
Real Time Driver Drowsiness Detection
Based on Deep Learning

MSc Research Project

Data Analytics

Shreyansh Gupta
Student ID: x21239347

School of Computing

National College of Ireland

Supervisor : Abid Yaqoob

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shreyansh Gupta

Student ID: x21239347

Programme: MSc Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Abid Yaqoob

Submission Due Date: 14/12//23

Project Title: Real Time Driver Drowsiness Detection based on Deep Learn-
ing

Word Count: 7484

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shreyansh Gupta

Date: 31st January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Real Time Driver Drowsiness Detection Based on
Deep Learning

Shreyansh Gupta
x21239347

Abstract

Drowsiness refers to a state of feeling sleepy, sluggish, or fatigued. It is one of
the biggest challenge faced by drivers all across the globe, contributing to a notable
percentage of road accidents and fatalities. This research endeavors to develop and
assess machine learning models tailored for eye detection and drowsiness predic-
tion, targeting real-time applications. Motivated by the pivotal role of precise eye
state detection in safety systems and human-computer interaction, Convolutional
Neural Network (CNN) models, particularly leveraging the InceptionV3 architec-
ture through transfer learning, were crafted to discern open and closed eyes. The
model has achieved promising training accuracies ranging from 91.67% to 95.04%,
and also on validation and test datasets, registering accuracies between 83.74% to
92.60%. Notably, varying convergence patterns led to early stopping at different
epochs, highlighting challenges in achieving high generalization for practical deploy-
ment. These findings underscore the necessity for further research to enhance model
reliability, generalization, and applicability in real-time scenarios, aiming to con-
tribute to the development of robust safety systems reliant on accurate drowsiness
detection.

Keywords: Drowsiness Detection, Machine Learning Models, Convolutional
Neural Networks (CNNs), Transfer Learning.

1 Introduction

In the past few years, there has been a growing concern regarding the significant impact
of drowsy drowsiness on road accidents, resulting in a noticeable number of fatalities
and injuries on a global scale. The rise in the statistics associated with drowsy driving
accidents justifies the need for advanced technological interventions to tranquilize this
risk. A Real-Time driver drowsiness detection system emerges to be a promising solution
to this problem, with the use of cutting-edge technologies to monitor and alert drivers
when signs of drowsiness are detected.

The E-Survey of Road Users’ Attitudes (ESRA), 1 a worldwide study on driver beha-
vior, found that 23.9% of Irish respondents had driven while tired and struggling to keep
their eyes open at least once. This percentage surpasses the 20% average observed in
other European nations. Also, Ireland’s Road Safety Authority (RSA) 2 did a nationwide
survey and found that 16% of 1,000 Irish drivers had admitted to falling asleep at the

1https://www.esranet.eu/
2Available at: https://www.rsa.ie/

1

https://www.esranet.eu/
https://www.rsa.ie/


wheel at least once. Drowsiness still remains a major problem as it is believed to be a
leading cause of accidents and fatalities on Irish roads.

At present, Several driver drowsiness detection systems are available in modern vehicles.
These systems often use various sensors and technologies to monitor driver behavior and
alertness levels to prevent accidents caused by drowsy driving. One of the aspects of
such systems is Vigilance Control. The best example of this system is the Ford Co-
Pilot360™, it is an advanced suite of driver-assist technologies developed by Ford Motor
Company. It’s designed to enhance safety, convenience, and overall driving experience
by incorporating several features that assist the driver in various scenarios. This system
by Ford includes Automatic Emergency Braking (AEB), Adaptive Cruise Control with
Stop-and-Go, etc. Although these systems do not directly hold a connection with drowsi-
ness detection, they contribute in assisting the driver and prevention of road accidents.
Figure 1 shows vigilance control on a vehicle. 3

Figure 1: Vigilance Control

The MRL dataset was used in this research to train models while circumventing
overfitting issues. Implementing various deep learning architectures—including Transfer
learning and Convolutional Neural Networks. Finally, Real-time detection can be carried
out with the help of a mounted camera in the car.

1.1 Research Questions

How effective is a fine-tuned convolutional neural network (CNN), utilizing the Incep-
tionV3 pre-trained model, in accurately classifying eye states (open or closed) during the
real-time driver drowsiness detection?

1.2 Research Objectives and Contributions

Adopting an innovative approach to this critical issue is of utmost importance, keeping
in mind that existing improvements in drowsiness detection systems often limits to high-
end and new vehicles, leaving older vehicle models unequipped with such safety measures.

3Available at:
https://www.researchgate.net/figure/Main-components-of-ADAS-namely-a-/

/longitudinal-control-and-lateral-control-b-driver_fig1_327192771

2

https://www.researchgate.net/figure/Main-components-of-ADAS-namely-a- // longitudinal-control-and-lateral-control-b-driver_fig1_327192771
https://www.researchgate.net/figure/Main-components-of-ADAS-namely-a- // longitudinal-control-and-lateral-control-b-driver_fig1_327192771


The challenge here at hand is to build an affordable, globally applicable technology cap-
able of detecting these symptoms across diverse driving environments and vehicle types.
Considering the vital role of behavioral signals in identifying drowsiness or fatigue, this
research focuses on leveraging deep learning algorithms and computer vision techniques
to craft a robust system proficient in precisely classifying drowsy drivers based on ob-
servable facial characteristics, primarily focusing on eye movements and closures. By
integrating distinct facial features into the training of deep learning models, this ap-
proach aims to overcome the limitations of the previous systems that were developed for
real-time drowsiness detection.

