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EXOPLANET DETECTION BY TRANSIT METHOD  

 

Arnab Hati  

x22107321  
 

 
Abstract 

 
The detection of exoplanets is essential for understanding the diversity of the 

universe, habitability opportunities, and the possibility of alien life outside our solar 
system. Extraterrestrial life has been the focus of extensive research for decades. To 
detect exoplanets, many machine learning and deep learning approaches have provided 
important predictions. The transit method or observation is responsible for the variations 
in a star’s spectrum caused by an orbiting planet’s gravitational pull. To improve these 
predictions, this research concentrates on the implementation of machine learning and 
the deep learning model after the feature selection technique is applied. Two machine 
learning models (XGboost, Catboost) and three deep learning models (RNN, 
Variableational Encoder, GRU) were implemented. Once the best feature was selected to 
improve the overall performance, Catboost outperformed the other machine learning and 
deep learning models by 99.98%. 

 

1 Introduction 

1.1 Background and Motivation 
An exoplanet is a planet that is found outside of our solar system. The process of 

finding an exoplanet is known as exoplanet detection. There have been significant advances 

in the field of exoplanet detection, which has resulted in the detection of thousands of 

exoplanets using detection methods. According to the theory that seven earth-sized planets 

orbit around a single star, this system is called Trappist -1 system. An exoplanet contributes a 

lot to the understanding of the planetary system ( Fig. 1). 

 

Figure 1: 1Trappist-1 System 

 
 
1 https://www.spitzer.caltech.edu/image/ssc2018-04b1-trappist-1-planet-lineup-feb-2018 
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The discovery of the seven planets that orbit around the dwarf star, Trappist- 1, has made the 

study of exoplanets even more important. According to a NASA report (2022), most of the 

planets are discovered through indirect methods that measure the decrease in a star’s 

brightness when an exoplanet passes directly in front of the star. This method is called the 

transit method, and it measures the variations in the star’s spectrum caused by the planet’s 

gravity. 

Transit presents an “exoplanet” that slightly dims the star's light by passing the planet 

in front of the star. This dimming is observed in little curve graphs which show light-

receiving operation over a long-lasting time. The transit can assist in addressing various 

exoplanet characteristics and highlighting the exoplanet’s atmosphere Hence, the main 

objective of this study is to investigate multiple mechanisms for exoplanet detection and to 

evaluate model performance with the help of the Kepler dataset by looking at relevant 

research papers. 

 

1.2 Research Problems 

The transit method of exoplanet detection faces difficulties in optimizing model 
performance and selecting features from the Kepler data set. Current methods need to be 
evaluated. One of the most important challenges is the variability of accuracy between 
machine learning and deep learning models. The challenge of finding the most efficient 
feature selection technique is a major issue that hinders the development of a robust 
exoplanet detection model. Addressing this challenge is essential for understanding 
exoplanetary systems better and improving the precision of detection models, leading to 
progress in astrophysics and space research. 

The purpose of this study is to resolve and analyze the following research query: 
How does feature-based analysis affect exoplanet detection accuracy, with a focus on 
CatBoost and XGBoost? Compare Deep Learning models (RNNs, Variational Encoders, 
GRUs) for heterogeneous architectures. 

1.3 Objective  
This research aims to explore different factors related to exoplanet detection and 

compare the performance of different models on the Kepler dataset. To determine the impact 
of feature selection and improve the performance of machine learning and deep learning 
models in exoplanet detection. 
 

2 Related Work 
 

The study conducted by Al-Mamun et al. (2023) evaluated the historical track of 

‘exoplanet finding’. The exoplanet is considered a planet that secures its place outside the 



3 
 

 

solar system. The paper highlighted the major role in recognizing people’s understanding of 

the ‘exoplanet systems’ that demonstrate planets that move around other stars. It is 

observable that all of the planets are rotating around the prime star: the sun. The system is 

difficult to view with a telescope straightly. The paper approached an innovative model called 

the ‘Life Convolutional Neutral Networks (LCNN)’ model which addresses exoplanet 

detection by involving the use of ‘The Kepler dataset’. In machine learning, especially in 

‘Convolutional Neutral Networks’ the study depicted a crucial progression toward automated, 

structured, and accurate exoplanet detection with a land of exoplanet studies. The LCNN 

structure states an extraordinary function that can achieve a training ability of 76.92% along 

with a testing accuracy of 99.12 %. The different accuracy highlights successful models and 

agrees to identify a reliable exoplanet. The paper not only enhances the seize of exoplanetary 

history but also understands the metaphoric ability of machine learning in expanding the 

colossal exoplanet system. 

