"'*
\ National

Collegef
Ireland

Configuration Manual

MSc Research Project
Data Analytics

Piyush Ingle
Student ID: 22154779

School of Computing

National College of Ireland

Supervisor: Furgan Rustam

\‘
National College of \ National
Collegeof

Ireland MSc Project Ireland

Submission Sheet

School of Computing

Student Name: ... Piyush INgle.......ccoooiiiii i
StudentID: ..., X22154779 ottt e
Programme: ... Data Analytics........coeeveiveneenen. Year: ... 2023..
Module: Research Project........cccooiiiiieiiieceee e
Supervisor: ... Furgan RUSEaM.. ..o e
Submission

Due Date: ... 1471272023t

Project Title: Enhancing Purchase Predictions with Machine Learning: Customer
Propensity Modelling through Predictive Analytics

Word Count: 1340.....cccnee. Page Count

I hereby certify that the information contained in this (my submission) is
information pertaining to research I conducted for this project. All information
other than my own contribution will be fully referenced and listed in the relevant
bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use
other author's written or electronic work is illegal (plagiarism) and may result in
disciplinary action.

Signature:

Date: = 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual
Piyush Ingle

Student Id: 22154779

1. Introduction

This handbook provides instructions on how to run and set up the implementation code for
the ongoing study. This paper offers specific information about the hardware of the
computer as well as the applications that need to be used. By following the procedures
listed below, users will be able to employ machine learning and deep learning algorithms
along with sampling approaches to diagnose diabetes.

2. System Specifications:
2.1 Hardware Specification

Below are the hardware specifications on which the experiments are performed.
Processor: 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz

RAM: 16.0 GB

Storage: 500 GB

Operating System: Windows 11

Graphics card: GeForce RTX 3060

3. Software tools

Below are the software that are used to build this project.

3.1 Python

Python is a popular high-level interpreted programming language that is easy to read
and understand. Python, which was developed by Guido van Rossum and initially
published in 1991, is a flexible language that is frequently used for web
development, data analysis, artificial intelligence, and automation. It places an
emphasis on readability and usability of code. Python is a popular choice for
developers of all skill levels due to its big standard library and robust community
support.

3.2 Anaconda Navigator:

Anaconda software helps to create an environment for many different versions of
python and Package versions. Anaconda can also be used to install, remove and
upgrade packages in your project environment. Anaconda is an open source and can
be downloaded from https://www.anaconda.com/.

Anaconda Navigator

) ANACONDA NAVIGATOR Connected to

Anaconda ‘jl
Notebooks =
Cloud o

tebooks with
b ges

ackager

3.3 Jupyter Notebook:

It is a web based, interactive computing notebook environment. It is used to Edit and Run

o 3 Channels

e 2 ©

== =
jJupyter [,E’ Piy

e vy aws

Fig 1. Anaconda Navigator Home page

human-readable docs while describing the data analysis.

Z Jupyter

Files

Select items to perform actions on them.

Running

Qo|~ W/

O

m]
@]
@]

Python libraries that are installed and necessary for the project are as follows:

3 anaconda3
O Contacts
O Documents

[Downloads

P et

Clusters

Fig 2. Home page of Jupyter Notebook

4. Project Implementation

Numpy
Pandas

Matplotlib

Keras

e Tensorflow

Seaborn
SciPy

(o

Quit

Upload
Name & Last Modified

7 months ago

ayear ago

a year ago

2 hours ago

Logout

New~ &

File size

import numpy
import panda
import matpl
import seabo
import scipy
from pandas.plotting import scatter_matrix

from sklearn.metrics import

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

sklearn
sklearn
sklearn
sklearn
sklearn
sklearn
sklearn
sklearn
sklearn

sklearn.
sklearn.
sklearn.

sklearn

sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.
sklearn.