2 Related Works

In the domain of driver drowsiness detection, extensive research has been conducted em-
ploying various methodologies to enhance road safety and prevent accidents caused by
driver fatigue. Notably, Convolutional Neural Network (CNN) based approaches and
Employing image processing techniques, webcam monitoring, and innovative night vis-
ion camera utilization to detect signs of driver fatigue have gained traction, showcasing
advancements in real-time detection with high accuracy and rapidity. These diverse
methodologies underscore the ongoing efforts to address driver drowsiness detection from
multiple angles, each with its strengths and limitations.

2.1 CNN-based Approaches

Hashemi et al. (2020) The presented paper utilized CNN for driver drowsiness detection
represents a significant advancement, aiming for real-time application with high accuracy
and rapidity. Introducing a novel dataset specifically designed for eye closure detection
fills a critical gap in the availability of accurate eye datasets. However, a notable lim-
itation lies in the reliance on a newly introduced dataset, which might require further
validation and expansion to encompass diverse real-world scenarios and driver behaviors
for robustness.

S. et al. (2022) Presented implementation of a drowsiness driving detection system
using Raspberry Pi, leveraging CNN, showcases promising results in classifying drowsiness
symptoms like blinking and yawning. The inclusion of a 4-layer convolution filter within
the CNN architecture, coupled with training through the Adam optimization algorithm,
yields a commendable classification accuracy rate ranging from 80% to 98%. However,
despite the success in achieving high accuracy rates, limitations persist concerning the
generalization of the system across diverse driving scenarios and driver behaviors

Dua et al. (2021) The proposed system for driver drowsiness detection represents a
comprehensive approach utilizing multiple deep learning models to assess various driver-
related features and behaviors. Employing models like AlexNet, VGG-FaceNet, FlowIm-
ageNet, and ResNet enables the consideration of diverse aspects such as environmental
changes, facial characteristics, behavioral features, and hand gestures to detect drowsi-
ness. The ensemble of these models, followed by a SoftMax classifier, demonstrates an
encouraging accuracy of 85% in identifying drowsiness based on eye blinking, yawning,
and nodding. However, despite its promising accuracy, potential limitations exist in real-
world applicability concerning the system’s performance under diverse driving conditions
and the scalability of the approach for real-time deployment.

3



Chirra et al. (2019) The proposed framework leveraging deep learning for driver
drowsiness detection, particularly focusing on eye state analysis, presents a promising
advancement in enhancing road safety. Utilizing the Viola-Jones face detection algorithm
for face and eye region extraction and a stacked deep CNN for feature extraction from
dynamic key frames showcases a substantial accuracy improvement, reaching 96.42%
compared to traditional CNN models. However, while the stacked deep CNN overcomes
limitations of traditional CNN models, such as pose accuracy in regression, potential chal-
lenges might still exist in handling diverse driving conditions and individual variations.
Further validation and refinement of the system under various environmental settings
and driver behaviors could enhance its robustness.

R and Jacob (2022) In this paper, the implementation of a two-dimensional CNN-
based classification model for driver drowsiness detection from facial images presents a
promising stride in enhancing road safety. The comparative evaluation against transfer
learning techniques like VGG-16 and ResNet-50 showcases superior performance of the
proposed model, indicating its efficacy in accurately categorizing driver states into sleepy
and non-sleepy classes. However, potential limitations might involve the model’s per-
formance in diverse environmental conditions, varying lighting, and its generalizability
across different driver behaviors and populations.

Singh et al. (2021) The utilization of a mobile’s front camera for detecting driver
drowsiness represents a significant step toward enhancing road safety by leveraging port-
able and widely accessible technology. The focus on real-time detection and warning
signal generation offers a proactive approach to mitigating accidents caused by driver
fatigue. However, while this approach showcases promise, there might be limitations
in achieving high accuracy and reliability due to potential challenges related to vary-
ing lighting conditions, camera angles, and device specifications across different mobile
devices.

2.2 Haar Cascade / Real-Time Based Approaches

Fouzia et al. (2018) Proposed driver drowsiness detection system utilizing eye blink counts
showcases promising results in accurately identifying driver fatigue. By continuously
analyzing eye movements and triggering a vibrator alert when prolonged eye closure is
detected, the system demonstrates effective drowsiness detection. Implemented in an
OpenCV and Raspberry Pi environment with a single camera view, the system exhibits
commendable performance. Limitations of the system, such as potential challenges in
accurately detecting eye movements in varying lighting conditions or instances where the
camera angle may affect the precision of eye tracking, thereby suggesting room for further
enhancements to ensure robustness across diverse driving scenarios.

Chellappa et al. (2018) Developed driver drowsiness detection system utilizing a Rasp-
bian camera and Raspberry Pi 3 presents a significant stride towards preventing potential
highway accidents caused by driver fatigue. By employing image processing techniques
and Haar Cascade Classifiers to monitor blink duration and calculate Eye Aspect Ra-
tio (EAR), the system effectively assesses the driver’s level of alertness. However, this
system’s efficacy might be contingent on various factors such as environmental lighting
conditions, camera positioning, and the individual variability in blinking patterns, which
could influence the accuracy of drowsiness detection.

