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Aniket Guru
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1 Introduction

In this configuration manual a detailed procedure used in achieving “Predicting Flight
Delays: The effect of weather and seasons on air travel, including a description for how
we ask it.” It involves detailed guidelines regarding hardware and software needs, data
origin, environment description and modeling methods employed.

2 System Specification

For modelling and evaluation in this project, Google Colab is used with its powerful
compute power and collaboration features. However, Jupyter Notebook remains the
most important tool for data preparation and exploration that involves manual data
manipulation and plotting. A system specification is essentially a detailed guide that
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Figure 1: System Configuration

spells out the technical aspects and requirements of a system. It typically includes details
about the components of the system, how it operates, its design, and various other



technical details. Figure [l illustrates the setup of the system that was employed for this
project, and Tab [Ishows the specifics of the Google Colab setup we used.

Resource Total Available
System RAM 12.7 GB
GPU RAM 15.0 GB
Disk 78.2 GB

Table 1: Google Colab System Configuration

3 Data Collection

The project incorporates data from three distinct sources :

1. The ”On-Time Flight” dataset, detailing departures from JFK airport, is referenced
from |Bureau of Transportation Statistics| (2023]).

2. Hourly meteorological data is obtained from |Open-Meteo| (2023)), providing insights
into weather conditions.

3. Information on public holidays is sourced from a Kaggle dataset, as cited in Kaggle
(2023)).

4  Software Used

The project leveraged the following software tools, each chosen for their specific capabil-
ities in handling different aspects of data management and analysis:

e Microsoft Excel: Utilized for the preliminary data exploration to understand the
basic structure and contents of the datasets.

e Google Colab: Used for modeling and evaluation due to its cloud-based environ-
ment and high computation power.

e Jupyter Notebook:Used for initial pre-processing

5 Section 5

Before starting to program, the Python language must be installed on the system. For
optimal compatibility and features, installing the latest release is recommended. For
this endeavor, Python version 3.10.2 was installed on a Windows 11 machine, which
was the latest available version at that time. Following the installation of Python, a
development environment is required for writing and executing code. Among the most
accessible and widely-used environments is the Jupyter Notebook, which comes included
with the Anaconda Python distribution. Depending on the user’s operating system, an
appropriate version of Anaconda can be downloaded from this link. The dashboard of
Anaconda, depicted in Figure [2] conveniently showcases the pre-installed packages such


https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/

as the Jupyter Notebook. To commence coding in Python, one initiates the Jupyter
Notebook to create a new Python script.

Using Google Collab is straightforward. By signing in with a Google account, users
can easily upload files to the drive. Google Collab offers complimentary access to compu-
tational resources such as GPUs and TPUs, which are particularly beneficial for running
tasks that require intensive computation. More information on Google Collab can be
found at this link.
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Figure 2: Anaconda User Interface

6 Project Development

When you have done the setup, you can start on Jupyter notebooks or Google colabs
opening the program and starting new files. Next, you call your script through the code
reference. That means you’ll have an option of running all the script or just executing a
part of it at one time. In case you discover that you have to create a new package; then
you can install the package using the command “‘pip install package-name*‘”.

6.1 Importing Library

In the scope of this project, the utilized packages are showcased in Figure [, Our cloud
platform, chosen for this project, conveniently provides several fundamental libraries pre-
installed. Should there be a requirement for additional libraries, they can be imported as
needed. Furthermore, it is imperative to pay attention to Figure [5, which delineates the
versions of TensorFlow and Python being utilized. Adhering to the appropriate library
versions is essential for the successful execution of the project’s code.

