
Configuration Manual

MSc Research Project

Data Analytics

Shreyansh Gupta
Student ID: x21239347

School of Computing

National College of Ireland

Supervisor: Abid Yaqoob

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shreyansh gupta

Student ID: x21239347

Programme: MSc Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Abid Yaqoob

Submission Due Date: 14/12/23

Project Title: Real Time Driver Drowsiness Detection Based on Deep Learn-
ing

Word Count: 1099

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shreyansh Gupta

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Shreyansh gupta
x21239347

1 Introduction

This configuration manual aims to guide users in setting up the environment and running
the real-time driver drowsiness detection system using Python, OpenCV, TensorFlow, and
a pre-trained deep learning model.

2 System Configuration and Requirements

To set up the system for conducting research on eye state detection using machine learning
models, consider the following configuration and requirements:

2.1 Hardware configuration

MSI GF63 Thin 9SCSR system has been used. The specifications are –

• Operating System - Microsoft Windows 10 Home Single Language.

• Processor – Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.60 GHz.

• RAM – 8GB, GPU – NVIDIA GeForce GTX 1650 Ti with Max-Q, SSD – 500GB.

• web cam

Figure 1: System Configuration

1



2.2 Software Configuration

• Jupyter Notebook The Jupyter Development Team (2022)serves as the primary
graphical user interface (GUI) for developing models.

• Python 3.10 Python Software Foundation (2023)acts as the main programming
language within this environment.

Figure 2: Jupyter Notebook

Additional Software:

• TensorFlow Google LLC (2023) and Keras . (2023a) frameworks for machine learn-
ing model development.

• Image processing libraries (OpenCV, Pillow) for image manipulation and prepro-
cessing.

• Pygame for sound-based alerts in real-time testing.

3 Implementation

3.1 Dataset Acquisition:

Obtain the eye dataset from the MRL eye dataset website Vietnam National University
(2018) Refer Figure 3

3.2 Feature Extraction

Feature engineering involves preparing and organizing data to enhance the machine learn-
ing model’s performance.

• Import libraries Open a Jupyter Notebook and import necessary libraries to
perform data manipulation and file operations for the eye state detection task.
Begin by importing essential libraries such as os, shutil, glob, and split folders to
manage file paths, file operations, and dataset splitting. Refer Figure 4

• Setup Directories:

Define the Raw DIR variable with the directory path where the original images are
stored.

2



Figure 3: MRL Eye Dataset

Figure 4: Importing Libraries

Iterates through the Raw DIR directory, segregating images based on whether the
eye status is ’Closed’ or ’Open’. It creates separate directories named ’Closed Eyes’
and ’Open Eyes’ within the Prepared Data directory to store the categorized im-
ages. 5

Figure 5: Segregating Images

• Display Random Images:

Define the paths to the ’Closed eyes’ and ’Open eyes’ directories (closed eyes dir
and open eyes dir). Set the variable num images to display to specify the number
of random images you want to display for each category. Refer Figure 6

The Output of the Random images is displayed in Figure 7

3



Figure 6: Display Random Images

Figure 7: Random Images from the dataset

• Manually transfer images

After the open and closed eyes are separated, manually create train and test folders
and transfer 80% of open and closed eye images to train subset folder and 20% to
test subset folder.

3.3 Data Preprocessing

• ImageDataGenerator:

It preprocesses and augments the image data for training, validation, and testing
sets. The augmentation parameters are: rotation range, shear range, zoom range,
width shift range, height shift range:

• validation split: Splits the training data for validation.

• Flow from Directory: Reads and generates batches of preprocessed images from

4



directories.

Resize images to 80x80 pixels as Smaller size is faster to train while retaining
features. Pixel values are scaled to [0,1] range which is known as Normalization
for uniformity. Image augmentation on train set Synthetically expands dataset
More robust to variations Rotation (up to 20 degrees) Handles head movement
Shear, zoom, horizontal/vertical shifts (up to 20%) and Mimics eyes opening/closing
Validation split of 0.2 on train set. Refer Figure 8

Figure 8: Data Augmentation

• Visualize Preprocessed Images:

Displays a few preprocessed images from each dataset using Matplotlib. Refer Figure 9

Figure 9: Data visualisation

3.4 Model Creation and Training:

• Model 1: Model 1 Uses InceptionV3 (2023b) as the base model with additional
Dense layers. Freezes the layers of the base model and compiles it for training.
Trains the model and evaluates its performance on the test dataset.