Kulkarni et al. (2017) The system, as presented in the paper, effectively utilizes image
processing algorithms to monitor driver behavior and aid in vehicle control. By employ-

4



ing Raspberry Pi and a webcam, it demonstrates the potential for real-time monitoring
and alert generation to ensure driver vigilance. However, certain limitations may exist,
such as potential challenges in accurately capturing images under varying environmental
conditions or limitations in the responsiveness of the system in high-speed scenarios

K et al. (2017) Drowsy Detection and Rescue System devised for night-time driv-
ing presents an innovative approach in addressing driver fatigue. The utilization of an
infra-red night vision camera focused on the driver’s face to monitor eye movements sig-
nificantly contributes to detecting signs of fatigue. When fatigue is identified through
closed eyes detected across consecutive frames, the system promptly issues an alarm to
alert the driver. Furthermore, as a safety measure, the system autonomously parks the
vehicle to the left side of the street upon detecting the driver’s drowsiness. However,
despite its novel approach and functionalities, this system might encounter limitations
related to the accuracy of detecting fatigue solely based on eye closure.

Maior et al. (2018) The presented model for drowsiness detection through video stream
analysis offers a non-intrusive and accessible approach for monitoring operator alertness
in critical work environments. Utilizing computer vision and machine learning tech-
niques, the system demonstrates the ability to detect drowsiness in real-time using a
standard web camera, without the need for specialized biological sensors. By employing
automatic face detection and Eye Aspect Ratio evaluation followed by Support Vector
Machines classification, the system can promptly alert operators when signs of drowsi-
ness are detected, potentially mitigating the risk of human error and reducing accidents
in safety-critical workplaces. However, limitations may arise in the system’s accuracy
under varying lighting conditions, diverse facial expressions, and individual variability in
alertness patterns.

In conclusion, This research addresses the prevalent limitations mentioned various
papers on driver drowsiness detection systems by focusing on enhancing robustness and
adaptability across diverse real-world driving scenarios. Leveraging the MRL eye dataset,
our approach captures a wide spectrum of eye states, lighting conditions, facial character-
istics, and driver behaviors, aiming to develop a more comprehensive model for real-time
driver drowsiness detection. To mitigate challenges related to varying conditions, our
strategy involves a robust preprocessing pipeline incorporating image augmentation and
normalization techniques. Additionally, employing the InceptionV3 CNN architecture
aids in improving feature extraction and classification accuracy, particularly in detecting
diverse eye states under varying environmental and behavioral contexts.

3 Methodology

This project demonstrates a comprehensive process for building an eye state detection
system using machine learning techniques and computer vision. Models that are based on
deep learning and neural networks have shown promising results in such type of projects.
This type of systems are usually based on the a person’s physical signals such as eye
movements. Several other systems that use behavioural psychological methods can result
in a number of errors, and thus are not usually preferred over deep learning methods.

The utilization of the CRISP-DM (Cross-Industry Standard Process for Data Mining)
4 framework as a guiding methodology is found to be one of the best and widely-used
analytics model. Figure 2 shows the CRISP-DM process for the research approach.

4Source: https://datarundown.com/data-science-life-cycle/

5

https://datarundown.com/data-science-life-cycle/


Figure 2: CRISP-DM

The CRISP-DM methodology is widely recognized as a comprehensive framework that
outlines a structured series of steps that are crucial for achieving success in data mining
and machine learning projects. This framework provides a clear and well-defined sequence
of actions that need to be undertaken in order to effectively carry out such projects. The
methodology discussed in this paper consists of five main phases: Project Understanding,
Data Gathering, Data Preparation, Modeling, and Evaluation. During the study, similar
steps were taken which will be discussed further in this section.

3.1 Research Overview

This project aims to reduce cases of vehicle crashes caused as a result of drowsiness on the
side of vehicle drivers. As mentioned in Section 1, statistics from the government confirm
that yearly thousands of accidents across the transportation sector are all due to driver
fatigue, pointing its way substantial evidence that it is an issue at hand. The suggested
development of an automated system of real-time detection of driver drowsiness makes
it possible to prevent the problem through alerts prompting preventive actions before
fatigue ensues causes collisions. The computer vision solution suggests non-intrusive
monitor for drivers since a camera mounted facing towards the driver on the dashboard
of the vehicle takes the signals used in detecting drowsiness by monitoring face features
such as eyelid closure.

3.2 Data Gathering

The second major step of the CRSIP-DM methodology is understanding the data and
its nature. The MRL eye dataset 5 was utilised in this research, this dataset is available
publicly; although the main purpose of the dataset may vary, it is a good choice when
it comes to this research which revolves around the physical movement of eyes. The
mentioned dataset contains about 84k images belonging to 37 different people; 33 men

5Available at: http://mrl.cs.vsb.cz/eyedataset

6

http://mrl.cs.vsb.cz/eyedataset


and 4 women. Figure 3 given below shows all the properties and nature of the dataset.
For example the 5th index defines whether the eyes are open or closed ie. 0 defines closed
eyes and 1 defines open eyes.

Figure 3: Naming Conventions of The Dataset

3.3 Data Pre-Processing

Data preparation or Data pre-processing is considered to be the most crucial step while
following the CRISP-DM methodology. To begin with, the data was split with the help
of ’shutil’ library into three sets; Training, Validation and Test sets. The split is crucial
for training machine learning models and assessing their performance. The split ensures
that the model is trained on a portion of the data while keeping another portion separate
for validation purposes.

The split is performed using the validation split parameter within the ImageData-
Generator class. Two ImageDataGenerator instances are created: train datagen and
test datagen. train datagen is used for generating augmented training data and has a
parameter validation split=0.2, indicating a 20% split for validation within the training
dataset.

Explanation of the split :

• Training Set (80%): The train data generator is responsible for supplying aug-
mented images to train the model. It contains 80% of the original dataset images
based on the validation split=0.2 parameter.

• Validation Set (20%):

The validation data generator uses a subset (20% of the original dataset) for valid-
ation during model training. These images are not used for training the model but
are essential to assess how well the model generalizes to unseen data.