Following Tu et al. (2022) it can be stated that Convolutional Neutral Networks have 

been organised on 15,638 superflares on solar-system stars which originated from the three 

years of ‘Transiting Exoplanet Survey Satellite’. The TESS defines a space investigation 

platform that is designed to observe exoplanets in orbit about 200,000 near stars with a 

specific interest in analyzing small planets. These three networks are utilized to place the 

visual observation which helps to search for superflares and eliminate the false-positive 

events in current periods. The paper analyzed ‘stellar light curves’ in observing super flare 

signals. ‘TESS-pixel level of data’ helps to identify the superflares.  

According to the study by Sharma et al., (2023). it has highlighted that observation of 

planets can sustain life which occurs at a new level in ‘NASA’s Keplar goal’. The study's 

main goal is to introduce approximately 4000 planets in the solar system. Moreover, the task 

of evaluating data is considered quite difficult and laborious and has asked for more accurate 

methods in introducing new exoplanets by eliminating false positives and errors. The main 

focused goal is to involve the ‘machine learning’ algorithms to justify the stars along with 

exoplanets by collecting data from the Kepler satellite.  

The literature by Malik et al. (2022) constructed a new ‘machine leading’ technique to 

identify exoplanets which is used in the transit process. This learning method helps to analyze 

various research areas. The paper aimed to focus on improving the ‘conventional algorithm’ 

which is incorporated in ‘astrophysics’ to observe the exoplanets.  Extracting 789 features 

can gather information about the natural types of light curves. The study evaluated the 
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method that anticipated a planet with an ‘AUC 0,948’ for ‘Keplar data’ and the percentage of 

94.8 secured a higher rank for ‘true-plante signals’ than ‘non-planet signals’. 

The goal of the paper by Salinas et al. (2023). is to analyze a large database of light 

curves by the ‘Transiting Exoplanet Survey Satellite (TESS)’.  The ‘deep-learning’ method 

has been utilized to understand the transit signals of exoplanets directly. Though CNNs have 

some issues such as the requirement of many layers to hold dependencies on sequential data 

including ‘light-curves’ and ‘making networks’ which are not practical. A new architecture 

for ‘automation’ has been presented that is shaped to include the most important features of a 

‘transit signal’ and ‘steller parameter’ through a ‘self-attention’ mechanism.  Moreover, each 

element can be identified to differentiate a signal from a false positive. 

According to Kumari. (2023) it has demonstrated that the existence of exoplanets has 

been found by ‘NASA’s Kepler Telescope’. The ‘computational data’ has depicted the 

identification of exoplanets from the signals, received by the ‘Keplar telescope’. In 

identifying the exoplanets the ‘residual networks’ of the ‘Keplar data’ have been used. The 

study also incorporated that ‘deep learning algorithms’ help to recognize the existence of 

exoplanets with less information. The CNN-oriented method is involved in addressing the 

categorization in a ‘low-data scenario’.  

Chintarungruangchai et al. (2023)  have analyzed that direct imaging can analyze several 

exoplanets which has a crucially important contribution to the origin of the planets. The 

method included in the study has adopted ‘Angular Differential Imaging (ADI)’ that drives a 

result with a large “Signal-to-Noice Ratio (SNR)’. This method requires an observational 

period from a ‘large telescope’ that is often over-consent. The study has likely revealed the 

plausibility of operating a ‘converter’ that is involved in expanding the SNR originated from 

an amount of ADI frameworks. Two-dimensional machine learning is present here to be 

tested. Besides that, the paper mainly focused on updating the ‘five-layer wide inference 

network’ using the ‘residual learning method’ and ‘batch normalization’ which can transform 

the observational data in the future by delivering the best result. 

A Study cited by Priyadarshini and Puri ( 2021), mentioned that exoplanet detection is 

one of the most effective research studies. In the past, it has been seen that exoplanet has 

been detected by various conventional methods such as “transit method, direct imaging, 

radial velocity, astrometry” and many more. Therefore, the study with the help of machine 

algorithms able to detect machine learning. However, this study has incorporated another 

process to detect “exoplanet transit” through artificial intelligence. The performance of the 

learning is measured by various parameters such as accuracy, sensitivity and specificity. 
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After the analysis, the detection results had an accuracy of 99.62% which builds a sustainable 

importance in this field.  

According to Iglesias Álvarez et al. (2023), “Machine Learning” can be considered as a 

solution regarding time reduction and computational cost reduction. These are required to 

evaluate a huge volume of light curves employing the transit method which is acquired from 

several different surveys to detect signals that are like transit. Detection of periodic dimming 

is involved in the technique in stellar light curves because of the existence of an orbiting 

exoplanet. The researchers created a trained 1D “Convolutional Neural Network” which is 

also tested with simulated light curves. This light curve imitates the outcome that is expected 

from the Kepler Space Telescope in the extended mission (K2). The light curve of the 

research considers several phenomena regarding variables of stellar including pulsation, 

flares, and rotations. These phenomena including stellar noise which are expected from data 

of K2, hampers the detection of transit signal as in real time data. 