6.2 Important function

Throughout the Jupyter Notebook, several important functions are employed to facilitate
data preprossessing and analysis.Like drop columns , Missing values , numerical feature
extraction from data set , categorical feature.


https://colab.research.google.com/

[51:

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as p

From sklearn.preprocessing import MinbaxScaler
from scipy.stats import chi2_centingency

From sklearn.preprocessing import OneHotEncoder
import numpy as np

#rom tensorflon.keras.models import Sequential
From tensorflon.keras.layers import LSTH, Dense, Dropout
#rom tensorflon.keras.utils import to_categorical
From tensorflon.keras.optinizers import Adam
from sklearn.metrics import confusion_matrix
From sklearn.metrics import roc_curve, auc

from sklearn.preprocessing import label binarize
From itertools import cycle

from sklearn.ensemble import RandomForestClassifier
From sklearn.mode]_selection import GridSearchCV
from sklearn.model_selection import GridSearchcy
From scikeras.wrappers import KerssClassifie

Figure 3: Overview of the Packages Used in the Project

In [3]: import tensorflon as tf
import sys
import scikeras
print("Tesorflow
print("Python Ve
print("scikeras Vers

ien”,tf._version_)
» sys.version)
2", scikeras._version_ )

Tesorflen Version 2.12.9
Python Version: 3.9.13 (main, Aug 25 2022, 23:51:58) [MSC v.1916 64 bit (AMD64)]
scikeras Version: 9.12.0

Figure 4: Versions of TensorFlow and Python

6.3 Data Storage

The data-set has been stored on GitHub and made publicly available for use.

Jfk-flight-data-set-  Public S Pin | ®Unwatch 1
¥ main - ¥ 1Branch © 0 Tags Q Gotofile t Add file ~
ANIKNCI Created using Colaboratory 96249fc - yesterday {5 6 Commits

JFK Add files via upload 5 days ago
[ 400_Years_of Generated_Dates_and_Holidays.csv Add files via upload 5 days ago
[ Detailed_Statistics_Departures (2).csv aa 5 days ago
[ Final_Thesis_ipynb Created using Colaboratory yesterday
[ Readme Create Readme 5 days ago
[ open-meteo-40.67N73.81W2m.csv Add files via upload 5 days ago

Figure 5: Github

6.4 Data integration and Feature Extraction

Data integration:- There are three distinct datasets, specifically flight data, weather
data, and holiday data. All three datasets are merged by the date and departure hour
using an inner join. The figure illustrates the code used for this merging process.

Feature extraction:- is crucial because it enhances the model’s accuracy and expedites
the training process. Identifying the correct set of features is essential for the model to
make accurate predictions. The goal is to streamline the dataset by capturing important
information and eliminating what’s not relevant, thereby reducing the number of features.
Fig [fshows the some of the extracted features on final data set.



wuTLI ) (2181, 2)

2. Data Preprocessing

21 Integrated Flight, Holliday and Weather Data System
n [361: merge_df-pd.merge(ifk_df weather_df,on-['Date’,'Departure Hour'l,how-"inner',suffixes-(*_left’, *_right'))
n [371: merge of['Date'] - pd.to_datetime(merge df['Date'])
n [38]: Final_af-pd.merge(merge_df,Holiday_df,on=['Date’1,how="inner ", suffixes=('_left', *_rignt'))

n [39]: Final_¢f.columns

17391: Index(T'Carrier Code'. 'Date'. 'Flieht humber'. 'Tail Humber'.

Figure 6: Data Integration

[53]: |Final_df[['Flights per Hour','delay_category', 'delay_class', 'Avg Delay Previous Hour','Season']].head(5)
£[53] Flights per Hour delay_category delay_class Awg Delay Previous Hour 3Season
187 7 Meoderate 1 420  Winter
186 ?. Mo Delay a 210  Winter
184 T Mo Delay o 140 Winter
185 7 Mo Delay a 105 Winter
183 i Mo Delay a 8.4 Winter

Figure 7: Feature Extraction

6.5 Data Exploration and Visualization

The project includes exploratory data analysis (EDA) on the combined dataset using the
libraries Matplotlib and Seaborn, which enhance several visualizations listed below.

Fig 8| Shows the distribution of the departure delay amongst all classes.

Fig [9] shows the seasonal impact on delays.

6.6 Feature selection And Encoding

Feature selection:Project used Select K best method for feature selection.Fig [7] shows
the implementation in code.