After the separation of data into respective sets, the training data is then under-
gone augmentation to expand the total number of images by an order of magnitude.

7



The ImageDataGenerator class from the Keras deep learning library was used to auto-
matically augment the training data on-the-fly during model training. This saves disk
space compared to permanently transforming images. The ImageDataGenerator per-
forms transformation like rotations up to 20 degrees, shearing, zooming between 0.8 to
1.2 times their original size, horizontal & vertical shifts up to 20% of the width/height.
This diversifies the data to prevent over-fitting and improve generalization capacity. In
total, over 5 augmented variants were generated per original training image. So the ef-
fective dataset size for training increased by 5-6x. A sample of the pre-processed Training
dataset images are shown in Figure 4

Figure 4: Pre-processed Training Images

Figure 5: Pre-processed Test Images

Figure 6: Pre-processed Validation Images

The images are then resized to 80x80 pixels and pixel intensities scaled from 0-255
to 0-1 for computational efficiency, since deep learning models requires large amount of
training data, such pre-processing gives an edge for learning robust eye classifiers from
limited data. Carefully labelling of open and closed eye images ensures low label noise.
The pre-processed data was then visualized with the help of ’matplotlib’ library as can
be seen in Figure 4 Figure 6 and Figure 5 respectively.

3.4 Modelling

In the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology, the
modeling phase is a significant stage. This phase involves the actual construction of a
predictive or descriptive model based on insights gained during the previous phases.

8



3.4.1 Convolutional Neural Networks (CNNs)

The CNN architecture Kim (2017) is defined as specialized neural networks designed for
processing and analyzing visual data, in this case images. These neural networks consist
of convolutional layers that apply filters to input images, capturing spatial hierarchies of
features. CNNs possesses the capacity to automatically learn how to extract meaningful
patterns, textures and hierarchical representations. Simple features such as edges and
textures can be recognised in early layers while complex layers such as shapes and objects
in deeper layers.

3.4.2 Transfer Learning

The model harnesses transfer learning Ali et al. (2023)by utilizing the pre-trained In-
ceptionV3 6. model, based on CNN principles which automatically learns and extracts
hierarchical representations from images. Pre-training on ImageNet provides InceptionV3
with the capability to recognize and extract diverse visual features from images.

The InceptionV3 architecture contains convolutional layers that perform feature ex-
traction by applying various filter sizes within its inception modules, this architecture
includes pooling layers and fully connected layers internally. Custom dense (fully con-
nected) layers are added on top of the InceptionV3 base layers to perform eye state
classification. These added layers take the flattened output from the preceding layers
and perform classification based on the learned features. The layers of this pre-trained
model are frozen during the model-building process which prevents their weights from
being updated during training, preserving the learned representations from ImageNet.
Only the added custom layers on top of the base are trained with the eye state dataset.

3.5 Evaluation

The evaluation of the aforementioned research project will encompass several crucial as-
pects to ascertain the performance and efficacy of the developed detection system. The
evaluation will involve rigorous testing of the trained model using distinct performance
metrics such as accuracy which will quantify the model’s ability to accurately classify
eye states (open or closed) based on unseen data, thereby assessing its overall predict-
ive capability and in order to gauge the system’s robustness and generalization capacity,
extensive cross-validation techniques will be employed, ensuring the model performs con-
sistently across diverse subsets of the dataset. In the end, real-time simulations or live
testing within controlled environments emulating driving scenarios will be conducted to
assess the system’s practical utility and responsiveness in detecting driver drowsiness
accurately. The evaluation process will aim to validate the model’s performance, reliab-
ility, and feasibility as an effective tool in preventing vehicular accidents due to driver
drowsiness.

4 Design Specification

In order to build a robust model, a well established architecture that captures each and
every aspect of the model is designed. The Figure 7 given below shows the whole design
specification that was utilized in order to carry out the research objectives.

6Available at: https://keras.io/api/applications/inceptionv3/

9

https://keras.io/api/applications/inceptionv3/


Figure 7: Flow of the Model

The system as can be seen in the Figure 7 functions by preparing the directories to
organize image data for open eyes and closed eyes.

4.1 Data Specification

The data was extracted from the MRL website and then all the closed eye and opened
eye images of 37 different people were separated with the help of naming conventions and
were stored in Closed eye and Open eye directories. Both the Closed eye and open eye
directories under the train dataset had 40k+ images respectively; from which, around
10% of the images were manually transferred to test dataset.

The images from here on are ready to be converted to a numpy array which can be
further utilized by the CNN architecture. But before this, the images are augmented
using ImageDataGenerator class from TensorFlow’s Keras API. The data augmenta-
tion parameters involves : rotation range, shear range, zoom range, width shift range,
height shift range and more. These parameters define the range and types of transform-
ations applied to augment the images during training. These transformations include
rotation which was set to 0.2 meaning that random rotations will be applied within the
range of -0.2 to 0.2 times the maximum rotation angle (in degrees), zooming and shifting
both horizontally and vertically, thereby artificially increasing the diversity of the training
dataset.

4.1.1 Normalization

Normalization or Rescaling involves transforming the pixel values of images to a specific
range to ensure uniformity and aid in model convergence during training. By rescaling
the pixel values within a certain range, typically [0, 1] or [-1, 1], the neural network
can effectively learn patterns without being biased towards higher or lower values in
the input data. In this case, The rescale=1./255 parameter in the ImageDataGenerator
instance is used to perform rescaling of pixel values in the range [0, 1]. Dividing by 255
scales down the pixel values (which range from 0 to 255 in an 8-bit color image) to fall
within the [0, 1] range. When the generator reads images during training or validation,

10



each pixel value is divided by 255. For instance, if an original pixel value is 127 in the
image, after rescaling, it becomes 127 / 255 = 0.498, effectively transforming it to a value
between 0 and 1. Normalizing pixel values helps in preventing the model from learning
noise or unnecessary patterns due to varying pixel ranges, in simple terms it helps avoid
overfitting.