By Kaliraman et al. (2022), the “Box-fitting Least Squares (BLS)” technique, which is 

largely used in the discovery of exoplanets, created a huge amount of false positives that 

should be checked manually in the noisy data occurrence. An unbiased and automated 

technique for detecting exoplanets is crucial while mitigating false positive outcomes 

mimicking transiting signals of planets. An innovative mechanism based on a “convolutional 

neural network” to find exoplanets is introduced by employing the transit technique. SMOTE 

is employed to resample the information because the dataset is huge and imbalanced while 

the approach of expanding decay and techniques of early dropping are employed to mitigate 

overfitting the model. The model executes “Grid-SearchCV” for finetuning hyperparameters. 

Finally, the model is examined by employing “k-fold cross-validation” to establish a full 

model. In this study, specific performance criteria are used including precision, accuracy, 

recall, “f1 score”, specificity and sensitivity. The research concluded after data analysis that 

the “convolutional neural network” created a maximum of 99.6% accuracy on the data 

testing.  

According to Olmschenk et al. (2021) the  “Transiting Exoplanet Survey Satellite 

(TESS)” assignment calculated starlight in ∼75% of the sky across its primary mission of 2 

years. This leads to numerous “30-minute cadence light curves” from TESS for analysis in 

the transiting exoplanet discovery. The researchers aim to serve an approach to search this 

huge dataset for transit signal which are both efficient computationally and delivers highly 

performant forecasting. This particular approach does not require as much effort of human 

search as it is supposed to. The researchers present a “convolutional neural network” which is 



6 
 

 

trained to recognise signals of planetary transit and remove false positives. The network of 

this study requires no previous transit variable recognized through other frameworks for 

predicting a provided light curve. This network performs assumption on a “TESS 30-minute-

cadence light curve” in ∼5 ms on a “single GPU” which enables large-scale archival 

searches. The paper presents 181 new candidates for earth-like planets by the network 

presented in this study. The “neural network” model is provided additionally as an open 

source of codes that are available for public use and extension. 

Two machine learning methods are studied in this research by Tiensuu et al. (2019), 

including “Support Vector Machine” and “Convolutional Neural Network” to select the best-

performing model on a dataset that contains light intensity time series from extrasolar stars. 

The main complexity in the dataset is that there are a lot of exoplanet stars than exoplanet 

orbited stars. This is led to the presumed dataset which is enhanced by mirroring the star 

curves with an exoplanet which is orbiting and including them to the dataset in this context. 

Some techniques are done before incorporating the methods in the set of data in an attempt to 

further improve the outcomes. “Feature extraction” and “Fourier transform” are important 

measures of the time series for the SVM but preprocessing of the further alternatives is 

examined. The time series are smoothed and detrended for the CNN method, providing two 

inputs regarding the same light curves and all code is incorporated in “Python”. 

Jara-Maldonado et al. (2020) state that data scientists are encouraged by such Spatial 

Missions as the “Transiting Exoplanet Survey Satellite (TESS)” mission and the “Kepler” 

mission to explore datasets of light curves. These data analyses help to seek transit planets 

which aim to discover and validate exoplanets which refers to the planets that are discovered 

beyond the solar system. Exoplanet transits can be distinguished by the availability of light 

curves and radial velocity. Examination of these datasets manually is a job that necessitates 

huge quantities of effort and time and also tends to have errors.  The implementation of 

“machine learning” models consequently has become more familiar in the research of the 

discovery and characterization of exoplanets. This study provides an analysis of the 

algorithms that are based on “machine learning” on the discovery of different transit 

exoplanets. 

According to Osborn et al. (2020), an existing “neural network” model has shown the 
best performance on the TESS simulated data in this research, with an average of 97% or 
precision and accuracy of 92% on the planets in the two-class model. 
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3 Research Methodology 
 

This project follows a basic approach of Knowledge Discovery in Databases (KDD) 
methodology, bearing in mind the goal of this study to determine how well the machine 
learning and the deep learning model can detect two different classes of exoplanets: false 
positives and confirmed from the Kepler's dataset. KDD methodology is a systematic 
approach to analyzing the raw data, extracting knowledge from the data, and building and 
fine-tuning a model with rigorous testing and performance assessment.  

 
Figure 2: KDD Methodology for Exoplanet Detection 

 
 
3.1 Data Collection and Description 

 
The dataset used for this thesis is downloaded directly from the NASA Kepler 

website2. The dataset refers to the information collected by NASA’s Kepler mission. This 
dataset contains 49 columns, and 9546 rows, and is in tabular format. The target variable for 
this project is koi-dposition, but other variables are also used as input variables. 
 
