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Leveraging Advanced Machine Learning Techniques to
Predict High-Risk Workplace Incidents: Insights from

Ireland

Aishwarya Rani Gopal
21226105

Abstract

This study looks into the important problem of safety at work, especially in
Ireland’s industries where the risk of death and serious injuries is still a concern.
The study shows a new way to look at and predict workplace accidents by combining
machine learning and deep learning methods. This is because this field needs more
advanced ways to predict accidents. The research was motivated by the limitations
of current safety protocols, which often fail to preemptively identify and stop the
risks of severe accidents. To deal with this, a comprehensive methodology was
used, which included a collection of workplace incidents in Ireland. Techniques like
SMOTE (Synthetic Minority Oversampling Technique) and RUS (Random Under
Sampling) were used to fix class imbalances in the dataset. Support Vector Machine,
AdaBoost, XGBoost, Naive Bayes, and Neural Networks were used to identify the
fatality. The results showed that these algorithms, especially XGBoost, are good
at predicting high-risk events. This is not only a big improvement over traditional
ways of evaluating safety, but it is also a useful tool for making things safer in the
real world. This research adds to what is already known by using a more data-
driven and predictive method to look at workplace safety. Unfortunately, which
was never employed in Ireland. It also used a secondary dataset to benchmark
the results from Ireland’s data. It shows how machine learning can change the
way safety management is done, laying the groundwork for future progress in this
important area.

1 Introduction

1.1 Background

In Ireland, workplace fatalities and accidents are a significant concern. They have a huge
impact on society, business, and most of all, the lives of workers and their families. The
need to identify and address the causes of workplace mortality highlights the critical
nature of this research. Safe and healthy workplaces are a priority for Ireland because
of the country’s status as an EU member. The traditional ways of incident analysis, like
manual processing and making biased choices, are inefficient and lead to delayed responses
and ineffective safety measures. These accidents are frequent, despite strict safety regula-
tions1. The shortcomings identified in research such as Tixier et al. (2016) demonstrates

1https://www.hsa.ie/eng/news_events_media/archive/press_releases_2013_to_2022/

press_releases_2022/hsa_confirms_26_work-related_fatalities_in_2022.html
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this inefficiency and emphasize the necessity for better prediction approaches.
This study, based on this dedication and the relatively untapped possibilities of ma-

chine learning in the Irish workplace safety, presents a fresh strategy to tackle these
difficulties by utilizing advanced machine learning techniques and deep learning mod-
els(Mat́ıas et al.; 2008). Based on a machine learning-based analysis, it is identified that
falls from heights, being struck by moving objects, coming into contact with machinery,
and accidents involving vehicles are the most common causes of such incidents in Ireland.
Factors such as lack of proper training, inaccurate risk assessments, and weak safety
culture within the organizations exacerbate these disasters. According to Johnson and
Martinez (2022), improving workplace safety standards and creating effective prevention
measures require an understanding of these root causes and trends. The goal is to im-
prove workplace event processing and analysis procedures so that the primary causes can
be found more quickly, effectively, and impartially.

1.2 Research Question and Objectives

The central research question of this study is: “How effectively can advanced ma-
chine learning algorithms be employed to predict workplace fatalities in Ire-
land?” The objectives of this research are to offer insights into common causes of work-
place accidents, identify high-risk environments, and analyze incident rates. This in turn
will contribute significantly to the development of more effective safety practices. Also,
this research stresses the importance of ethical considerations discussed in Plotnikova
et al. (2020), highlighting the need for worker protection and the make a safer working
environment.

The novelty of this research lies in its groundbreaking approach to predicting high-
risk workplace incidents in Ireland, an area previously underexplored. It introduces a
modified Knowledge Discovery in Databases (KDD) process tailored for complex safety
data analysis by performing exhaustive data analysis which helped in choosing appro-
riate preprocessing steps. One breakthrough that addresses early categorization issues
is the deliberate refinement of models by the combination of comparable categories and
hyperparameter tuning. This study stands out for its methodology that effectively bal-
ances class imbalances in the dataset using advanced techniques like SMOTE and RUS.
Furthermore, it sets a precedent in the field of workplace safety by providing a more
data-driven, predictive framework, previously unutilized in Ireland, thereby addressing
safety management and paving the way for future advancements in this crucial area.