4.2 Model Development

After the pre-processing of the data the next step is building a deep learning model for
eye state classification. This deep learning model employs transfer learning by utilizing a
pre-trained InceptionV3 as a base model and then custom layers were added for better eye
state classification. This InceptionV3 was initially trained on ImageNet dataset, which
is a large-scale dataset consisting of millions of labelled images which enables the neural
network to learn high-level features from a diverse set of images. The model is trained on
a number of epochs as it improves the performance of the model and it takes quite some
time to train the model. Once the model is trained, it is saved so that it can be used
for deploying real time detection. After saving the model, the next step is evaluating
the performance. A few metrics that evaluate the performance are Accuracy, Precision,
recall and F-1 score.

With the evaluations in hand, the final stage is deployment of real time detection
and obtaining the results. Haar cascade along with Convolutional neural network was
used to during the real time capturing of image to detect faces and objects. Accuracy
is considered to be the major evaluation metrics along side the actual detection of open
and closed eyes via the web cam.

4.3 Real-Time Implementation

Real-time implementation utilizes computer vision libraries and a pre-trained deep learn-
ing model to implement real-time driver drowsiness detection through a webcam feed. It
begins by loading the necessary libraries, including OpenCV for image processing, Tensor-
Flow for the deep learning model, and Pygame for sound alerts. The Haar cascades for
face and eye detection are employed to identify facial regions and extract eyes from the
video frames captured by the webcam.

The built model continuously captures video frames and processes each frame in a
loop. It detects faces and eyes in the frame, then isolates and preprocesses the eye region
for classification by the loaded deep learning model. Based on the model’s predictions,
it determines whether the eyes are open or closed. This determination triggers corres-
ponding actions: incrementing or decrementing a ’Score’ variable and displaying eye state
information (’open’ or ’closed’) on the video frame.

A scoring system keeps track of eye state changes and triggers an alert sound when the
eyes are predicted to be closed for a specified duration, indicating potential drowsiness.
The real-time visual and scoring feedback on the frame assists in monitoring the user’s
eye status, and the sound alert provides a warning in case of prolonged eye closure,
potentially aiding in preventing drowsiness-related incidents while driving or in other
situations demanding alertness.

11



5 Implementation

This section of the research will describe how the whole design and model of real time
driver drowsiness detection system was implemented, However as most of the steps of
building this system were already mentioned in previous sections, this section shall delve
deeper into the final stage of the whole implementation while also capturing the essence
of beginning stages.As mentioned previously, The MRL eye dataset was utilised for con-
ducting this research; Intially the dataset was not made for building such model but it
proved out to be one of the best dataset for such researches as it holds the key elements
which plays an important role in such studies.

The implementation process involves several steps as described in the design specific-
ation. Starting with Data collection and pre-processing to the final real time working of
the built model.

5.1 Tools and Technologies

Programming Languages:

• Python: Python is chosen due to its versatility and ease of use, making it an ideal
language for machine learning and AI-related tasks.

Libraries/Frameworks:

• OpenCV (Open Source Computer Vision Library): OpenCV is a powerful
library used extensively for computer vision tasks. It provides functionalities for
image and video analysis, including object detection, facial recognition, and image
manipulation.

• NumPy: NumPy is a fundamental library for numerical computations in Python.
It offers support for large, multi-dimensional arrays and matrices, along with a
collection of mathematical functions for operating on these arrays.

• TensorFlow and Keras: TensorFlow is a popular open-source framework for
machine learning and deep learning tasks.

Keras, integrated within TensorFlow, offers a high-level neural networks API, sim-
plifying the process of building and training neural networks.

• Pygame: Pygame is utilized for audio alerting purposes. Although primarily used
for game development, Pygame’s audio functionality suits alerting or notification
requirements in applications beyond gaming.

5.2 Deep Learning Model

In order to forward, a deep learning model is compiled for eye state classification. In this
case, the pre-trained InceptionV3 model, which has been trained on a large dataset like
ImageNet for general image recognition, is used as a starting point for a new task—eye
state classification. The focus here is on using the convolutional base of InceptionV3, a
powerful feature extractor due to its numerous convolutional and pooling layers. After
removing the top layers, customized layers were added. These additional layers are re-
sponsible for learning and making predictions regarding whether the eyes in an image are
open or closed.

12



5.2.1 Model 1

Base Model Initialization

• Custom Dense Layers (64 units, ReLU activation) Addition of Dense layers
helps in learning higher-level abstractions from the features extracted by the con-
volutional base. ReLU (Rectified Linear Unit) activation is chosen as it introduces
non-linearity, allowing the model to learn complex relationships within the data.

• Dropout Layer (0.5 dropout rate) Dropout is applied for regularization, pre-
venting overfitting by randomly dropping 50% of the neurons during training, which
encourages the network to learn more robust features.

• Final Dense Layer (2 units, Softmax activation) oftmax activation is suitable
for multi-class classification tasks, producing probabilities for the ’open’ and ’closed’
eye states. 2 units correspond to the number of classes for eye state classification
(open or closed).