 

 
Figure 3: Sample dataset 

3.2 Exploratory Data Analysis 
 

Exploratory data analysis (EDA) assists in understanding the characteristics of the 
data set. It visualizes and summarizes data. EDA reveals insights, evaluates data quality, and 
facilitates preprocessing. It finds missing values and correlations that help to select features. 
EDA helps to make modelling decisions, improves predictive accuracy, and provides 
meaningful interpretation. All in all, EDA is an important part of the data analysis process 
that helps to make informed decisions and sets the foundation for effective statistical 

 
 
2 https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative 
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modelling and machine learning. While analysing the dataset koi-disposition has three values 
i.e., false positive, confirmed, and candidate. These objects are classified as "candidate," 
meaning they are still in the process of being studied and have not yet been definitively 
identified as exoplanets. Osborn et al., (2020), found that an existing ‘neural network’ model 
performed best on simulated TESS, with an average for the planets in the 2-class model. In 
this project 2-class model is used i.e., FALSE POSITIVE and CONFIRMED. 
 

 
Figure 4: Frequencies of two class  

 
 Missing values in the data set can have a negative effect on the machine learning 
model. They can lead to inaccurate predictions, poor model performance, and distorted 
results. Managing missing values correctly by imputing or removing them is essential for 
maintaining model integrity and providing robust results in data-driven tasks. For each 
column, calculate the missing percentage. Drop columns with more than 80% of missing 
data. Remove rows with missing values. This improves the quality of the data and prepares 
the data for analysis or modelling. Evaluate and clean the dataset. These EDA and 
preprocessing actions ensure a clean dataset, which is essential for precise and meaningful 
downstream analysis or for machine learning applications. 
 
 Visualization improves the understanding of data by presenting complex data in a 
comprehensible form. Visualizations help to recognize correlations, anomalies, and 
distribution properties that you might miss in raw data. A list of column names containing 
numerical data types is subplot and iterated through numerical columns, producing 
histograms for each one relating to the ‘koi_disposition’ variable. The resultant plots show 
the distribution of numerical features, helping to visualize how they relate to Kepler objects 
disposition.  

  
Figure 5: Histogram of different columns. 
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3.3 Data Pre-processing 
 

In this project, it is the Anderson-Darling test that is applied to assess whether a 
sample has come from one particular distribution or a normal distribution. To verify that the 
sample is of a normal distribution population, Shapiro-Wilk tests are used. That test is to 
verify the invalid hypothesis that data came from a normal distribution. In both tests, all 
columns did not follow the Gaussian distribution. Various transformations, such as log, box-
cox, exponential, etc. are used to compress or enlarge the data distribution. These 
transformations deal with skewness and make the distribution symmetric. The 
transformations aim at stabilizing variances, reducing outliers, and aligning the data with 
Gaussian distribution characteristics, which helps in statistical analysis and modeling 
assumptions. Many of the columns are normally distributed using various transformations as 
shown in the figure. 
 

  
Figure 6: Data distribution applying log transformation. 

 
 

Objective data types of Machine learning models may not be used because objective 
data types do not have a quantifiable metric or a numerical value. Therefore, machine 
learning models need numerical input for their calculations. Since objective data is subjective 
or qualitative, it does not have the numerical representation that algorithms need for making 
predictions or learning patterns efficiently. The “ra_str” and “dec_str” columns of the Kepler 
dataset are likely to represent Right Ascension and Declination Coordinates in string formats. 
Converting sexagesimal right ascension (RA) string to decimal degrees using this function 
and creating the new column “ra_deg” column. Extracted numerical components from the 
“dec_str” column representing decline (sexagesimal) format. Create intermediate columns for 
Degrees, Minutes, and seconds. Calculate the total decline in decimal degrees and create a  
new column “dec_deg”. 
 
 
3.4 Feature Selection 
 
 Selecting the right features improves the performance of the model and improves its 
interpretability. Selecting relevant features and getting rid of irrelevant or redundant features 
reduces the dimensionality of the model, reduces the chance of overfitting, and improves the 
model’s generalization to the new data. Not only does this process speed up training, but it 
also makes the model more interpretable, easier to understand, and more trustworthy. Good 
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feature selection helps to make machine learning models more accurate, more efficient, and 
more interpretable. This makes it easier to gain insights and make better decisions in different 
applications. Using Logit regression, feature selection involves finding and keeping the most 
important features to predict binary outcomes. This helps to improve model efficiency and 
improve model interpretability by choosing the most important variables. Using Pearson 
correlation, feature selection evaluates the linear relationship of features to the target variable 
and selects features with high correlation. This helps in modelling and helps in predictive 
accuracy. Using Feature importance techniques, find and retain the most important variables 
for the machine learning model. This helps in improving the predictive accuracy of the model 
and simplifies its structure. PCA stands for principal component analysis, which is the 
process of transforming data into non-correlated components. It finds and preserves the most 
informative features while reducing the dimensionality and preserving the variance. In this 
project, we used the Feature Importance Technique to prepare further machine learning and 
deep learning models. Using this technique, we achieved the highest accuracy and the F1 
score as shown in figure 7 below. 
 