as np

s as pd
otlib.pyplot as plt
rn as sns

.stats as stats

import linear_model

.model_selection import train_test_split
import metrics

.metrics import r2_score

.feature_selection import SequentialFeatureSelector
import preprocessing

.model_selection import cross_validate
.metrics import explained_variance_score
.metrics import mean_absolute_error
preprocessing import StandardScaler
linear_model import LogisticRegression
neighbors import KNeighborsClassifier
.tree import DecisionTreeClassifier
ensemble import RandomForestClassifier

svm import SVC

ensemble import GradientBoostingClassifier
naive_bayes import GaussianNB

ensemble import ExtraTreesClassifier
neighbors import KNeighborsClassifier
ensemble import AdaBoostClassifier

sns.set_style('white')
sns.set_palette('Set2")

Fig 3. Important Libraries and Packages.

e Inthe below image we can see the file path is given from where the data is taken and
read command is used to read the data.

path = 'D:/Thesis/diabetes_health/*

data = pd.read_csv(path + 'diabetes_©12.csv', encoding = "IS0-8859-1")
data.head()

Diabetes_012 HighBP HighChol CholCheck BMI Smoker Stroke HeartDiseaseorAttack Phys/

0 0 1 1 1 40 1 0 0
1 0 0 0 0 25 1 0 0
2 0 1 1 1 28 0 0 0
3 0 1 0 127 0 0 0
4 0 1 1 1 24 0 0 0

5 rows x 22 columns

Fig 4. File Path and Data head display.

e Below is the image showing code to display unique values in each column.

for col in df.columns:
print(f"{col}: {np.sort(df[col].unique())}")

Fig 5. Code to display unique values from dataset.

e Inthe below image, code to display data types of all columns is shown.

accuracy_score, precision_score, recall_score, fl_score, roc_auc_score, roc_curve

df.dtypes

Diabetes int64
HighBP inte4
HighChol inte4
CholCheck inte4
BMI inte4
Smoker inte4
Stroke inte4

HeartDiseaseorAttack int64

Fig. 6 code to display data types.

e Below image shows the code to display the number of missing values in each column.

Check missing values
df.isna().sum()

Diabetes
HighBP
HighChol
CholCheck
BMI
Smoker
Stroke

OO OO0 O

Fig 7. Displaying missing values.

e The below code shows descriptive statistics of the complete dataset. In which count, mean,
standard deviation, and quarterly data is also shown.

Look at the descriptive staistics
df.describe().T

count mean std min 25% 50% 75% max

Diabetes 253680.0 0.296921 0.698160 00 0.0 00 0.0 20
HighBP 253680.0 0.429001 0.494934 00 00 00 10 1.0

HighChol 253680.0 0424121 0.494210 00 00 00 1.0 1.0

Fig 8. Descriptive statistics.

e Code showing histogram of High BP and Income columns.

plt.hist(df["Income'])

plt.hist(df['HighBP']) plt.show()
plt.show()
' 80000
120000
100000 60000
80000
40000
60000
40000
20000
20000
o 0
00 02 04 06 08 10 1 2 3

Fig 9. Histogram of High BP and Income.

o The below code shows how to display an sns bar plot of age vs physical health column. In the
similar fashion you can displey any columns according to the need.

sns.barplot(data=df, x="Age", y="PhysHlth")#, errorbar="std")

<AxesSubplot:xlabel="Age', ylabel='PhysHlth'>

PhysHIth

Fig 10. Bar plot Age vs Physical health

e The below image shows code of correlation between Diabetes and other columns in the
dataset.

df.corr()['Diabetes’']

Diabetes 1.0600080
HighBP ©.271596
HighChol ©.2089085
CholCheck ©.067546
BMI ©.224379
Smoker ©.062914
Stroke 0.107179
HeartDiseaseorAttack ©.180272
PhysActivity -8.121947
Fruits -8.842192
Veggies -9.958972
HvyAlcoholConsump -©.957882
AnyHealthcare 8.01541e
NoDocbecCost ©.035436
GenHlth ©.382587
MentHlth ©.873507
PhysHlth ©.176287
DiffWalk ©.224239
Sex ©.831840
Age ©.185826
Education -8.130517
Income -8.171483