1 bmodel = InceptionV3(include_top=False , weights=’imagenet ’,

2 input_tensor=Input(shape =(80 ,80 ,3)))

3 hmodel = bmodel.output

4 hmodel = Flatten ()(hmodel)

5 hmodel = Dense(64, activation=’relu’)(hmodel)

6 hmodel = Dropout (0.5)(hmodel)

7 hmodel = Dense(2, activation= ’softmax ’)(hmodel)

Listing 1: Base Model Initialization

Freezing Base Layer
Pre-trained layers from InceptionV3 are set as non-trainable to retain the learned

representations and prevent significant modification of these weights, also freezing these
layers allows the model to focus on learning task-specific features while leveraging the
general features learned from ImageNet.

1

2 bmodel = InceptionV3(include_top=False , weights=’imagenet ’,

3 input_tensor=Input(shape =(80 ,80 ,3)))

4 for layer in bmodel.layers:

5 layer.trainable = False

Listing 2: Freezing base layer

Compilation of the Model:
The model, comprising the InceptionV3 base and the added custom layers, is then

compiled:

• Optimizer (Adam): Adam optimizer 7 is chosen to update the model’s parameters
during training. It’s known for its efficiency and adaptability in handling various
datasets and models.

7Available at: https://keras.io/api/optimizers/adam/

13

https://keras.io/api/optimizers/adam/


• Loss Function (Categorical Cross-Entropy): Categorical cross-entropy is se-
lected as the loss function to measure the dissimilarity between the predicted eye
states and the actual labels. This loss function is common in multi-class classifica-
tion tasks.

1 model.compile(optimizer=’Adam’, loss=’

categorical_crossentropy ’,

2 metrics =[’accuracy ’])

Listing 3: Model Compilation

5.2.2 Model 2

In Model 2, the architecture is extended with two additional dense layers compared to
Model 1, aiming to enhance the neural network’s capacity for learning intricate repres-
entations. After the InceptionV3 base, a Flatten layer is employed to transform the
3D feature maps into a 1D vector. Subsequently, two densely connected layers are intro-
duced, consisting of 128 and 64 neurons, respectively, both utilizing Rectified Linear Unit
(ReLU) activation functions. To mitigate overfitting and improve generalization, dropout
layers with a dropout rate of 0.5 are strategically placed after each of these additional
dense layers. Finally, the output layer, akin to Model 1, comprises 2 units with a softmax
activation function, facilitating binary classification (open or closed eyes). Notably, the
model’s training duration extends to 20 epochs, and the early stopping patience para-
meter is adjusted to 14, allowing the training process to continue for a longer period while
monitoring performance improvements, thereby adapting to potential longer convergence
times or complex learning patterns. The Listing 4 below shows the code snippet of model
2.

1 head_model2 = base_model2.output

2 head_model2 = Flatten ()(head_model2)

3 head_model2 = Dense (128, activation=’relu’)(head_model2)

4 head_model2 = Dropout (0.5)(head_model2)

5 head_model2 = Dense (64, activation=’relu’)(head_model2)

6 head_model2 = Dropout (0.5)(head_model2)

7 head_model2 = Dense(2, activation=’softmax ’)(head_model2)

8

9 earlystop = EarlyStopping(monitor = ’val_loss ’,

10 patience =14, verbose= 3, restore_best_weights=True)

Listing 4: Model 2

5.2.3 Model 3

The model is built on the same base architecture but exhibit difference in design complex-
ity and layer configurations. It is more intricate, encompassing a sequence of 5 densely
connected layers with increasing units—128, 64, 32, 16, and 8—interspersed with dropout
layers before the final classification layer. This increased layer depth and complexity po-
tentially allows for the extraction of more intricate and nuanced features from the input
data but similar to previous models it freezes the pre-trained InceptionV3 base layers,
enabling only the custom-added layers to be trained. This model was built for handling

14



larger and more intricate datasets, capturing finer details that were not captured in the
previous models for improved classification accuracy. The Listing 5 below shows the code
snippet of model 3.

1 base_model3 = InceptionV3(include_top=False ,

2 weights=’imagenet ’, input_tensor=Input(shape =(80, 80, 3)))

3

4 head_model3 = base_model3.output

5 head_model3 = Flatten ()(head_model3)

6 head_model3 = Dense (128, activation=’relu’)(head_model3)

7 head_model3 = Dropout (0.5)(head_model3)

8 head_model3 = Dense (64, activation=’relu’)(head_model3)

9 head_model3 = Dropout (0.5)(head_model3)

10 head_model3 = Dense (32, activation=’relu’)(head_model3)# 3rd

dense layer

11 head_model3 = Dropout (0.5)(head_model3)

12 head_model3 = Dense (16, activation=’relu’)(head_model3)# 4th

dense layer

13 head_model3 = Dropout (0.5)(head_model3)

14 head_model3 = Dense(8, activation=’relu’)(head_model3)# 5th

dense layer

15 head_model3 = Dropout (0.5)(head_model3)

16 head_model3 = Dense(2, activation=’softmax ’)(head_model3)

17

18 model3 = Model(inputs=base_model3.input , outputs=head_model3)

19

20 for layer in base_model3.layers:

21 layer.trainable = False

Listing 5: Model 3

6 Experiment Results & Evaluations

The study so far embarked on the task of eye state detection—discerning between open
and closed eyes—utilizing machine learning techniques. The research aimed to develop
models capable of identifying these states accurately. The experimental setup involved
the creation and evaluation of models based on the InceptionV3 architecture. Through
meticulous training and testing procedures on the proposed MRL eye datasets, the models
were assessed for their efficacy in distinguishing eye states. Subsequently, real-time testing
was conducted to validate the applicability of the models in practical scenarios. This
section delves into the performance of these models, shedding light on strengths and
limitations and also check the potential it holds in real-world scenarios by testing the
model; feeding live images using the webcam of the system and noting the results it
produces.

