

Configuration Manual

MSc Research Project
Programme Name

Arnab Hati
Student ID: x22107321

School of Computing
National College of Ireland

Supervisor: Christian Horn

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

……Arnab Hati…………………………………………………………………………………………

Student ID:

……x22107321………………………………………………………………………………………..……

Programme:

……Data Analytics…………………………………………

Year:

…………2023………..

Module:

……MSc Research Project…………………………………………………………………….………

Lecturer:

……Christian Horn……………………………………………………………………………….………

Submission
Due Date:

……14/12/2023…………………………………………………………………………………….………

Project
Title:

………Exoplanet Detection by Transit Method………………………………….………

Word Count:

…2389……………………… Page Count: …………20……………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

…Arnab Hati………………………………………………………………………………………

Date:

…14/12/2023………………………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Arnab Hati
x22107321

1 Introduction

This document contains detailed information on the software and hardware configurations
and components transit to run the code for the research project to perform the transit method
for the exoplanet detection by Kepler data using various machine and deep learning models.
The following steps can be considered as the configuration manual for running the code and
achieving the desired results.

2 Hardware and Software Configuration

The following figure shows the technical details of the device and the Windows OS on which
this research was conducted.

Figure 1: Device Specification

Figure 2: Windows Specifications

Python has been chosen as the language of programming and the research implementation is
using Python 3.7. The setup is shown in the Figure below.

2

IDE Jypyter Notebook, Anaconda
Programing Language Python
Framework Keras, Tensorflow
Libraries Matplotlib, Numpy, Pandas, Seaborn, Stats,

Scikit-Learn, XGBoost, CatBoost
Computation CPU
Number of CPU 1

3 Dataset
The dataset for this thesis is available for download from NASA Directly. Here is the link to
download the dataset https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-
tblView?app=ExoTbls&config=koi . The dataset consists of 49 columns with 9546 rows.

4 Import Libraries
Required Libraries are successfully executed shown in below figure.

5 Load the Dataset
Loaded the dataset using Pandas libraries and displayed the first 5 rows.

3

6 EDA

6.1 Output variable

The code extracts unique values from the ‘koi’ column in the ‘kepler’ DataFrame, counts the
occurrences of each unique value, and generates a bar plot to plot the distribution. Prints the
count of the unique values in the column.

The code takes the rows in the ‘kepler’ DataFrame where the ‘koi_position’ value is
‘CANDIDATE’, changes the index, creates a bar plot, and prints the number of unique values
in the updated ‘koi’_disposition column.

4

6.2 Null Values remove

The below code snippet returns a data frame containing the top 30 rows with the highest
missing percentage in the ‘kepler’ data frame, rounded to 2 decimal places.

The below code snippet iterates through the rows in the ‘kepler’ DataFrame that contain more
than 80 % of missing data and prints the DataFrame information to display the remaining
columns along with the non-null count.

The below code snippet takes the rows with missing values from the ‘kepler’ DataFrame and
prints the DataFrame information to show the remaining number of non-null columns for
each column.

6.3 Check the numerical column
The code takes the DataFrame 'kepler' and finds the list of column names with integer data
types (int64, float64) in it. Then, it prints the list of integer column names and the number of
numbers in the data frame.

6.4 Visualization of Numeric Columns
Subplots are defined for each number column in the ‘kepler’ data frame. The code iterates
through the number of columns and plots the histograms for each of the columns. The plots
are sorted by the ‘koi_position’ column. The plots are stacked vertically.

5

7 Data Preprocessing

7.1 Statistical tests
The anderson-darling test is applied to each number column in the ‘kepler’ Data Frame. The
below code snippet prints out the Anderson-darling statistic per column and checks whether
the data conforms to a normal distribution with a significance level of 5.

The below code snippet takes each number column in the ‘kepler’ Data Frame and applies the
Shapiro Wilk Test. The code prints the Shapiro-wilk statistic, and p-value and checks
whether the data conforms to a normal distribution by using 5% significance.

7.2 Data Transformation
Applied different transformations like log, and boxcox and plotted the distribution plotted the
histogram plot to check whether the data is Gaussian distributed or not. The transformation is
applied to all the numeric columns.

6

7.3 Datatype Conversion

A sexagesimal-to-decimal function is defined in the code to convert the sexagesimal strings
to decimals, specifically for RA coordinates. This function is then applied to the “ra_str”
column in the ‘kepler’ DataFrame to create a new column called “ra_deg”, where the RA
values are expressed in decimals.

The code takes the degree, minute, and second components from the ‘dec_str’ column in the
‘kepler’ DataFrame and converts them to decimal degrees. The result is stored in the new
column “dec_deg”. If you need to, you can drop the intermediate columns ‘dec_day’,
‘dec_min’, and ‘dec_sec’ and display the DataFrame with the original ‘dec_st’ columns and
the new ‘dec_deg’ columns.