Name: Diabetes, dtype: floaté4

Fig 11. Correlation

e Below image showing heatmap of correlation between all the columns of the dataset.

cor_matrix = df.corr()

Create the heatmap

plt.figure(figsize=(15, 12))
sns.heatmap(cor_matrix, cmap="coolwarm", annot=True)
plt.title("Correlation Heatmap")

plt.show()
Correlation Heatmap
Diabetes 0.059 -0.058
HighBP 013 021 ERE! 0.061
HighChol
CholCheck mo.oss
BMI i 0.15 -0.088 -0.062
Smoker -0.087 -0.078

Stroke -0.069

Fig 12. Heatmap pf correlation

e Image showing the code used to plot pie charts of different variables

imp_variables = ['Education', 'DiffWalk', 'GenHlth', 'HighBP']

fig, ax = plt.subplots(2, 2, figsize=(12, 12))

for i, col in enumerate(imp_variables):
df[col].value_counts().plot.pie(ax=ax[i//2, i%2], autopct="%.2Ff%%', title=col)

plt.suptitle('Variables affecting the most', fontsize=14)

plt.show()

Education DiffWalk

Education

N=
Diffwalk

‘ :

4

Fig 13. Pie chart of different variables

4.1 Data Balancing and Scaling

e The Below image shows code used to divide data into independent and dependent variables.

X
y

df.drop(['Diabetes'], axis=1)
df['Diabetes']

print(X.shape, y.shape)

(253680, 21) (253680,)

Fig 14. Data split into independent variables and dependent variable.

e Data balancing using ADASYN

adasyn = ADASYN(sampling_strategy='auto', random_state=42)
X, y = adasyn.fit_resample(X, y)

Fig 15. Data balancing using ADASYN.

e Inthe below code it is shown how the data is divided in test and train dataset. Also once the
data is balanced you can see the difference that the number of samples has been increased

drastically.
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.38, random_state=8, shuffle=True)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

(449554, 21) (192666, 21) (449554,) (192666,)

Fig 16. Data divided into train and test after using ADASYN.

e Data balancing using SMOTE

from imblearn.over_sampling import SMOTE
smote = SMOTE(sampling_strategy='auto', random_state=42)
X, vy = smote.fit_resample(X, y)

Figl7. Data balancing using Smote.

e Inthe below code it is shown how the data is divided in test and train dataset. Also once the
data is balanced you can see the difference that the number of samples has been increased

drastically.

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=8, shuffle=True)
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)

(449554, 21) (192666, 21) (449554,) (192666,)

Fig 18. Data divided into train and test after using SMOTE.

e Scaling of data Using standard scalar method.
Scaling of data

scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)
x_val = scaler.transform(x_val)

x_test = scaler.transform(x_test)

Fig 19. Scaling of data

4.2 Model Implementation
o Machine learning models
e Below code demonstrates how decision tree classifier is used to prediction and the results
below are displayed in the form of Accuracy, classification report and confusion matrix.

from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dtPre=dt.fit(x_train, y_train).predict(x_test)
print(accuracy_score(y_test,dtPre))
print(classification_report(y_test,dtPre))
print(confusion_matrix(y_test,dtPre))

©.8196516250921283

precision recall fl-score support

2] ©.88 .69 8.74 64233

1 9.89 .97 9.93 64188

2 8.76 ©.80 0.78 64253

accuracy 9.82 192666
macro avg 9.82 9.82 9.82 192666
weighted avg 0.82 .82 .82 192666

[[44053 4833 15347]
[1006 62381 793]
[9715 3853 51485]]

Fig 20. Decision tree classifier with results.

e Below code demonstrates how AdaBoost is implemented, and the results below are
displayed in the form of Accuracy, classification report and confusion matrix.