1.3 Document Structure

The report is divided into multiple important sections. Background information and
learning from previous research are given in the section 2. This is followed by describing
the methodology, the steps involved in preprocessing the data, and the reasoning behind
selecting the machine learning models in section 3. Following that section 4 outlines the
architecture and design elements of the machine learning models and its Implementation
is reported in 5. The results of model evaluations are explained in section6.
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2 Literature Review

2.1 Machine Learning in Construction and Mining Industry
Safety

The application of machine learning in high-risk sectors such as construction and mining
has gained significant importance, showing an evolution towards data-driven methodo-
logies in the management of worker safety. In their 2023 publication, Doe and Smith
(2023) introduces a breakthrough study that centers on utilizing machine learning to
predict construction-related injuries. However, the study is constrained by the limited
scope and diversity of its dataset. The study’s dependence on particular categories of
data such as accident reports, worker demographics, and equipment usage statistics may
mistakenly ignore other essential elements that have an impact on construction site in-
juries. Similarly, by employing machine learning for incident detection, Lee and Kim
(2023) advances the assessment of the risk of construction-related injuries. Their meth-
odology’s applicability is however constrained by its dependence on sizable and varied
datasets. Such thorough data collecting is frequently impractical in real-world building
circumstances, particularly on smaller or resource-constrained sites. This limitation calls
into question not only the generalizability of the model but also reveals a substantial dis-
crepancy between the best possible research settings and the actual availability of data in
the field. Zhu et al. (2023) use an alternative approach by concentrating on the specific
attributes of fatalities in the construction industry. Their work is excellent due to its
thorough examination of fatal instances, which offers an indepth understanding of the
most severe consequences of construction accidents.

Significant contributions have been made by Mammadov et al. (2023) and Yedla (2019)
in the mining sector. Research by Mammadov et al. (2023) utilizes machine learning
techniques to analyze pipeline construction and mining accidents, providing innovative
perspectives on these particular domains. Still, the scope of their research is somewhat
limited by its focus on a certain industry, which restricts the applicability of their findings
to other sectors within the mining or similar industries. Yedla (2019) offers an extensive
examination of mining incidents through the application of machine learning methods.
The study is notable for effectively combining structured and unstructured data, achieving
high predictive accuracy. The innovative use of synthetic data augmentation for data
balance and the identification of injury nature as a key predictor underscore the study’s
comprehensive approach to understanding mining accident trends.

Manjunatha (2023) and Smith and Johnson (2022) offer valuable and specialized ana-
lysis in predicting injuries in the mining sector. Their research is essential for emphasizing
the distinct problems and causes that pose risks in the mining industry. However, there
is a requirement for more extensive and varied datasets to improve the thoroughness
and relevance of their research. Tixier et al. (2016) also performed a comparative ex-
amination of different machine learning algorithms in forecasting construction injuries.
However, the study highlights a deficiency in the actual testing and implementation of
the models, indicating the necessity for additional research to authenticate these models
in real-life scenarios.
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2.2 Analytical and Predictive Techniques in Occupational Safety

Machine learning has broken past conventional barriers in the field of occupational safety,
assisting a narrative that unites several industries via predictive analytics. Leading the
charge, Ajith et al. (2020) set out to unravel the complex network of risk factors inside
the mining sector. Their thorough statistical analysis provides a comprehensive picture of
the risks that miners need to deal with. Though their study’s objective is rich in regional
specifics, it falls short of providing the broad overview required to adequately depict the
global mining industry. This restriction strikes an important question regarding the gen-
eralizability of their research: can knowledge gained in one region of the world be used in
other mining contexts with different operational procedures and safety regulations? Ex-
panding upon the concept of universality, Sarkar and Maiti (2020) explores the wide range
of approaches used in machine learning for the investigation of occupational accidents.
Their thorough analysis acts as a guide, pointing the path through the intricate web of
theoretical models. However, their research does not go into real-world applications. A
bridge that spans this gap is necessary because the theoretical ability of machine learning
models and their practical effectiveness continue to be separated by a difficult barrier.
The investigation of the random gradient boosting algorithm by Shin (2019) is an im-
portant development and his research also demonstrates the ability of advanced machine
learning to anticipate accidents in advance. The diversity in this dataset where 22,935
of construction accident cases in Korea, only 16,248 were valid, this limits the predic-
tion model’s ability. The effectiveness of these advanced methods would be increased by a
bigger, more diverse dataset that would present a more distinct, broad image. The invest-
igations by Johnson and Martinez (2022) and Kakhki et al. (2019) into the applicability
of machine learning in forecasting injuries within the agriculture industry add significant
dimensions to the use of machine learning in occupational safety. They demonstrate the
practicality of machine learning in a sector like agriculture, which is not typically associ-
ated with advanced technology. These studies highlight both the significant progress and
challenges in applying machine learning to workplace safety. They emphasize the need
for flexible, globally relevant analytics and point to future research focusing on cross-
framework validation and diverse datasets for broader applicability. However, varying
safety laws and uncertainties in model applicability across different agricultural contexts
remain key hurdles.

