~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Saurav Jaglan
Student ID: 22105433

School of Computing
National College of Ireland

Supervisor: Dr.Athanasios Staikopoulos

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Saurav Jaglan
Student ID: 22105433
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Dr.Athanasios Staikopoulos
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 729
Page Count: [10]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Saurav Jaglan

Date: 13th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Saurav Jaglan
22105433

1 Introduction

In this configuration manual the building of simulation model for simulating end season
ranking of football leagues and model to predict players value is described. The hardware
and software required along with the description on where and how the softwares were
used is discussed.

2 System Configuration

This section of the report describe the system configurations and requirements.

2.1 Hardware Requirements

Table 1: Hardware requirements

Device Lenovo Ideapad 5

Operating System Windows 10 Home

RAM 16 gb

Storage 512 gb SSD

Processor AMD Ryzen 5 7530U with Radeon
Graphics 2.00 GHz

System Type 64-bit operating system, x64-based
processor

2.2 Software Requirements

Table 2: Hardware requirements

Language Python 3.11.3

IDE Jupyter Notebook

Initial Processing Excel (Power Query)

Web Browser Google Chrome
Environment Anaconda

Other Softwares Microsoft Excel & Overleaf

3 Project Development

This section provide information about configuring the environment, collection of data,
and information about different libraries required is discussed in this section.

3.1 Installing Python

0 > python.org

—_—_—————

Docker images

Join our year end fundraiser by donating or becoming a PSF Member! | Support the PSF

Active Python Releases

For more information visit the Python Developer's Guide.

Python version Maintenance status First released End of support Release schedule
3.13 prerelease 2024-10-01 (planned) 2029-10 PEP 719
3.12 bugfix 2023-10-02 2028-10 PFP 693
311 bugfix 2022-10-24 2027-10 PEP 664
3.10 security 2021-10-01 2026-10 PEP 619
3.9 security 2020-10-05 2025-10 PEP 596
3.8 security 2019-10-14 2024-10 PEP 569

Figure 1: Website for downloading python

The figure |1] displays the website to download python on the device and the websiteEl
also contains steps to installing it.

[l % jupyterorg

Jupyter Notebook

Install the classic Jupyter Notebook with:

pip install notebook

To run the notebook:

jupyter notebook

Figure 2: Website for installing Jupyter Notebook

"https://www.python.org/downloads/

https://www.python.org/downloads/

In the figure
on the websitd? .

installation command of Jupyter Notebook is displayed, and is available

3.2 Data Acquisition

{ Foothall-Data.co.uk

Besults | Odds | Tiwsters

Undated: 0n/12/75 @ BeGambleAware
Home Froc Bets Livescores Books on Botting Casine | Poker | Tennmis | Contact | Like
Data Files: England [==]

Last updated: 08/12/23
P L2 Historical Data

bet365
B gt wth e of Une oever s biskenikers ort Footiall Dot wil help kg | LS80 €0 Bet
access to the historical results & betting odds data flles FRCL Free Bets
Below you will find download links Lo all available CSV data files o use for | BOOKS
= = quantitative testing of hetting systems In spreadsheet applications like Mxcel. | Other Sites
[pen [T L VTN T M e S o T A N

= and top scorers can now be accessad through the Livescore sarvice. Latest betting
‘ .’ Betfred odds are available through the Odds Comparison

You are fiee experiment with the dala yourselves, bul il you are looking for

o

B Bevway Bpoiie, Tl Tieation Tt has hoar dasmace, secifically o work with Faotball-
Data’s files, visil BOLGPS for an exceplional data analysis workbook. Like all of
Football-Data's files, It free to download

Football Rating=

NoLes. e Wisdom of Crowds

£40 Free Bets (text file key to the data files and data source acknowledgements)
Contrarian Betting
== ggason 2025/2024 Pinnacle Odds Drop
£25 Free Bets [Premicr | eague (F1 & A1 sl metch stats; oatch, Tolal gosls & AR odds) e
&) Championshin (FT & HT results; match stats; match, total goals & AH odds)
&Y 1 emaue T (1 & H resolis; match stats; match, Tolal goals 8 AR ogds)
s & Leo 2 (FT & HT results; match stats; match, total geals & AH odds)

& Conferance (F1 & H1 o InHouse

S nateh, Lotal goals & AH odds)
Betshares in

Overs/Undens) Season 2022/2023

Analysing Tipsters Dremier League (FT & HT resulls; molch stots; match, Lotal guals & AH odds)
Asian Handicap
Closing Odds

Unpredictable
Premiership

Pinnacle Sportsbaok

L Lol goals 8 AH odds

ral goals A Al odds) P-value
2 AH odls) Yields

Figure 3: Teams past matches result data

The data set require to build the simulation model was collected from the Football-
data [website as shown in figur

< < 2o sofifa.com

Discussions Sign in

Removed Customized Create Player Calculator Random arch player ...