Adaboost

Ad = AdaBoostClassifier(n_estimators=166, random_state=0)
AdPre=Ad.fit(x_train, y_train).predict(x_test)
print(accuracy_score(y_test,AdPre))
print(classification_report(y_test,AdPre))
print(confusion_matrix(y_test,AdPre))

©8.549853113678594

precision recall fl-score support

2] .63 0.65 0.64 64233

1 8.52 8.51 8.51 641860

2 .50 0.49 .50 64253

accuracy ©.55 192666
macro avg 8.55 .55 ©.55 192666
weighted avg .55 .55 8.55 192666

[[41655 10385 12193]
[12429 32877 18874]
[12476 208371 31406]]

Fig 21. AdaBoost classifier with results.

e Below code demonstrates how GaussianNB is implemented, and the results below are
displayed in the form of Accuracy, classification report and confusion matrix.

GaussianNB

GNB = GaussianNB()

GNBPre=GNB.fit(x_train, y_train).predict(x_test)
print(accuracy_score(y_test,GNBPre))
print(classification_report(y_test,GNBPre))
print(confusion_matrix(y_test,GNBPre))

0.4886435593202745

precision recall fl-score support

2] e.70 0.41 9.51 64233

1 0.42 8.74 8.54 64180

2 8.49 8.32 ©.38 64253

accuracy 8.49 192666
macro avg e.54 .49 9.48 192666
weighted avg 8.54 8.49 8.48 192666

[[26136 27587 1@598]
[5994 47691 10495]
[5355 38570 28318]]

Fig 22. GaussianNB Classifier with results.

Below code demonstrates how KNN is implemented, and the results below are displayed in
the form of Accuracy, classification report and confusion matrix.

KNN

KNN = KNeighborsClassifier()

KNNPre = KNN.fit(x_train, y_train).predict(x_test)
print(accuracy_score(y_test,KNNPre))
print(classification_report(y_test,KNNPre))
print(confusion_matrix(y_test,KNNPre))

C:\Users\piyus\anaconda3\lib\site-packages\sklearn\neighbors\

tions (e.g. “skew , “kurtosis), the default behavior of “mod

is behavior will change: the default value of “keepdims®™ will

e eliminated, and the value None will no longer be accepted.
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

©.7548711241215368

precision recall fl-score support

2] ©.78 8.61 2.68 64233

1 0.77 9.96 9.85 64180

2 8.72 9.78 9.71 64253

accuracy 8.75 192666
macro avg 8.76 e.75 9.75 192666
weighted avg 8.76 e.75 8.75 192666

[[39155 9ee3 16075]
[1311 61538 1331]
[9917 9591 44745]]

Fig 23. KNN classifier with results.

Deep Learning Models

This code defines and compiles a simple Recurrent Neural Network (RNN) model using
TensorFlow's Keras API for a classification task with three classes. The RNN layer is followed
by a dense layer with a softmax activation function for multi-class classification, and the

model is compiled with the Adam optimizer and categorical crossentropy loss.

RNN

from tensorflow.keras.layers import SimpleRNN, Dense

Reshape data into 3D array (samples, time steps, features)
X_train_reshaped = x_train.reshape(x_train.shape[@], x_train.shape[1], 1)
X_test_reshaped = x_test.reshape(x_test.shape[8], x_test.shape[1], 1)

One-hot encode your labels
y_train_categorical = tf.keras.utils.to_categorical(y_train, num_classes=3)
y_test_categorical = tf.keras.utils.to_categorical(y_test, num_classes=3)

Define the model

model = Sequential()

model.add(SimpleRNN(units=58, activation='relu', input_shape=(X_train_reshaped.shape[1], 1)))
model.add(Dense(units=3, activation='softmax')) # Assuming 3 classes for classification

Compile the model
model.compile(optimizer="adam', loss='categorical_crossentropy', metrics=['accuracy'])

Fig 24. Implementation of RNN with results.

e The below code trains the previously defined neural network model (‘model’) on the training
data (‘x_train_reshaped’ and ‘y_train_categorical’) for 100 epochs with a batch size of 128.
The validation data (‘x_test_reshaped ‘ and ‘y_test_categorical’) is used to assess the model’s
performance during training, allowing for monitoring for training and validation accuracy and
loss over the specified number of epochs.

e With the same method we have trained and evaluated all the deep learning model that we
have implemented i.e. LSTM and GRU.

Train the model
model.fit(X_train_reshaped, y_train_categorical, epochs=1@8, batch_size=128, validation_data=(X_test_reshaped, y_test_categorical
4 »

Epoch 1/1ee

2459/2459 [] - 17s 6éms/step - loss: ©.9353 - accuracy: ©.5337 - val_loss: ©.9192 - val_accurac
y: ©.5492

Epoch 2/1e@

2459/2459 [] - 14s ems/step - loss: ©.9141 - accuracy: ©.5509 - val_loss: ©.9@98 - val_accurac
y: ©8.5561

Epoch 3/108

245972459 [] - 15s 6ms/step - loss: ©.9881 - accuracy: ©.5554 - val_loss: ©.9853 - val_accurac
y: ©.5588

Epoch 4/108

2459/2459 [] - 15s éms/step - loss: ©.9837 - accuracy: ©.5590 - val_loss: ©.8989 - val_accurac
y: 0.5617

Fig 25. Model Training

e Below Image shows the evaluation of models with accuracy, classification matrix.

Evaluate the model

loss, accuracy = model.evaluate(X_test_reshaped, y_test_categorical)
print(f'Accuracy: {accuracy*100:.2f}%")

Make predictions

y_pred_prob = model.predict(X_test_reshaped)

y_pred = np.argmax(y_pred_prob, axis=1)

Convert one-hot encoded Labels to class Llabels
y_true = np.argmax(y_test_categorical, axis=1)

Calculate confusion matrix
conf_matrix = confusion_matrix(y_true, y_pred)
cr= classification_report(y_true, y_pred)

print(cr)
6021/6021 [== ===] - 12s 2ms/step - loss: ©.8618 - accuracy: ©.5931
Accuracy: 59.31%
€021/6021 [== ===] - 11s 2ms/step
precision recall fl-score support
e ©.66 ©.63 9.64 64233
1 8.57 0.65 .61 64180
2 .55 0.50 8.52 64253
accuracy 8.59 192666
macro avg 9.59 0.59 9.59 192666
weighted avg .59 8.59 2.59 192666

Fig 26. Evaluation of model.

Cross Validation
This code uses Scikit-learn to perform 10-fold cross validation with a decision tree classifier
(‘clf’) on input features (‘X’) and corresponding labels (‘y’). it prints the accuracy score for
each fold, calculates mean accuracy and standard deviation, and provides a detailed
classification report for the entire dataset based on the cross-validation predictions. We have
implemented cross-validation method with all 5 machine learning algorithms we have used.
clf = DecisionTreeClassifier(random_state=42)
y_pred = cross_val_predict(clf, X, y, cv=10)

scores = cross_val_score(clf, X, y, cv=10)
print(scores)

print("%@.2f accuracy with a standard deviation of %@.2f" % (scores.mean(), scores.std()))
cr= classification_report(y, y_pred)

print(cr)

[e.78000655 ©.8388888 ©.87838106 ©.87056823 ©.87671382 ©.87559077

©.87496685 ©.87219842 ©.87548159 @.87125253]
0.86 accuracy with a standard deviation of ©.03

precision recall fl-score support

=] .85 8.74 8.79 213703

1 8.92 2.98 9.95 213703

2 .80 9.86 9.83 213703

accuracy 0.86 641109
macro avg 9.86 9.86 0.86 6411809
weighted avg .86 .86 .86 641189

Fig 27. Cross validation.