2.3 Deep Learning and Advanced Machine Learning Techniques
in Safety Prediction

Deep learning and advanced machine learning techniques have offered new possibilities in
the attempt to rethink workplace safety. This journey into the intricate world of safety
prediction, characterized by ground-breaking research and creative approaches, challenges
accepted theories. And also it highlights the complexities of incorporating modern tech-
nology into workable safety precautions. The recent advancement of this research is the
ground-breaking work on deep bidirectional transformers for language interpretation by
Kenton and Toutanova (2019). Understanding complex data patterns is revolutionized
by their study, which explores the fields of deep learning. Beyond just the theoretical,
their research has far-reaching consequences for how safety reports, incident descriptions,
and worker communications are interpreted and analyzed in different industrial settings.
For such advanced technology to reach its full potential, it will be difficult to synchron-
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ize it with current safety regulations. Utilizing Python’s SpaCy, JUGRAN et al. (2021)
presents a novel method for automatic text summarization, expanding on the language
processing theme. Their important work in identifying important information from large
amounts of textual data provides a glimpse into the potential applications of natural
language processing (NLP) in safety management. This development may play a key
role in breaking down difficult safety reports and worker narratives into understandable
insights, opening the door to safer measures that are better informed and based on facts.
Plotnikova et al. (2020) presented a thorough examination of the ways in which data
mining techniques have changed over time, as part of a methodical effort to map the
changing landscape of these approaches. Their methodical assessment of the literature
establishes the foundation for comprehending the various uses of data mining in safety
prediction. The scope of their research draws attention to the varied applications of data
mining in interpreting intricate patterns and trends in workplace accidents, but it also
emphasizes the necessity for further targeted studies on the use of these approaches in
particular industrial settings. The research of Luo et al. (2023) on the use of machine
learning technology to forecast the seriousness of workplace accidents in building collapse
episodes represents an important development in this research. Their work exemplifies
the complex trade-off between the feasibility of implementation in high-risk contexts and
effective algorithmic design. Though it also highlights the challenges associated with
using these models in practical contexts, the work is a testament to the potential of
machine learning in offering proper insights into accident severity. A unique pattern of
research is formed by this body of work, studies on the use of advanced machine learning
techniques, studies on data-mining techniques for explaining and predicting workplace
accidents, and studies on decision tree approaches for predicting occupational accidents.
This shows how prediction models for workplace safety are constantly evolving but there
are difficulties along the way. Additional research and investigation are still needed in the
areas of complex model integration into current safety frameworks and understanding of
various workplace environments.

2.4 Summary and Justification for Research Question

Significant advancements in machine learning for workplace safety have been identified
through a comprehensive literature review. However, critical limitations remain apparent,
specifically in the areas of industry specificity and advanced technique complexity. The
necessity for machine learning models that are more versatile and universally applicable
is highlighted by these findings. Present research, although auspicious within its specific
fields, frequently fails to possess the contextual flexibility and data diversity essential
for extensive implementation across numerous industries. This constraint tampers the
applicability of results and frameworks to a broader scope, thereby limiting their effic-
acy to particular operational contexts. Moreover, the practical integration of advanced
machine learning and deep learning methods into established safety protocols is hindered
by their complex nature, thereby emphasizing the disparity between theoretical advance-
ments and their practical implementation. This study endeavors to fill these knowledge
voids through the development of machine learning models that improve the accuracy of
predictions while remaining applicable to a wide range of industrial contexts. The object-
ive is to surpass the constraints imposed by specific industries and develop user-friendly
solutions that are technically advanced and suitable for a wide range of work settings.
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3 Methodology