Name Age O.. Po.. Team & Contract Height Weight Value

A. Dovbyk 26 @ Girona 189cm / 6’2" 78kg / 172lbs €7.5M

Savio 9 ir 176cm / 5'9" 71kg / 157lbs
=

Yan Couto 168cm / 5'6" 60kg / 132lbs
=

Miguel Gutiérrez 2 180cm / 511" 73kg / 161lbs €16M

Aleix Garcia Girona

Figure 4: Players attributes data

To estimate players value in different leagues the data was collected from the webiste
named Sofifa [as shown in figure

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model selection import train test split

from sklearn.metrics import classification report

Figure 5: Libraries required for simulation model

import pandas as pd

from sklearn.preprocessing import MinMaxScaler

from sklearn.nodel selection dmport train test split

from sklearn.ensenble inport RandonForestRegressor, GradientBoostingRegressor
from sklearn.tree inport DecisionTreeRegressor

from sklearn.netrics inport mean absolute error, mean squared error, r2 score
inport numpy as np

import natplotlib.pyplot as plt

Figure 6: Libraries Required for players value forecasting model

3.3 Importing Libraries

Figure [f] and [] represnts the figures required for the two models respectively. Libraries
such as Pandas and Numpy were mainly used for descriptive analysis and pandas was
mainly used to read the data in a frame (Tabular format). For visualisation and to
illustrate findings graphically, Seaborn and Matplotlib were used. The library Sklearn
contains all the functions rquired for scaling data, splitting data into training and testing,
encoding data, and building machine learning models.

3.4 Reading Datasets

Load the dataset
file_path = 'Bundesliga.xlsx’
bundesliga_data = pd.read_excel(file_path)

Display the first few rows of the dataset to understand its structure and contents
bundesliga data.head()

Date HomeTeam AwayTeam FullTime Halftime HomeGoals HomeGoalsHalftime HomeShots HomeShotsOnTarget HomeCorners .. HomeYellowCarc
e Ein Bayem -
0 05/08/2022 Frankfurt Munich A A 1 0 8 2 5
1 06/08/2022 Augsburg Freiburg A D 0 0 10 2 5
2 06/08/2022 Bochum Mainz A D 1 1 16 3 3
3 06/08/2022 Mgladbach Hoeffenheim H D 3 1 18 8 4
e Union -
4 06/08/2022 Beriin Hertha H H 3 1 18 8 5

Figure 7: Reading Dataset 1

Load the Bundesliga dataset

bundesliga_df = pd.read_excel('Bundesilga Player Data.xlsx")
Display the first few rows and some general information about the dataset
bundesliga_info = bundesliga_df.info()
bundesliga_head = bundesliga_df.head()
bundesliga_info, bundesliga_head

<class ‘pandas.core.frame.DataFrame’ >
RangeIndex: 368 entries, @ to 259

Data columns (total 30 columns):

#* Column Noen-Null Count Dtype
e Name 260 non-null object
1 Age 260 non-null int64
2 Overall rating 360 non-null intea
3 Potential 260 non-null inte4
4 value 36@ non-null object
s Wage 36@ non-null object
(3] Total attacking 260 non-null inte4a
7 Finishing 36@ non-null int64
8 Total skill 260 non-null int64
9 Dribbling 36@ non-null ints4
1e Ball control 260 non-null inte4
11 Total movement 36@ non-null ints4
12 Acceleration 26@ non-null inte4a
13 Total power 260 non-null inte4a
14 Stamina 360 non-null int64
15 Strength 260 non-null int64
16 Total mentality 36@ non-null ints4
17 Aggression 36@ non-null intea
18 Total defending 36@ non-null ints4
19 Marking 36@ non-null int64
20 Total goalkeeping 326@ non-null intea

Figure 8: Reading Dataset 2

Zhttps://jupyter.org/install
3https://www.football-data.co.uk/englandm.php
“https://sofifa.com/

https://jupyter.org/install
https://www.football-data.co.uk/englandm.php
https://sofifa.com/

4 Model Building

4.1 Simulation Model to forecast season end ranking

Setting up visualisation styles
sns.set(style="whitegrid"”)

1. Team Performance Analysis

Counting the number of wins, draws, and Losses for each team

home_wins = bundesliga_ data[bundesliga data['FullTime'] == "H’'].groupby(HomeTeam’).size()

away_wins = bundesliga data[bundesliga data['FullTime'] == "A"].groupby(AwayTeam’).size()

draws = bundesliga_data[bundesliga_data["FullTime'] == 'D"].groupby('HomeTeam").size() # Draw can be counted for either team