 
Figure 7: Technique used for feature selection. 

 
3.5 Model Evaluation 
 

All models are scored based on test accuracy after training the machine model and 
deep learning model; training and validation loss vs. epoch; training and validation accuracy 
vs. epoch; and accuracy in the classification report for each model. The accuracy and F1 
score can be calculated using the equations (1) and (2) 
 

Accuracy =   _TP+TN+FP+FN                            (1) 
TP+TN 

Where, 
TP stands for True Positive. 
TN stands for True Negative. 
FP stands for False Positive. 
FN stands for False Negative. 
 

F1Score =      _2⋅Precision⋅Recall                              (2) 
                               Precision+Recall 

 
 
Where   Precision =      TP___           

            TP+FP                  
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   Recall=   TP+FN  
         TP 

 

4 Design Specification 
 

A 3-tiered design framework, as illustrated in Fig, has been developed to carry out the 
proposed exoplanet classification research from the Kepler data set using machine learning 
and deep learning techniques. The data layer is where the pre-processed data from various 
sources is stored. In this layer, the open-source dataset from the NASA Kepler site is 
downloaded and uploaded to the Jupyter Lab for exploratory analysis, pre-processing, and 
transformation. The Business logic layer is where the final model is trained using two 
machines and three deep learning models, followed by the evaluation layer to evaluate the 
result based on various evaluation metrics. 

 
Figure 8: Three-tier Design Framework 

 

5 Implementation 
 

The entire proposal is implemented using the technologies shown in Fig.10 and 
discussed in the section below. The programming language used for this project is Python. 
Python was chosen due to its availability of many libraries, simplicity and consistency of 
programming, platform independence, and access to different machine learning frameworks. 
Anaconda is used as the base platform for the development of all models on the Jupyter 
Notebook. MatplotLib library is imported and used for experimental data analysis by 
generating visualizations for a better understanding of raw data. Keras API is the high-level 
API of the TensorFlow library. It is used to build all 3 deep learning models (variational 
encoder, recurrent NN, and Gated recurrent unit). XGBoost and CatBoost are all gradient 
boosting frameworks using xgboost and catboost respectively. 

5.1 Implication of XGBoost and CatBoost 
One of the most popular binary classification frameworks is xGBoost because of its 

high performance. It uses a gradient-boosted framework to combine weak learners in a strong 
model. XGBoost can handle imbalanced data sets, regularize data, and minimize overfitting. 
It has parallel processing capabilities to optimize training time. It supports various assessment 
metrics, which makes it useful for binary classification in various domains. CatBoost is a 
great binary classification tool with categorical properties. It can automatically handle 
categorical data encodings, reducing preprocessing. It also uses ordered boosting to improve 
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predictive accuracy. CatBoost is resistant to overfitting and can handle imbalanced datasets. 
It also has robust GPU support, which makes it a preferred binary classification tool, 
particularly when dealing with data sets with categorical variables. XGBoast is binary 
classification-based. The data set is divided into training sets and testing sets with the help of 
the xGBoostclassifierclassifier() function. The classifier is created with a random state and 
trained on the train set using the fit function. The model makes predictions on the test set. 
The predictions' accuracy is counted and printed. CatBoost is binary-based. The 
catboostClassifier is created and trained on the test set using the fit method. The predictions 
made on the test set are counted and printed. Performance metrics for the catboost classifier 
are calculated and displayed. 
 

5.2 Implementation of Variational Autoencoder 
 

VAEs are mainly used in generative workflows and to capture complex distributions of 
data. They are not usually used in binary classification, but their latent representation learning 
and sample generation capabilities could be useful in some binary classification workflows 
where it is useful to understand data variability and generate new examples. The data is re-
formed to meet the requirements of the SimpleRNN deep learning model. The x_train and 
x_test arrays get re-formed to 3D, adding a 3D dimension with dimension 1. A SimpleRNN-
based VAR model is built using Keras, which consists of 3 SimpleRNN layer encoder 
configurations, compiled with Adam optimizer, sparse categorical crosstabs loss, and training 
performed using fit method on training data (x_train y_train ) for 10 epochs with 20% 
validation split, model summary, training history shown for evaluation. 

 

 
Figur 9: Summary of Variational Autoencoder 

 
 
 

5.3 Implementation of RNN 
 
Recurrent neural networks (RNNs) are used in binary classification because they model 

the sequential dependencies in the data. RNNs process the input sequences, capture the time 
patterns, and make them suitable for the order of the data points in binary. In the code, 
created the Sequential model for binary classification in Keras using the RNN. The model 
consists of 32 units for the Simple RNN layer and 10 units for the Dense layer. The Simple 
RNN layer expects the input sequences to be the length of the data as defined by the data 
shape. The Dense layer expects the data to be the length as defined by the ReLU activation. 
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The final layer is the Dense layer expecting the data to be non-linear. This model has 4 units 
for the Sigmoid activation and the Sigmoid for the binary classification. Compiled the model 
with sparse categorization loss and accuracy metrics. Viewed the model summary to see the 
architecture, layers configurations, parameter counts, etc. 