7

8 Feature Selection

8.1 Splitting X and Y

In the code, the dependent values are separated by koi_disposition from the independent
values in the ‘kepler’ DataFrame. The independent values are assigned to the variable ‘X’
and the dependent values are assigned to variable ‘Y’. Next, the data type of the variable is
converted to float64 data type in the 'X’ DataFrame and the information about ‘X' is printed
to show the data types and the non-null count of each column.

8.2 Creating a function to plot the Confusion matrix and ROC curve.

The evaluate_model function in the code evaluates the performance of the machine learning
model by using different metrics. The function calculates and prints the accuracy, the
complete classification report, and the F1 score. It also shows the confusion matrix and the
ROC (Receiver Operating Characteristic) curve. It also updates the global variables accuracy
with the same values and updates the F1 (F1_score) with the same values.

8

8.3 Without Feature Engineering
The code divides data into training data sets and testing data sets using 20% test size. First, it
initializes Logistic regression model, fits Logistic regression model to training data, then uses
evaluate_model on testing data to evaluate the model's performance. The function shows the
model's accuracy, classification report, and F1 score. It also displays a confusion matrix and
ROC curve for the Logistic regression model.

8.4 Feature Selection Using Logit Regression

The code divides the data into training data sets and testing data sets using 20% test size.
Logit regression is applied to the training data using Logit. The training report is printed
using the MLE (maximum likelihood estimation) method with a 500-iteration limit. The
results are shown using the summary method of the Logit regression model.

The code looks for significant predictors (p-values < 0.05) in the Logistic regression results,
storing them in the variable ‘significant_predictors. Next, it builds reduced training and test
sets (‘X_train’ and ‘X_test’) that contain only the significant predictions. Finally, it fits a new

9

Logistic regression model (‘model_2’) using the reduced subset of predictions and evaluates
the model’s performance on the test data using the evaluate_model() function.

8.5 Using Pearson Correlation

The code calculates the correlation matrix (cor) for the ‘kepler’ DataFrame and creates a
heatmap (using seaborn) using the ‘Reds’ color map. Each cell in the heatmap is not
annotated. The plot below shows the correlation between different columns of the
DataFrame.

The below code snippet calculates the absolute relationship between each feature in the
‘kepler’ DataFrame and the target variable ‘koi_position’. Select the features with a
correlation higher than 0.5 to the target variable and store their indices in the
‘relevant_features’ variable. Convert this to a data frame. Create a new DataFrame ‘data’
containing only the corresponding features from the original DataFrame.

10

The code decouples the features ‘X’ and the target variable ‘y’ from the DataFrame ‘data’. It
divides the data into training data and testing data with 20% test size. The Logistic regression
model ‘model_3’ is trained on training data and evaluated with evaluate_model on testing
data. Print the shapes of training and testing sets.

11

8.6 Using Feature Importance Techniques

A logistic regression model (model_4) is created in the code and fitted to the features ‘X’ and
target variable ‘Y’. The code extracts the logistic regression coefficients and generates a
DataFrame (dataFrame_importance) with columns ‘Feature’ and ‘Importance’ based on the
logistic regression coefficient absolute values. DataFrame is sorted by descending order of
importance. Horizontal bar plots are generated to show the feature importance.

The code finds the top k significant features (i.e., k = 20) according to the feature importance
as calculated from logistic regression models. The code compiles the list of features and then
compiles the new DataFrame ‘x’, which contains only the selected features of the original
DataFrame ‘X.’ The final DataFrame is shown below.

12

Using the selected features ‘x’ and the target variable ‘Y’, the code divides the data into
‘training’ and ‘testing’ sets. The training set is 20% of the test size, and the testing set is 20%.
The code then initializes the logistic regression model ‘model_5’, fits the model to the
training set, and evaluates the model’s performance using evaluate_model on the test data.
Print the shapes of training and testing sets.

8.6 Using PCA
The code generates a PCA model with the goal of preserving 95% of variance in the raw
data. The PCA model is fitted to the features ‘X’. The explained variance ratio is printed for
each principal component. The original features are transformed using the fitted model. The
converted data is passed to the variable ‘x’ and the shape of the transformed data is shown.
The data is then divided into training data and testing data. A Logistic regression model
(model_6) is trained on training data, and evaluated using evaluate_model on testing data.
Print the shapes of training and testing data for reference.

13

8.7 Using Chi-Square
The chi2 function is used in the code to compare each feature in ‘X’ with the target variable
‘Y’. The chi2 function can be found in scikit’s library. The chi-squared scores of each feature
are shown below.