Encoding: is done by the one-hot encoder,Fig|11] shows the implementation in code.

6.7 Modeling

Prior to the modeling phase, significant predictors are identified using recursive feature
elimination and are then loaded into 'x-data’ and ’y-data’ functions, with "y-data’ captur-
ing the target variable. To address data imbalances, the SMOTE algorithm is utilized to
normalize the distribution. The dataset is further segmented into training, test, and val-
idation sets based on the departure year, ensuring that the model training and validation
are robust and comprehensive. The code implementation of this dataset segmentation is
detailed in the figure [12] that follows.

To conclude this study, two algorithms—Long Short-Term Memory (LSTM) and Ran-
dom Forest—were utilized to analyze both oversampled data (to address imbalances) and
the actual, unmodified dataset.



3.2 Distribution of delay class

In [59]: |delay_counts = Final_df['delay_category'].value_counts{ascending=False)
plt.fipure{figsize=(6, 4})
bars = plt.bar(delay_counts.index, delay_counts.values}
for bar in bars:
yval = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2, yval, int(yval), wa="bottom', ha='center')
plt.xlabel('Delay Category')
plt.ylabel( Count')
plt.title('Count of Flights by Delay Category')
plt.show()

Count of Flights by Delay Category
375464
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Figure 8: Departure delay distribution

6.7.1 LSTM implementation

In this study, we applied the Long Short-Term Memory (LSTM) algorithm using the
TensorFlow library to both the oversampled dataset and the original dataset. We con-
ducted two sets of experiments: one with hyperparameter tuning and the other without.
Additionally, we evaluated various performance metrics using the necessary libraries to
assess the model’s effectiveness. The fig [13| below illustrates the code implementation of
these experiments.

6.7.2 Random forest implementation

In this study, we employed the Random Forest algorithm utilizing the required libraries
on both the oversampled dataset and the unmodified dataset. We conducted two sets of
experiments: one involving hyperparameter tuning and the other without. Furthermore,
we assessed the model’s performance by evaluating multiple performance metrics. The
figure shown in Fig. below presents the code implementation for these experiments.
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n [103]:

n [1e4]:

n [185]:

one Hos encodsr

166]: | Laport pandas a3 pd
From sklearn.preprocessing Gapert OneotEncoder
# Assuming Hain_df 1s olready Loaded into the emyironment, Uf not, 1t would have to be Loadsd fron a f
¥ Intiol tze the OmeWotEncock
ane_bot_encoder = GneHotEncoder()
# SeLect categorical data only for encodtng
categoricel_cols = Main ¢ select_dypes(includes| "object, “category’]).colums
ane_bot_encoder. #1t_transforn (Mein_df{categoricel_cols]).toarrey()
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(encoded data, columns-one ot encoder  get_feature names_out(categorical cols))
tginoL categoricol coluns from
Main_dF.droplcategorical_cols, axis=1)
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Figure 11: Encoding

and robusiness across difierent ime frames, assuming ‘Ueparture Year Is a critical ieature in the dataset

train 6f x-train_df.drop(columns=['delay_
train_6f y-train df[ ‘delay_class']

lass', 'Departure Year'],axis=1)

print("Shape of train_df x:", train_df x.shape)
print("Shape of train_df y:", train_df y.shape)

Shape of train df x: (252098, 182)
Shape of train df y: (258098,)

Validation df x-Validation_df.drop(columns=
Validation df y-Validation df['delay class']

‘delay_class', 'Departure Year'],axis=1)

print("Shape of Validation df :
print("Shape of Validation df y:

, Validstion df x.shape)
, Validstion df v.shape)

Shape of Validation of x: (39856, 188)
Shape of Validation df y: (39856,)
test_df x-test_df.drop(columns=['delay_class','Departure Year'],sxis=1)

test_df y=test_df[ delay_class']

print("Shape of test f x:", test_df x.shape)
print("Shape of test of y:", test_df y.shape)

Shape of test_df x: (173878, 188)
Shape of test_df y: (173678,)