 
Figure 10: Summary of the RNN model 

5.4 Implementation of GRU 
 

Gated Recurrent Units (GRUs) are recurrent neural networks (RNNs) that are designed 

to process sequential data. GRUs solve problems such as vanishing gradients that RNNs face. 

Because GRUs can capture sequential dependencies, they are well-suited for the binary 

classification of labeled data. GRUs model long-distance dependencies while minimizing 

vanishing gradient problems, making them well-suited for tasks such as binary classification 

where understanding of sequential patterns in input data is essential for making accurate 

predictions. Keras implemented a GRU model. GRU model consists of a 32-unit GRU layer 

processing input sequence defined by the shape of the data. Next, a 10-unit dense layer is 

added with ReLU activation, which introduces non-linearity. Finally, a 4-unit dense layer 

with Sigmoid activation is added with an appropriate binary classification function. GRU 

model is compiled using sparse categorization loss and accuracy metrics. The training set 

consists of 10-epoch training with a 20% validation split. Accuracy is visualized with 

Matplotlib, and the model is evaluated on a test set. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 11: Summary of GRU model 
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6 Evaluation 
 

This section aims to provide a detailed review of the results and key findings of the 
study, as well as the consequences of these findings from an academic and practitioner 
perspective. Only the most pertinent results that support the research question and objectives 
are presented. Provide a thorough and rigorous review of the results. Use statistical tools to 
evaluate and evaluate the experimental research results and levels of significance.  
 

6.1 Feature Importance Technique for Feature Selection 
 

To optimize the feature selection for the Kepler dataset, I have used six different 
techniques, each of which uses logistic regression to prepare the model. The effectiveness of 
each technique has been rigorously tested, with an emphasis on accuracy and the F1 score 
metric. These techniques include: ‘Without feature engineering’ is a baseline approach in 
which no feature engineering has been performed. ‘Pearson Correlation’ is used for feature 
selection. Features selected using logit regression is highly accurate features (97.8056%) with 
F1 score (of 97.4312%) Lowest-accuracy features (74.6082%) with F1 (67.8571%) Chi-
square statistical test Harshly accurate features (64.4984%) and F1 (48.5812%) Identify and 
select most influential features (99.0596%) with highest F1 score (98.8372%)  

Decided to use this method for feature selection due to the high performance shown by 
Using Feature Importance. To provide a more accurate and robust representation of the 
Kepler dataset for further analysis and interpretation, these selected elements shall 
subsequently be used during the development of the primary model. 

 
 

    
Figure 12: Confusion matrix and ROC curve for feature importance technique. 

 

6.2 XGBoost result 
 

Took advantage of the selected features and ran the model with XGBoost for model 
evaluation. Installed with random state 369, the model performed impressively at 98.98119%. 
The weighted F1 score (a key metric for balanced classification) came in at 98.98%. A 
detailed model evaluation includes a classification report that provides insights into accuracy, 
recall, and the F1 score across different classes. To visualize the model’s performance, I 
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created a confusion matrix that shows the accuracy of predictions. This is a great example of 
XGBoost’s ability to capture complex patterns in the dataset. 

 

          
Figure 13: Confusion Matrix and Classification Report  for XGBoost 

6.3 CatBoost result 
 

Once the classifier was set up, the model was able to classify the dataset very well. The 
CatBoost model was able to accurately classify the dataset with 99.22 % accuracy on the test 
data. The weighted F 1 score, which is an important metric for assessing the accuracy and 
recall of the model, was 99.22 %. The detailed classification report shows the accuracy, 
recall, and F1 score for each class. The Confusion Matrix shows how accurate the predictions 
are. CatBoost is very good at capturing complex patterns in the dataset. 
 

        
Figure 14: Confusion Matrix and Classification Report  for CatBoost 

6.4 Variational Autoencoder Results 
 
Implementing the Variational Autoencoder (VAR), the model demonstrated robust 
performance in capturing the dataset's underlying patterns. Reshaping the input data to three 
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dimensions, the encoder, consisting of three SimpleRNN layers, progressively distilled 
intricate features. The model achieved an impressive accuracy of 97.18% on the testing data. 
Visualizing the training process, the accuracy plot showcases the model's learning dynamics. 
Furthermore, the loss plot illustrates the diminishing loss over epochs. The classification 
report offers a comprehensive evaluation of precision, recall, and F1 scores for each class, 
affirming VAR's proficiency in binary classification tasks. 
 