Merging the counts into a single DataFrame
team_performance = pd.DataFrame({
"HomeWins®: home_wins,
‘AwayWins': away_wins,
‘Draws ' : draws
}).fillna(®) # Fill NoN values with 8

Total wins, Llosses, and draws for each team

team_performance['TotalWins'] = team_performance["HomeWins'] + team_performance["AwayWins']
team_performance['TotalMatches'] = team_performance.sum(axis=1)

team_performance["WinRate’] = team_performance['TotalWins'] / team_performance['TotalMatches']

2. Home vs. Away Performance Analysis

Calculating the total number of goals scored at home and away
home_goals = bundesliga_data.groupby(HomeTeam')["HomeGoals'].sum{)
away_goals = bundesliga_data.groupby(' AwayTeam')["AwayGoals"].sum()

Merging the goals into the team performance DataFrame

team_performance['HomeGoals"] = home_goals
team_performance['AwayGoals'] = away_goals
team_performance['TotalGoals"] = team_performance["HomeGoals"'] + team_performance["'AwayGoals']

Plotting the data
fig, ax = plt.subplots(l, 2, figsize=(18, 6))

Team Win Rate

sns.barplot(x=team_performance["WinRate"], y=team_performance.index, ax=ax[e])
ax[@].set_title(Team Win Rate')

ax[@].set_xlabel('win Rate')

ax[@].set_ylabel(Teams")

Home vs Away Goals

team_performance[["HomeGoals", "AwayGoals']].plot(kind="bar', stacked=True, ax=ax[1])
ax[1].set_title('Home vs Away Goals')

ax[1].set_xlabel(Teams')

ax[1].set_wylabel(' Goals")

plt.tight_layout()
plt.show()

Displaying the first few rows of the team performance DataFrame
team_performance.head()

Figure 9: Descriptive Analysis

Simulating a single round of matches (each team plays once at home and once away)
def simulate_round(teams, avg_goals):
results = []

for home_team in teams:
for away_team in teams:
if home_team != away_team:

Simulating goals scored using Poisson distribution
home_goals = np.random.poisson(avg_goals.loc[home_team, ‘AvgHomeGoals'])
away_goals = np.random.poisson(avg goals.loc[away_team, 'AvgAwayGoals'])
results.append(({home_team, away_team, home_goals, away_goals))

return results

List of teams
teams = team_goals_avg.index.tolist()

Simulating one round of matches
round_results = simulate_round(teams, team_goals_avg)

Displaying the results of the first few simulated matches
round_results[:5]

Figure 10: Simulating Matches using Random Poisson

Converting the final standings to a DataFrame for better readability
final standings df = pd.DataFrame({
'Tean': [team for team, data in final standings],
‘Points’: [data['Points'] for team, data in final standings],
‘Goals For': [data['GoalsFor'] for team, data in final standings],
‘Goals Against': [data['GoalsAgainst'] for team, data in final_standings],
'Goal Difference': [data['GoalsFor'] - data['GoalsAgainst'] for team, data in final standings)

)

Displaying the final standings table
final standings df.head() # Displaying the top 5 teams in the standings

Figure 11: Converting Results into Dataframe

Assuming bundesliga data is your DataFrame containing the dataset

Define the features and the target
features = ['HomeTeam', ‘AwayTeam', 'HomeGoals', 'AwayGoals®, 'HomeShots', ‘AwayShots®,
'HomeShotsOnTarget®', 'AwayShotsOnTarget’, 'HomeCorners', 'AwayCorners’,
'HomeFouls', 'AwayFouls’, "HomeYellowCards', 'AwayYellowCards', 'HomeRedCards', ‘AwayRedCards']
bundesliga data[features]
bundesliga_data['FullTime']

X
y

Encoding categorical data and normalizing
categorical_features = ['HomeTeam', 'AwayTeam']
numeric_features = X.columns.drop(categorical_ features)

preprocessor = ColumnTransformer(
transformers=[
{'num', StandardScaler(), numeric_features),
('cat', OneHotEncoder(), categorical_features)

i}]

Creating the KNN model pipeline
knn_pipeline = Pipeline([

('preprocessor’, preprocessor),

("knn', KNeighborsClassifier(n_neighbors=5)) # Using 5 neighbors for KNN
D

Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=6.2, random_state=42)

Training the KNN model
knn_pipeline.fit(X_train, y_train)

Evaluating the model
y_pred = knn_pipeline.predict(X_test)

classification_report_result = classification_report(y_test, y_pred)

print(classification_report_result)