This section dives deeper into the detailed research methodology, giving an in-depth
and technical explanation of each step taken to successfully implement this research.
The primary objective of this research is to predict the high-risk incidents. To achieve
this, a modified Knowledge Discovery in Databases (KDD) process was utilized, this is a
method known for its effectiveness in uncovering valid, important, and easily interpretable
patterns in large and complex data sets. Figure 1 shows the steps involved.

Figure 1: Project Workflow

3.1 Data Collection

The first step in this research methodology is data collection, which is an important
phase for understanding the domain-specific challenges. Data is taken from the Irish
Workplace Incidents dataset 2 is the primary dataset. This dataset comprises detailed
records, including the age and gender of the individuals involved, the specific sectors they
were working in, categorized under NACE sectors, and the type of incidents encountered.
Additional data points include the employment status of the individuals, the year of the
incident, the county of occurrence, and the trigger of the incident. Such comprehensive
data allows for an in-depth analysis of the Irish employment landscape. For benchmark-
ing, OSHA dataset is utilized3, containing global workplace incident data, which includes
event descriptions, the nature and part of the body injured, and factors involved in the
incidents.

3.2 Exploration of the Data

The Irish dataset contains 45,897 entries and 8 columns, detailing workplace incidents
from 2017 to 2021. Key columns include ‘Age’, ‘Gender’, ‘NACE Sector’ (industry sector),

2https://data.gov.ie/dataset/workplace-incidents-2017-2021?package_type=dataset
3https://www.kaggle.com/datasets/ruqaiyaship/osha-accident-and-injury-data-1517
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‘Incident Type’, ‘Employment Status’, ‘Year’, ‘County’, and ‘Trigger’ (cause of incident).
The majority of data are categorical, except for ‘Year’, which is numerical. The dataset
mainly records non-fatal injuries, with details on the employee’s demographic, industry
sector, and the nature of the incident.

The Occupational Safety and Health Administration (OSHA) dataset contains 4,847
entries with 29 columns, focusing on workplace incidents between 2015 and 2017. It
includes detailed fields such as ‘Event Date’, ‘Abstract Text’, ‘Event Description’, ‘Con-
struction End Use’, ‘Degree of Injury’, ‘Nature of Injury’, ‘Part of Body’, ‘Event type’,
‘Environmental Factor’, ‘Human Factor’, and ‘Task Assigned’. The data primarily com-
prises categorical variables, with some numerical fields like ‘Building Stories’ and ‘Nature
of Injury’. It provides an in-depth look at each incident, including factors like environ-
ment, human elements, and the nature of tasks involved similar to the approach taken in
Sánchez et al. (2011).

3.3 Data Preparation

3.3.1 Data Preprocessing and Visualization

In the initial phase of the data analysis, the dataset was loaded and Visualization tech-
niques were employed to understand the structure of the data. This process involved
creating graphical representations to observe the distribution of various categories within
the dataset. Patterns, irregularities, and imbalances were identified. The next step in-
volved cleaning the data by dropping the rows with missing values(Mat́ıas et al.; 2008),
as the percentage of missing data was very low.

3.3.2 Data Splitting and Transformation

The dataset was divided into training, validation, and testing sets using a stratified
approach. Specifically, the data was first split into a training set (70%) and a temporary
set (30%). Then, the temporary set was further split equally into validation(50%) and
testing sets(50%). This splitting was crucial for training the models, fine-tuning them,
and evaluating their performance on test data. Categorical features were then converted
into a numerical format using one-hot encoding(Dahouda and Joe; 2021), making them
suitable for machine learning algorithms. The variable ‘Incident Type’ was also encoded,
providing numeric labels for the classes that are to be predicted. Feature scaling using
Minmax scaling was applied to ensure that all data features were on the same scale,
thereby enhancing the performance of various ML models, as illustrated in Figure 2.