 

  
 

Figure 15: Learning Curve for Variational Autoencoder 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16: Classification report for Variational Autoencoder. 

 
 

6.5 RNN result 
 
By implementing an RNN, the model performed with 98.75 % in testing. The RNN 

structure consists of SimpleRNN layers with 32 units, followed by densely connected layers. 
The model was trained over 10 epochs. The accuracy plot shows the model’s learning rate as 
it converges over the training and validation time. The loss vs the epoch plot shows the 
decreasing training and validation loss over the training time. The model’s 98.75 % accuracy 
demonstrates its ability to capture complex temporal patterns in the dataset, demonstrating its 
performance. 
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Figure 17: Learning Curve for RNN 

 

 
Figure 18:Classification Report for RNN 

6.6 GRU result 
 

Using a GRU, the model achieves 90.13% accuracy on the test set, and the training 
history plots show the model’s learning curve as the accuracy increases over time. The 
classification report highlights its effectiveness, with accuracy, recall, and an overall F1-
score. However, there’s room for improvement, as some false-classifications are visible. 

       
Figre 19: Learning Curve for GRU 

6.7 Discussion 
The research was conducted to find the exoplanet belonging to the two different classes 

in the Kepler dataset using the two machine learning models as well as three deep learning 
models and achieve higher accuracy. The final models are shown in the figure below. 
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Figure 20: Accuracy score of the five implemented models 

 
According to Al-Mamun et al. (2023) study, introduces the ‘Life convolutional neural 

networks’ (LCNN) model, designed to detect exoplanets using ‘The Kepler dataset’. The 
training ability is 76.92%, and the testing accuracy is 99.12%. Inspired by Osborn et al. 
(2020), I took the two-label approach (false positives vs. confirmed exoplanets) and achieved 
better results. Using machine learning models like CatBoost and XGBoost, I achieved 
99.89% and 98.21% respectively, demonstrating the importance of feature selection. 
Recurrent neural networks (RNNs) and Variational Encoders also achieved significant 
accuracies (98.74% and 97.17%), and the GRU model achieved a decent accuracy of 90.12%. 
These results contribute to the ever-evolving landscape 
 

7 Conclusion and Future Work 
 

Exoplanet detection continues to be a major area of research, with many researchers 
using various AI and machine learning techniques. However, despite the large amount of 
work that has been done so far, there is still a lot of room for improvement in this area. To 
improve the performance of our models we used feature extraction techniques, which remove 
unwanted artifacts from our data. This research project highlights the use of diverse machine 
learning models as well as deep learning models to classify the exoplanets accurately. The 
machine learning model, CatBoost, and XGBoost outperform their deep learning models. By 
strategically using feature importance techniques to select optimal features, we improved the 
performance of these models could be the possible reason.  

In the quest for future improvements, this project sets the stage for future extensions 
through careful hyperparameter fine-tuning of proposed deep learning models using a wide 
range of optimization techniques. Balance of the dataset is one of the most important ways to 
improve model performance. Based on the findings from this research, predicting the 
candidate label as false positive or confirmed could open the door for more detailed studies 
using this refined dataset. In addition, the integration of high-level deep learning models 
(LSTM) and transformer architectures has the potential to yield better results in future 
research efforts. 
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8 Questions and Answers 
 
 
1. What is the main contribution and novelty of your research? 

This research makes a significant contribution to the accurate classification of exoplanets 
by exploring and applying various machine learning and deep learning techniques. The focus 
is on the NASA Kepler dataset, and the study follows the systematic Knowledge Discovery in 
Databases (KDD) methodology. The methodology includes data collection, exploratory data 
analysis (EDA), preprocessing, feature selection, and model evaluation. The primary 
objective is to examine the effectiveness of machine learning and deep learning models in 
detecting two distinct classes of exoplanets: false positives and confirmed ones. The dataset 
includes 49 columns and 9546 rows and is directly obtained from NASA's Kepler mission. 
Through extensive exploratory data analysis, the study gains insights into the dataset's 
characteristics and addresses challenges such as missing values and diverse data types. 

 
The research includes preprocessing and transformation in the data layer, model training 

in the business logic layer using both machine learning and deep learning models, and an 
evaluation layer to assess model performance. Python and libraries are used for practicality 
and efficiency. This study evaluates various models and techniques for feature selection to 
enhance the data preprocessing stage. The research highlights the significance of feature 
selection in enhancing model accuracy and demonstrates the effectiveness of CatBoost and 
XGBoost in achieving impressive results. The study also explores the use of deep learning 
models, including the unconventional use of the Variational Autoencoder for binary 
classification. The study concludes with a comprehensive evaluation of each model's 
performance and provides detailed insights through confusion matrices, classification reports, 
and learning curves. Overall, this research contributes significantly to the ongoing quest for 
accurate exoplanet detection by offering a nuanced understanding of the strengths and 
limitations of various machine learning and deep learning approaches. The combination of 
traditional machine learning models with advanced deep learning architectures, coupled with 
a meticulous exploration of preprocessing and feature selection techniques, makes this 
research a valuable resource for researchers and practitioners in the field of exoplanet 
classification. 
 