Figure 12: Code Implementation of Data split

T4ALSTM

n [108): | isport numpy as np
rom tensorflow. keras nodels inpart Sequential
fFrom tensorflow.keras.layers import LSTH, Dense, Dropout
fFrom tensorflow.keras.utils dmport to_categorical
fFrom tensorflow.kerss.optinizers isport Adan

ert the target DutoFrames to mupy arrays and
f_y_1 = to_cetegorical(train df y, nus_classe:
Validation df y_1 = to_categorical(Validstion of_y, mun_Classes=s)
Lest_df y 1 = to_categorical (test_d¢ y, mum_elassesst)

e input data for LSTH [sanples,
Lraln_of x_1 = train df_x_1.reshape((train_df_x p | df_x_1._shage[1]})
Valldation of x 1 = Valldation_df x_I.reshapef (Validation df x_1.shape[3), 1, Validatior
Lest_df 5 1 = test_¢f_x_1.reshape((test_of x 1.shepe(8], 1, test_df_x 1.shape(1]))

1.shape[1]))

§ Define the LSTH mock
nodel = Sequentisl()
nodel. 30 (LSTH{units=S:
mode1 . add {Dropout (8.2))
nodel. 300 {LSTH{units=52) )

iode]. 208 {Broput (£.2))
mode]agd{Dense(units=5, activations’

. return_sequences=True, Snput_shape=(1, train df_x 1.shape(2])))

x')) ¥ Output Layer with 5 classes

the mod
node]. complle(optinizer=Adan( Learning_rate=.881), loss=’calegerical crossent

metriess[aceuracy” )

history = model F1t{train_df

batch_size=12,
validation data=(Validation df_x_1, Validstion ¢f y 1), & Use reshoped volidation data

verbo:

# Evaluate the sodet on test set
test_loss, test_accuracy = nodel.evaluate(test_df x 1, test of y 1, verbosesa)

st Loss and decuracy
{test_loss:.4f}, Test Accur

{test_aceuracy: .4%}")

Epoch 1710
BB07/8A07 - 515 - loss: 9.2043 - accuracy: 8.5076 - val_loss: 8.1336 - val accuracy: 8.3658 - Sisfepoch - Tas/step
Epoch /10
9957/8997 - 415 - loss: ©.268) - accuracy: £.9188 - val_loss: 8.1315 - val_sccuracy: 8.8630 - d3sfepoch - Sms/step
Epoch 318

Figure 13: LSTM



7.2 Random Forest

In [121]: | from sklearn.ensemble import RemdumForestClassitier
#rom sklearn_metrics import accuracy_score

train_df_x 2 = np.array(train_of_x)
np.array (Valldstlon g% x)

array(train |
2 = np.array(Velldation_d¢_y)
test_df_y_2 = np.array(Lest_of_y)

& Define the Random Forest model
Ff_model = RandonForestClassifier(n_estinators=198,
randon_state=22)

& Train the model
Ff_model, Fit(train_¢f x 2, train_gf y_2)

& Evalugte the model on the validation set
validation_predictions = rf_sodel.predict(Validation_of_x_2)
walldation_accuracy = accuracy_score(Valldalion df_y_2, validation predictions)
print('Validation Accuracy: {valldation_accuracy: 4%} )

# Evalugte the model on the est set
test_predictions = r+ nodel predict(test_¢f x_2)
test_accuracy = accuracy_Score(Lest_df_y_2, test_predictions)
Prant(F Test Accuracy: {Lest_accuracy:.sf}’)

validation Accuracy: 9.9686
Test Accuracy: 8.9236

In [122): | from sklearn.model_selection import GridsearchcV

¥ es': 108, 200],
‘nax_gepth': [None, 10, 28]

40 search = GeldSesrchCV(RandenFores € 1ass3#errandonstatend2), poram_grid,
Grid_saarn. FE(train ot .2, trein o y_2)

Bt parans — geio_cesrch bai_paraae.

AR b ey

Best Parameters: {‘max_Oepth’: None, “n_estingtors': 208}

Figure 14: Random Forest
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