294/1294 [ ] - 3s 2ms/step - loss: ©.0254 - val_loss: ©.03@8
Epoch 23/168
1294/1294 [ ] - 3s 3ms/step - loss: ©.0243 - val_loss: ©.0311
Epoch 24/1e@
1294/1294 [ ] - 4s 3ms/step - loss: ©.0250 - val_loss: ©.9248
Epoch 25/108
1294/1294 [ ] - 3s 3ms/step - loss: ©.0241 - val_loss: ©.0258
Epoch 26/10@

There are a total of 80 epochs, I have added two screenshots as the complete epochs result
will be present in the code file.

o 1294/1294 |==============================] - 3s 2ms/step - loss: ©.0118 - val_loss 4 | &
Epoch 77/108

E§ 1294/1294 [==============================] - 35 2ms/step - loss: ©.811@ - val_loss: 6.01e9
Epoch 78/108
1294/1294 [==============================] - 55 4ms/step - loss: ©.0109 - val_loss: ©.9136
Epoch 79/108
1284/1294 [==============================] - 3s 3ms/step - loss: ©.8116 - val_loss: 6.0126
Epoch 8@/1e8
1294/1294 [==============================] - 35 3ms/step - loss: ©.0185 - val_loss: 6.9111
324/324 [==============================] - 1s 2ms/step

Mean Squared Error: 9.01690480469115277
R-squared: ©.9836751118875916
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Now the results of Deep Learning and Feed forward neural network will be compared

v Comparision Result

[]

import pandas as pd

# Create a DataFrame to store the results
results = pd.DataFrame(index=['Mean Squared Error (MSE)', 'R-squared (R2)'])

# Results for the Feedforward Neural Network
results['Feedforward Neural Network'] = [msg, r2]

# Results for the LSTM model
results['LSTM'] = [mse_lstm, r2_lstm]

# Display the results table

print(results)

Feedforward Neural Network LSTM
Mean Squared Error (MSE) ©.e18985 ©.e12347
R-squared (R2) 9.983675 ©.981516
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