Defining the desired model architecture by adjusting the layers, units, and dropout
rates. Customizing the callbacks (ModelCheckpoint, EarlyStopping, ReduceLROn-
Plateau) based on requirements. ModelCheckpoint used to later load for evaluation
or predictions. Patience parameter under EarlyStopping kept at 7 and the number
of epochs for training is 10. Refer Figure 10 and Figure 11

• Summarize the model 12

5



Figure 10: Model 1

Figure 11: Model 1

Figure 12: Summary

• Model 2:

Similar to Model 1 but with an added architecture of two additional Dense layers
and Dropout for regularization.

Freezes the layers of the base model, patience parameter increased to 14 and the
model was run for 20 epochs then compiles it for training and evaluates its per-
formance on the test dataset. Refer to Figure 13

• Model 3:

Similar to Model 2 but with further added Dense layers and Dropouts. Freezes
the layers of the base model and compiles it for training. Trains the model and

6



Figure 13: Model 2 Architecture

evaluates its performance on the test dataset. Refer to Figure 14

Figure 14: Model 3 Architecture

3.5 Model Evaluation:

After training, evaluate all the three models on the test data. Use the trained models
to make predictions on test data and compute performance metrics (accuracy, confusion
matrix, classification report). Refer Figure 15

4 Real-Time Implementation

After the model is trained and saved, Its time to load it and run predictions by feeding
live images via the web cam.

7



Figure 15: Evaluations

• Load Libraries

OpenCV: Used for video capture, face, and eye detection.

TensorFlow and Keras: For loading a pre-trained deep learning model.

Pygame: For playing sound alerts.

• Face and Eye Detection:

Cascade Classifiers: Utilizes pre-trained Haar Cascade classifiers to detect faces and
eyes in the video frames. Refer Figure 16

Figure 16: Classifier

• Eye State Prediction and Alert System:

Preprocesses the detected eye region, resizes it, normalizes pixel values, and predicts
the eye state using the loaded model. Alert System:

If closed eyes are detected continuously (based on the prediction probability thresholds),
it increments a score and triggers an alarm sound. Conversely, for open eyes, it
decrements the score.

Draws rectangles around detected faces and eyes. Displays the current eye state
(’closed’ or ’open’) and the score.

Quit Command:

Press ’q’ to exit the live video feed. Refer figure 17

8



Figure 17: Real time detection

References

. (2023a). Keras Documentation, https://keras.io/. Online; Accessed December 2023.

(2023b). Keras InceptionV3 Documentation, https://keras.io/api/applications/

9

https://keras.io/
https://keras.io/api/applications/inceptionv3/
https://keras.io/api/applications/inceptionv3/
https://keras.io/api/applications/inceptionv3/


inceptionv3/. Online; Accessed December 2023.

Google LLC (2023). TensorFlow, https://www.tensorflow.org/. Online; Accessed
December 2023.

Python Software Foundation (2023). Python Programming Language. Online; Accessed
December 2023.
URL: https://www.python.org/

The Jupyter Development Team (2022). Jupyter Project. Online; Accessed January 2022.
URL: https://jupyter.org/

Vietnam National University, H. C. M. C. (2018). MRL Eyes Dataset, http://mrl.cs.
vsb.cz/eyedataset. Online.

10

https://keras.io/api/applications/inceptionv3/
https://keras.io/api/applications/inceptionv3/
https://keras.io/api/applications/inceptionv3/
https://www.tensorflow.org/
http://mrl.cs.vsb.cz/eyedataset
http://mrl.cs.vsb.cz/eyedataset

	Introduction
	System Configuration and Requirements
	Hardware configuration
	Software Configuration

	Implementation
	Dataset Acquisition:
	Feature Extraction
	Data Preprocessing
	Model Creation and Training:
	Model Evaluation:

	Real-Time Implementation