The evaluation metrics for this study is based on the categorical accuracy achieved
and pateince parameter for different deep learning models and how well these models
detect open and closed eyes in real time.

15



6.1 Exp. 1 (Base Model)

Experiment 1 is a deep learning model with a custom classification head that is added to
the model consisting of a Flatten layer followed by a Dense layer with ReLU activation
and a Dropout layer to prevent overfitting. The final Dense layer is with a softmax
activation function that outputs probabilities for two classes. The model is then compiled
using adam optimizer and categorical cross-entropy loss function. The training process
employs callbacks such as ModelCheckpoint, EarlyStopping, and ReduceLROnPlateau
for model saving, early stopping to prevent overfitting, and dynamically adjusting the
learning rate, respectively. Under EarlyStopping, the patience parameter was set to 7
and it was run for 10 epochs.

The discrepancy between training and test accuracies (95.04% vs. 86.04%) shows a
difference of 11% which suggests that the model might be overfitting the training data
to some extent.

6.1.1 Real time testing

The model’s real-time performance in discerning between open and closed eyes exhibited
promising results as during the testing phase using a webcam feed, the model efficiently
recognized open eyes, maintaining a near-zero score, indicative of its accurate identi-
fication. On the other hand, as soon as the eyes were detected as closed, the model’s
scoring mechanism gradually incremented, showing its responsiveness in detecting this
state change. The recorded snapshots during the test session vividly depict instances of
both open and closed eyes.

(a) Test 1: Open eyes (b) Test 1: Closed eyes

Figure 8: Comparison of Test 1

What notably underscored the model’s success was its discernment of closed eyes,
triggering an alarm when the score surpassed a predefined threshold. This alarm acted
as a real-time indicator, corroborating the model’s accurate predictions and affirming its
proficiency in distinguishing between open and closed eyes.

6.2 Exp. 2 (Additional Dense layers [128 and 64 units])

In order to increase the complexity of the model two extra Dense layers, one with 128
units and another with 64 units followed by Dropout layers were added. Each Dense layer

16



introduces more parameters and computation, allowing the network to learn more sophist-
icated representations from the data. The patience parameter within the EarlyStopping
configuration underwent a modification; previously set at 7, it was extended to 14 in this
updated model configuration. And finally the model was run for 20 epochs.

While the current model has a higher number of training epochs due to the increased
patience in early stopping, it does not seem to outperform the previous model in terms of
training and test accuracies (94.81% and 83.92% respectively. The current model shows
slightly higher losses and slightly lower accuracies across training, validation, and test
sets, suggesting it might not generalize as effectively as the previous model did.

6.2.1 Real Time Testing

Testing the model with a different face to see how well the model generalizes to new
faces and different lightning conditions. As observed, The model exhibited a preference
for higher light intensity to achieve optimal focus on the individual’s face, indicating its
sensitivity to lighting variations.8.

(a) Test 2 : Open eyes (b) Test 2 : Closed eyes

Figure 9: Comparison of Test 2

Subtle fluctuations in the model’s score were observed during the testing process.
These fluctuations could stem from inherent complexities in facial features or diverse fa-
cial expressions, underscoring the challenges in achieving absolute stability across various
faces. This underscores the need for continued refinement or augmentation strategies to
enhance the model’s robustness and stability when confronted with diverse facial charac-
teristics.

6.3 Exp. 3 (Five Dense Layers And Patience Constant)

The third experiment aim to provide the model with additional capacity to learn intricate
patterns while incorporating dropout for regularization to mitigate overfitting. This
model incorporates additional Dense layers with increasing sizes of 128, 64, 32, 16, and
8 units, respectively, followed by Dropout layers (with a dropout rate of 0.5) after each
Dense layer.

8Note: Proper consent was obtained from the person for the experiment

17



The previous models typically had fewer additional layers, with a maximum of two
additional Dense layers.The training settings, such as the number of epochs, batch size,
optimizer, loss function, and callbacks were kept constant with respect to the first model
since it had the best accuracy and Similar to the previous models, the base layers of the
InceptionV3 model remain frozen, preventing their weights from being updated during
training to leverage pre-trained features.

The training accuracy of this model is 91.67%, which is lower than the training ac-
curacies of the previous models that achieved 94.81% and 95.04%, respectively. However,
he validation accuracy for this model stands at 91.93% and The validation loss of 0.1898
is comparable to the previous models, indicating reasonable generalization capability.

6.3.1 Real Time Testing

Even though the accuracy was not improved by introducing several dense layers, the
validation loss was slighty reduced. The testing of this model is shown in Figure 10a and
10b. 9.

(a) Test 3 : Open eyes (b) Test 3 : Closed eyes

Figure 10: Comparison of Test 3

6.4 Discussions

The conducted experiments involved training and evaluating models for eye detection
or drowsiness prediction, revealing nuanced insights into their performance. While these
models showcased relatively high training accuracies, ranging from approximately 91.67%
to 95.04%, the observed validation and test accuracies were slightly lower, varying between
83.74% to 92.60%. This discrepancy suggests potential limitations in the models’ ability
to generalize effectively to unseen or real-world data. Furthermore, the occurrence of
early stopping at different epochs across models indicated the possibility that the models
reached their optimal performance levels at distinct stages during training, potentially
impacting their convergence and final predictive capabilities.