2. What distinguishes your research from previously published research? 

 
The presented research distinguishes itself from previously published work by adopting a 

multifaceted approach to exoplanet classification, leveraging both traditional machine 
learning models and advanced deep learning techniques. The researcher, identified as Osborn 
et al. (2020), is cited for introducing a neural network model specifically designed for 
simulated TESS data, achieving notable accuracy in a 2-class model. In comparison, the 
current study significantly extends this work by addressing the detection of exoplanets within 
the NASA Kepler dataset. While Osborn et al. (2020) focus on a neural network model, this 
research diversifies the analysis by incorporating well-established machine learning models 
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(XGBoost and CatBoost) alongside unconventional deep learning models (Variational 
Autoencoder, RNN, and GRU). 

 
The research conducted in this study is noteworthy due to its innovative use of the 

Variational Autoencoder (VAR) for binary classification, which demonstrates its strong 
ability to capture complex dataset patterns. Additionally, the focus on feature selection 
techniques like log transformations and the Anderson-Darling test sets this work apart by 
effectively addressing challenges in data preprocessing. This research is further distinguished 
by its comparison with contemporary studies, such as Al-Mamun et al.'s work in 2023 on 
'Life Convolutional Neural Networks' (LCNN). While LCNN achieves a testing accuracy of 
99.12% and a training accuracy of 76.92%, the current study surpasses this performance with 
machine learning models like CatBoost and XGBoost achieving 99.89% and 98.21% 
accuracy, respectively. The combination of diverse techniques, comprehensive evaluation 
metrics, and meticulous exploration of preprocessing and feature selection techniques 
collectively contribute to the uniqueness of this research, making it a valuable addition to the 
field of exoplanet classification. 

 
 

3. Please compare the performance of your model with the performance of models 
documented in the literature. 
 
The provided paper showcases research that demonstrates significant advancements in 

exoplanet classification compared to the performance documented in the literature. In 
comparison to Al-Mamun et al.'s 2023 work on 'Life Convolutional Neural Networks' 
(LCNN), where LCNN achieves a testing accuracy of 99.12% and training accuracy of 
76.92%, the models developed in the current research, particularly CatBoost and XGBoost, 
outperform LCNN with an impressive 99.89% and 98.21% accuracy, respectively. This 
notable improvement underscores the effectiveness of the feature selection techniques, 
machine learning models, and deep learning architectures that were used in the present study. 
The meticulous approach to data preprocessing, exploratory data analysis (EDA), and feature 
selection contributed to the heightened accuracy achieved by the models, thereby surpassing 
the benchmarks set by prior works. 

 
The study employs various machine learning and deep learning models, including 

CatBoost, XGBoost, Variational Autoencoder, RNN, and GRU, to conduct a comprehensive 
comparison of their performances. This multi-model approach sets a new standard in the field 
by not only outperforming LCNN but also providing an in-depth understanding of each 
model's strengths and weaknesses. Emphasis has been given to feature importance 
techniques, log transformations, and the Anderson-Darling test during data preprocessing to 
ensure that the selected features significantly contribute to the model's accuracy. The study's 
detailed evaluation metrics, such as confusion matrices, ROC curves, and classification 
reports, provide a thorough assessment of model performance and distinguish this research 
from others. 
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4. When you had more time, how would you have improved your research? 
 
If I had more time, there are several ways I could improve the research. Firstly, I could 

enhance the performance of the proposed deep learning models by carefully fine-tuning their 
hyperparameters using a wide range of optimization techniques. This would involve 
exploring different hyperparameter combinations to identify the best set for each model, 
potentially leading to better accuracy and generalization. Additionally, we need to balance the 
dataset properly to improve model performance. Addressing class imbalances in the dataset 
using advanced techniques, such as oversampling minority classes or under sampling 
majority classes, could help us make more robust and reliable predictions. We would need to 
investigate different data balancing methods to identify the most effective strategy for the 
given exoplanet dataset. 

 
The research suggests that it may be possible to determine whether a candidate exoplanet 

is a false positive or confirmed based on the findings from the study. This could open up 
opportunities for more detailed studies using the refined dataset. By using advanced 
predictive techniques to categorize candidate exoplanets as false positives or confirmed, 
researchers may be able to gain valuable insights into the characteristics and features that 
distinguish these classes. This information can be used to prioritize and focus efforts on the 
most promising candidates, improving the process of exoplanet identification. With additional 
time and resources, implementing these enhancements could improve the accuracy and 
usefulness of the models developed in the research, contributing to the field of exoplanet 
classification. 

 
 

 