Code Generates a Pandas Series with p-values from Chi-squared test with column names ‘X’
as indices. Sort p-values descending in descending order. Create a bar plot using Plot.bar() to
visualize the importance of each feature for predicting the target variable ‘Y’. Plot in Slate
Blue.

The code generates a DataFrame called ‘featureScores’ based on the converted chi-square
scores. The columns represent features and the scores are shown in the dataFrame.

The code changes the name of the Chi-Scores columns in the ‘featureScores’ DataFrame to
‘p-Value’. It also changes the column names for the original features ‘X’ to ‘Features’.
Finally, it filters the DataFrame to only include rows that have a p-Value of 0.05 or higher.
Finally, it displays the ‘features’ column in the filtered ‘factorScores’ dataFrame.

The code takes the ‘Features’ column from the ‘featureScores’ DataFrame and transforms it
into a ‘bestCols’ based NumPy array. Then, it creates a new ‘x’ DataFrame that contains only
the features selected from the original ‘X’ based on bestCols. The resulting ‘BestCols’ and
‘DataFrame’ are shown.

14

9 Model Preparation

9.1 XGBoost
XGBoost Classifier with random state (369) is created in the code. XGBoost is trained on the
X_train and Y_train data sets, and XGBoost makes predictions on the test data set (X_test)
using the trained model. The code calculates the accuracy, the weighted F1 score and shows
the classification report. It also plots a confusion matrix to visualize the model’s performance
on the test data.

9.2 CatBoost
The code will generate a CatBoost Classifier model (catBoostClassifier), train the model on
the X_train and Y_train data sets, and use the trained model to generate predictions on the
test data set (X_test), and print the results (catBoost classifier accuracy, weighted F1 score,
etc.) on the testing data set.

15

9.3 Variational Encoder
The code transforms the training and test data for the neural network using Keras. It
transforms the DataFrame X_train to a NumPy array and reshapes it to have an extra
dimension of 1. Prints the shape of the transformed array. Set the random seed from Keras to
be reproducible.

The code defines the encoder layer in a neural network. The encoder layer is defined using
Keras. The input data is defined as (X_test.shape [1], 1). The encoder is built using
SimpleRNN layers. The first SimpleRNN layer has 512 units and is set to return sequences.
The second layer has 128 units and is also set to return sequences and the third layer has 64
units. The last layer does not return any sequences. This layer serves as the final encoder
layer.

Using Keras, the code builds the output layer for the VAE neural network. The output layer
consists of a Dense layer (64 units) and a Sigmoid activation function (1). To avoid
overfitting, a Dropout layer (20% dropout rate) is added to the output layer. Finally, the
decoder output layer (4 units) is created using a sigmoidal activation function. The overall
model is named “VAR”. It is compiled with the Adam optimizer (Sparse categorical Cross-
entropy loss) and a summary is printed.

16

Matplotlib is used in the code to plot training and validation accuracies over epochs for the
neural network model. The x-axis indicates the number of training and validation epochs, and
the y-axis indicates the accuracy of the model. The plot shows how the model’s accuracy
changes over training and validation.

17

9.4 RNN
The code defines the Sequential model ‘rnn’ in Keras as follows: SimpleRNN Layer 32 Units
(Input Shaped X_test.Shape[1]], 1) Dense Layer 10 Units (ReLU Activation) Next Layer 4
Units (Sigmoid Activation)

Code compiles the keras sequential model ‘rnn’ with sparse categorical crosstabs loss as a
metric and model accuracy as a metric. Prints the model summary. Train the model using
X_train & y_train for 10 epoch with 20% validation split. History is stored in ‘history’
variable.

18

9.5 GRU
The code will compile the keras sequential model ‘rnn’ using sparse categorical cross entropy
loss and accuracy as metrics. The model summary will be printed. The model will be trained
using X_train and Y_train for 10 epochs, with 20% validation split. The training history will
be stored in the ‘history’ variable.

Matplotlib is used in the code to plot GRU training and validation accuracies over epochs.
The x axis represents GRU training and the y axis represents GRU validation accuracies. The
plot shows how the model’s accuracy changes over training and validation.

19

Matplotlib is used in the code to plot the training loss and validation loss over the epochs for
the GRU neural network model. The x-axis indicates the number of training and validation
epochs, and the y-axis indicates the loss. The plot shows how the model’s loss changes over
the training and validation period.

20

9.6 Evaluation
In the code, we sort a data frame called modelScores according to the ‘Accuracy’ column by
descending order. Then, we use Seaborn to create a bar plot. The ‘x’ axis represents different
models and the ‘y’ axis represents their accuracy scores.