Figure 12: Simulating Matches using KNN

Slicing the DataFrame to include only the first 38 matches
Creating a DataFrame for comparison
comparison_df = pd.DataFrame({

‘Actual': y test,

‘Predicted’: y_pred

)

Resetting the index to get a common index for plotting
comparison_df.reset_index(drop=True, inplace=True)

comparison 38 matches = comparison df.head(38)

Plotting

plt.figure(figsize=(15, 6))

plt.plot(comparison_38 matches[Actual'], label="Actual Results', marker='o', linestyle="-')
plt.plot(comparison_38 matches['Predicted’], label="Predicted Results', marker='x', linestyle="--")
plt.title('Comparison of Actual vs Predicted Match Outcomes (First 38 Matches)')
plt.xlabel('Matches")

plt.ylabel('Outcomes (H/D/A)")

plt.xticks(range(38)) # to show each match as a tick

plt.legend
plt.shou()

s — —

r
)

Figure 13: Acutal match result vs predicted match result

4.2 Model to estimate players value in different leagues

def convert currency to numeric(df, columns):

Convert currency columns (e.g., '€119.5M", '€178K') to numeric values in millions.

for column in columns:
Remove currency symbol and convert K and M to their numeric equivalents
df[column] = df[column].replace(r'[€K]", "', regex=True).replace(r'M’, "e6', regex=True).astype(float)
Convert values from euros to millions
df[column] = df[column] / 1e6

return df

Convert currency columns for the Bundesliga dataset
bundesliga df = convert_currency to numeric(bundesliga df, ['Value', 'Wage'])

Check the first few rows to confirm the conversion
bundesliga df[['Value', "Wage']].head()

Figure 14: Converting value and wage format to numeric

Function to train and evalugte models
def train_and_evaluate(X_train, X test, y train, y test):
Dictionary to store models and their names
models = {
‘Random Forest': RandomForestRegressor(),
'Gradient Boosting': GradientBoostingRegressor(),
‘Decision Tree': DecisionTreeRegressor()

¥
results = {}

Training and evaluating each model
for name, model in models.items():
Train the model
model.fit(X_train, y_train)

Predict on the test set
y_pred = model.predict(X_test)

Calculate evaluation metrics

mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)

r2 = r2_score(y_test, y_pred)

Store results
results[name] = {'MAE': mae, 'MSE': mse, 'RMSE': rmse, 'R2': r2}

return results
Prepare Bundesliga dataset

X_bundesliga = bundesliga_df.drop(‘'Value', axis=1) # Features
y_bundesliga = bundesliga_df['value'] # Target variable

Figure 15: Model building to predict players value

Removing non-numeric columns from the datasets

X bundesliga = bundesliga df.select dtypes(include=[int64', 'floatéd']).drop('Value', axis=1)

X premier league = premier league df.select dtypes(include=['int64', 'floatdd']).drop('Value', axis=1)
X serie a = serie a df.select dtypes(include=['int64", 'float6d']).drop('Value', axis=l)

Re-splitting the Bundesliga dotoset into training and testing sets
X_train bundesliga, X test bundesliga, y train bundesliga, y test bundesliga = train test split(
X bundesliga, y bundesliga, test size0.2, random state=42

Train and evaluate models on the corrected Bundesliga dataset
results bundesliga = train and evaluate(X train bundesliga, X test bundesliga, y train bundesliga, y test bundesliga)
results bundesliga

Figure 16: Evaluating Model

Data for plotting

leagues = ["Bundesliga’, 'Premier League', 'Serie A']

predicted values_kane = [
kane_prediction['Predicted Value by Bundesliga Model (in Millions)'],
kane_prediction['Predicted Value by Premier League Model (in Millions)'],
kane_prediction['Predicted Value by Serie A Model (in Millions)']

]

Creating the bar chart

plt.figure(figsize=(10, 6))

plt.bar(leagues, predicted values_kane, color=[’'blue', ‘green’, 'red'])

plt.xlabel(League’)

plt.ylabel(Predicted Value (in Millions)')

plt.title('Predicted Market Value of H. Kane ST Across Different Leagues')

plt.ylim(@, max(predicted _values_kane) + 18) # Adding some space above the highest bar for clarity

Adding the value labels on top of each bar
for i in range(len(leagues)):
plt.text(i, predicted_values_kane[i], f'€{predicted_values_kane[i]:.2f}M", ha="center’, va="bottom")

Showing the plot
plt.show()

Figure 17: Displaying Results

10

	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Project Development
	Installing Python
	Data Acquisition
	Importing Libraries
	Reading Datasets

	Model Building
	Simulation Model to forecast season end ranking
	Model to estimate players value in different leagues