Even when the real time testing produced good results, further critical assessment of
the experiment design, it becomes evident that while the fundamental aspects of model
construction, data preprocessing, and evaluation were adhered to, certain limitations
might have affected the models’ performance. In terms of the architecture, the exploration

9Note: Proper consent was obtained from the person for the experiment

18



Table 1: Evaluation metrics

Experiment No. Training Accuracy Test Accuracy Patience value
1 95.04% 86.04% 7
2 94.81% 83.92% 14
3 91.67 83.74% 7

of a limited set of model architectures might have restricted the discovery of more effective
structures for eye detection tasks.

7 Conclusions and Future Works

The research aimed to develop and evaluate models for drowsiness prediction, focusing on
achieving high accuracy in real-time scenarios. The primary objectives were to construct
models capable of accurately distinguishing between open and closed eyes, assess their
generalization on unseen data, and evaluate their effectiveness in practical applications

7.1 Key findings:

The research partially succeeded in achieving its objectives. While the constructed models
showcased promising training accuracies, ranging from 91.67% to 95.04%, their perform-
ance on validation and test datasets was slightly lower, ranging from 83.74% to 92.60%.
This suggests limitations in generalization, impacting their reliability in real-world ap-
plications.

Early stopping occurred at different epochs across models, indicating varied conver-
gence and optimal performance stages during training.

Comprehensive hyperparameter tuning, exploring diverse model architectures, and
leveraging advanced regularization techniques to enhance model generalization. Explor-
ing transfer learning approaches or more sophisticated neural network architectures for
improved feature extraction is another dimension that can produce potential results in
this field.

The potential for commercialization lies in deploying robust eye detection or drowsi-
ness prediction systems in real-time applications, such as driver assistance systems or
human-computer interaction devices. Improving the model’s accuracy and reliability
through further research could enhance their practical usability in safety-critical scen-
arios

References

Ali, A., Yaseen, M., Aljanabi, M., Abed, S. A. and Gpt, C. (2023). Transfer learning: A
new promising techniques, Mesopotamian Journal of Big Data .

Chellappa, A., Reddy, M. S., Ezhilarasie, R., Suguna, S. K. and Umamakeswari, A.
(2018). Fatigue detection using raspberry pi 3, International Journal of Engineering
& Technology 7(2.24): 29–32. Website: www.sciencepubco.com/index.php/IJET.

19

www.sciencepubco.com/index.php/IJET


Chirra, V. R. R., Uyyala, S. R. and Kolli, V. K. K. (2019). Deep cnn: A machine learning
approach for driver drowsiness detection based on eye state, Rev. d’Intelligence Artif. .

Dua, M., Shakshi, Singla, R., Raj, S. and Jangra, A. (2021). Deep cnn models-based
ensemble approach to driver drowsiness detection, Neural Computing & Applications
33(8): 3155–3168.
URL: https://doi.org/10.1007/s00521-020-05209-7

Fouzia, Roopalakshmi, R., Rathod, J., Shetty, A. and Supriya, K. (2018). Driver drowsi-
ness detection system based on visual features, Proceedings of the International Con-
ference on Inventive Communication and Computational Technologies, ICICCT 2018,
Institute of Electrical and Electronics Engineers Inc., Coimbatore, Tamil Nadu, India,
pp. 1344–1347.

Hashemi, M., Mirrashid, A. and Beheshti Shirazi, A. (2020). Driver safety development:
Real-time driver drowsiness detection system based on convolutional neural network,
SN Computer Science .

K, R. R., U, N. K., Isak, R. C. T., S, S. K., Sunny, S. and K, V. E. (2017). Drowsiness
detection and rescue system, International Journal of Science and Research (IJSR)
6(3). Licensed Under Creative Commons Attribution CC BY.
URL: http://www.ijsr.net

Kim, P. (2017). Convolutional Neural Network, Radiopaedia.org.

Kulkarni, S. S., Harale, A. D. and Thakur, A. V. (2017). Image processing for driver’s
safety and vehicle control using raspberry pi and webcam, IEEE International Confer-
ence on Power, Control, Signals and Instrumentation Engineering (ICPCSI), IEEE,
Chennai, pp. 1288–1291.

Maior, C., Moura, M., Santana, J. M. M., do Nascimento, L. M., Macedo, J., Lins, I.
and Droguett, E. (2018). Real-time svm classification for drowsiness detection using
eye aspect.

R, J. and Jacob, C. (2022). Deep cnn based approach for driver drowsiness detection, 2022
IEEE International Power and Renewable Energy Conference (IPRECON), IEEE.

S., Ramli, R., Azri, M. A., Aliff, M. and Mohammad, Z. (2022). Raspberry pi based driver
drowsiness detection system using convolutional neural network (cnn), 2022 IEEE 18th
International Colloquium on Signal Processing & Applications (CSPA), IEEE.

Singh, P., Upadhyay, M., Gupta, A. and Lamba, P. S. (2021). CNN-Based Driver Drowsi-
ness Detection System, Springer.

20


	Introduction
	Research Questions
	Research Objectives and Contributions

	Related Works
	CNN-based Approaches
	Haar Cascade / Real-Time Based Approaches

	Methodology
	Research Overview
	Data Gathering
	Data Pre-Processing
	Modelling
	Convolutional Neural Networks (CNNs) 
	Transfer Learning

	Evaluation

	Design Specification
	Data Specification
	Normalization

	Model Development
	Real-Time Implementation

	Implementation
	Tools and Technologies
	Deep Learning Model
	Model 1
	Model 2
	Model 3


	Experiment Results & Evaluations
	Exp. 1 (Base Model)
	Real time testing

	Exp. 2 (Additional Dense layers [128 and 64 units])
	Real Time Testing

	Exp. 3 (Five Dense Layers And Patience Constant)
	Real Time Testing

	Discussions

	Conclusions and Future Works
	Key findings:


