

Bitcoin Tweets Sentiment Analysis using Bidirectional Encoding Representational Transformers (BERT)

> MSc Research Project Data Analytics

Samir Huseynov Student ID: x21245070

School of Computing National College of Ireland

Supervisor: Bharat Agarwal

National College of Ireland

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Samir Huseynov	
Student ID:	x21245070	
Programme:	Data Analytics	
Year:	2023-2024	
Module:	MSc Research Project	
Supervisor:	Ipervisor: Bharat Agarwal	
Submission Due Date:	31/01/2024	
Project Title:	Bitcoin Tweets Sentiment Analysis using Bidirectional Encoding	
	Representational Transformers (BERT)	
Word Count:	918	
Page Count:	6	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Samir Huseynov
Date:	30 January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).		
Attach a Moodle submission receipt of the online project submission, to		
each project (including multiple copies).		
You must ensure that you retain a HARD COPY of the project, both for		
your own reference and in case a project is lost or mislaid. It is not sufficient to keep		
a copy on computer.		

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only		
Signature:		
Date:		
Penalty Applied (if applicable):		

Bitcoin Tweets Sentiment Analysis using Bidirectional Encoding Representational Transformers (BERT)

Configuration Manual

Introduction

A configuration manual contains step-by-step instructions for configuring a device or system. The goal of the manual is to provide a comprehensive guide on how to carry out the research study. It also details the machine setup needed to compile and execute the models. The processes involve installing the necessary programs and packages in addition to the minimal configuration that is advised for a project to succeed.

Project Files

In this project, the Jupiter lab is used for model training and evaluation, while the Jupyter notebook is utilized for data preparation, analysis, and exploration.

- Fetch the .CSV file of Bitcoin Tweets from Kaggle and perform the necessary data analysis Jupyter notebook.
- Fetch the .CSV file of Bitcoin Tweets from Kaggle. After data cleaning and preprocessing of raw data, apply the machine learning and deep learning models and evaluate the results in Jupyter Lab.

System Specification

A documented account of a system's technical specifications and requirements is called a system specification. This document describes the hardware requirements for a workstation that can handle intensive workloads in Deep Learning (Ain et al., 2017) and Machine Learning (Song et al., 2017), especially when big language models like BERT(Devlin et al., 2018) are involved. Efficient training and inference of complicated models is ensured by the system's robust setup that is tailored to meet the demanding computational requirements of these jobs. Figure 1 shows the technical specifications of the system.

Device Specifications			
Device Name	DESKTOP-2V7AG3I		
Processor	Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz		
Installed RAM	16GB		
Device ID	55EDB7-4AC2-4F0A-A7A6-3E6C41DBA8		
Product ID	00330-80000-00000-AA414		
System ID	64-bit Operating System, x64-based processor		
Pen and Touch	No Pen or touch input is available for the display		

Figure 1: System specifications

This workstation's powerful combination includes an 8th Gen Intel Core i7 processor for parallel processing, 16GB of DDR4 RAM to support large language models, a lightning-fast 1TB SSD to reduce latency in data access, and a dedicated NVIDIA GTX 100 Ti GPU to speed up computationally demanding tasks like matrix multiplication. Figure 2 shows the Operating system details used to work with machine learning and deep learning algorithms.

Window Specifications	
Edition	Window 10 Pro
Version	22Hz
Installed On	9/6/2023
OS build	19045.3693
Experience	Window Features Experience Pack 1000.19053.1000.0

Figure 2: Operating System Details

Tools and technologies

- Microsoft excel: Used for opening and exploring .CSV files.
- Anaconda: Used to create virtual environments for projects and installing packages.
- Jupyter Notebook: Used for Exploratory data analysis.
- Jupyter Lab: Used for data preprocessing, data cleaning, model traning and evaluation.

Environment Setup

Python needs to be installed initially, depending on the operating system; it is

recommended to install the most recent version¹. The most recent version of the file was downloaded and installed, which was Python 3.9.1 for Windows 10. After installing Python, a development environment is required in order to write, execute, and see the results of code. Probably the most popular and easiest to use platform is Jupyter Notebook. It comes pre-installed with the Anaconda Python distribution², for which the appropriate installation can be downloaded based on the system. Figure 3 shows the Anaconda interface together with pre-installed programs such as the Jupyter notebook.

	All applications	base (root)	- Channels			
onments	•	0	*	•	\$	۰
ing	DS		lab	Jupyter	\bigcirc	PC
	DataSpell	CMD.exe Prompt	JupyterLab	Notebook	Powershell Prompt	PyCharm Community
unity	DataSpell is an IDE for exploratory data analysis and prototyping machine learning models. It combines the interactivity of Jupyter notebooks with the intelligent Python and R coding assistance of PyCharm	0.1.1 Run a cmd exe terminal with your current environment from Navigator activated	An extensible environment for interactive and reproducible computing, based on the Jupyter National and the hitecture.	2 643 Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	0.01 Run a Powershell terminal with your current environment from Navigator activated	2023.1.4 An IDE by JetSins for pure Python development: Supports code completion, listing, and debugging.
	in one user-friendly environment.	Launch	Launch	Launch	Launch	Launch
	¢.	¢	•	•	÷	*
	Di Charm Brafarrianal	Of Costola	Studer	VECada	Datalora	IBMIN(stree Studie Cloud
	2023.1.3 A full-fledged IDE by JetBrains for both Scientific and Web Python development. Supports HTML, JS, and SQL	Pyqt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	A 515 Scientific Python Development EnviRonment, Powerful Python IDE with advanced editing, interactive testing, debugging end introspection features	1850 Streamlined code editor with support for development operations like debugging, task running and version control.	Kick-start your data science projects in seconds in a pre-configured environment. Enjoy coding assistance for Python, SQL, and R in Jupyter notebooks and benefit.	IBM Watson Studio Cloud provides you the tools to analyze and visualize data, to cleanse and shape data, to create and train machine learning models. Prepare data and
a Toolbox rged books Toolbox	Launch	Launch	Launch	Launch	from no-code automations. Use Datalore online for free.	build models, using open source data science tools or visual modeling.
SII.		Ô	Ô	i i i i i i i i i i i i i i i i i i i	°	Ô
entation						

Figure 3: Anaconda GUI

Once all of these steps are finished, you may open the Jupyter notebook or JupyterLab by clicking on "launch" button.

📁 jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New 🗸 😂
	Name 🔶 Last Modified File size
D D 3D Objects	5 months ago
🗅 🗅 anaconda3	5 months ago
Contacts	5 months ago
Documents	5 months ago
🗋 🗅 Downloads	2 hours ago
🕞 🗅 Favorites	5 months ago
🗆 🗅 Jupyter notebook	5 hours ago
	5 months ago
🗆 🗅 Music	5 months ago
🗆 🗅 OneDrive	5 months ago
OneDrive - Higher Education Commission	4 months ago
🗋 🗅 Postman	4 months ago

Click the "new" button on top of the file to create a new notebook. Using the file reference

¹ <u>https://www.python.org/downloads/</u>

² https://www.anaconda.com/download

given in the code section, you can also choose to open a notebook file. If you need to install a package or library in the notebook, use the command "pip install package-name."

Importing libraries

There are different libraries or packages available in python language to perform a specific task, like image classification, text sentiment analysis, speech recognition etc. Every specific task in python language requires some libraries to use different classes and function which helps us to perform complex task and provide code reusability. Figure 4 shows different libraries need to import in Jupyter notebook for data preprocessing, model traning and evaluation

Figure 4: Libraries

Importing Dataset

To load the dataset in Jupyter notebook, use "read_csv" method in "pandas" library. This method will convert the .csv file into a data frame in Jupyter notebook.

Data Preprocessing

Figure 6 Shows the data preprocessing steps in Jupyter notebook:

- **Handle missing values:** To fill up data gaps without skewing conclusions, use techniques like encoding or imputation.
- **Removal of stopwords:** Removing common, insignificant terms to speed up text processing and concentrate on important information.
- **Lemmatization:** simplifying words to their most basic meaning and standardizing word nuances to facilitate comparison and analysis.
- **Stemming:** Crudely chopping words to their base forms for approximate meaning groupings.
- **Removal of punctuations:** To simplify text, concentrate on word content, and get data ready for processing, NLP employs punctuation removal, which eliminates punctuation such as commas, periods, and question marks.

Figure 5: Data Preprocessing

Modeling

After applying preprocessing techniques, Extract the features from Tweets using "Count Vectorizer" or "Term Frequency method" (Deepa et al., 2019). Then, split the data into traning and testing sets. The traning set will be used to train the model while testing test is used to evaluate the performance of the model. Figure 7 shows the feature extraction and Figure 8 shows the model traning.

Figure 7: Modeling

Evaluation

After traning the model, evaluate your model using following matrices (Bekkar et al., 2013). Figure 9 shows the code of model evaluation.

- Accuracy
- Precision
- Recall
- F1-score

Figure 8: Model Evaluation Measures

References

- Ain, Q. T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., & Rehman, A. (2017). Sentiment Analysis Using Deep Learning Techniques: A Review. *IJACSA*) International Journal of Advanced Computer Science and Applications, 8(6). www.ijacsa.thesai.org
- Bekkar, M., Kheliouane Djemaa, D., & Akrouf Alitouche, D. (2013). *Evaluation Measures for Models* Assessment over Imbalanced Data Sets. 3(10). www.iiste.org

- Deepa, D., Raaji, & Tamilarasi, A. (2019). Sentiment Analysis using Feature Extraction and Dictionary-Based Approaches. *Proceedings of the 3rd International Conference on I-SMAC IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2019*, 786–790. https://doi.org/10.1109/I-SMAC47947.2019.9032456
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. *NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1,* 4171–4186. https://arxiv.org/abs/1810.04805v2
- Song, C., Ristenpart, T., & Shmatikov, V. (2017). Machine learning models that remember too much. *Proceedings of the ACM Conference on Computer and Communications Security*, 587–601. https://doi.org/10.1145/3133956.3134077