3.3.3 Handling Class Imbalance

Class imbalance is a major problem in this research, where some classes have much fewer
instances than others. To address this issue, resampling techniques such as the Synthetic
Minority Over-sampling Technique (SMOTE)(Chawla et al.; 2002) and Random Under
Sampling (RUS)(Japkowicz and Stephen; 2002), were employed. SMOTE was used to
generate synthetic samples for the minority class, effectively balancing class distribution.
Conversely, RUS reduced the number of examples in the majority class. These techniques
made sure that the models did not dominate one class over another during training.
Collectively, these steps made the dataset more suitable for training Machine Learning
models, providing a more balanced representation of the target classes.
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Figure 2: Distribution after Removing Missing values

3.4 Model Building

3.4.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) excels in high-dimensional space, ideal for this com-
plex dataset(Boser et al.; 1992). Its kernel trick addresses non-linear relationships, cru-
cial for analyzing intricate patterns in fatality data. In this research, SVM model, class
weights are automatically adjusted to be inversely proportional to class frequencies in
the data, using the ‘balanced’ mode and evaluated on various dataset versions, includ-
ing resampled data, ensuring comprehensive and robust predictions aligning with the
methodology used in Sánchez et al. (2011).

3.4.2 AdaBoost Classifier

AdaBoost is an ensemble method that enhances weak learners, making it powerful for
complex datasets(Sarkar et al.; 2019) like Irish dataset. It sequentially focuses on chal-
lenging instances, adapting to nuances in fatality prediction. In this implementation,
AdaBoost, algorithm begins with simple decision stumps as its foundational models,
each focusing on a single aspect of the data. It then iteratively refines its approach by
increasingly focusing on data points that were previously misclassified, thereby enhancing
its accuracy with each cycle. Finally, these stumps are combined into a robust ensemble,
leveraging their collective strength for superior decision-making and prediction accuracy.
This approach was implemented on both the feature selected and resampled datasets,
improving the ability to accurately predict fatalities under various data conditions.

3.4.3 XGBoost

XGBoost(Chen and Guestrin; 2016) is renowned for handling large, intricate datasets
efficiently, suitable for the multifaceted nature of fatality prediction. Its gradient boosting
approach combats overfitting, crucial for maintaining model robustness. In this research,
XGBoost is fine-tuned for this imbalanced dataset, and applied to different data versions,
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including those balanced with SMOTE and Random Under Sampling, showcasing its
adaptability and effectiveness in various scenarios.

3.4.4 Gaussian Naive Bayes

Gaussian Naive Bayes(Murphy; 2012), simple and efficient, is well-suited for extensive
fatality dataset. Its independence assumption makes it a fast, baseline classifier for high-
dimensional data. It is the initial step to grasp fundamental data patterns, especially
useful in imbalanced dataset context as suggested in Mat́ıas et al. (2008). Its application
provides a foundational comparison point for evaluating more complex models in the
fatality prediction system.

3.4.5 Neural Network (Multi-Layer Perceptron)

The Multi-Layer Perceptron (MLP), a class of feedforward artificial neural networks
(Rumelhart et al.; 1986), is particularly effective in discerning complex patterns within
data, a crucial aspect in the challenging task of fatality prediction. Its layered architec-
ture, typically comprising an input layer, multiple hidden layers, and an output layer,
is adept at capturing non-linear relationships inherent in feature-rich datasets. In this
research, the MLP architecture is carefully configured to align with the specific charac-
teristics of the dataset. It is applied to both the original and balanced datasets, demon-
strating its versatility and robustness in delivering accurate predictions across diverse
data scenarios, as corroborated by the findings of Lee et al. (2020).

3.5 Evaluation Techniques

Several indicators were used to assess the models:

• Accuracy: This measure gives a broad impression of the model’s accuracy rate. It
is computed as the proportion of accurately predicted instances to all instances in
the dataset(Japkowicz and Shah; 2011). Although accuracy provides a preliminary
sense of the model’s performance, it may not always be accurate, particularly in
imbalanced datasets where it may appear deceptively high despite subpar minority
class performance.

Accuracy =
True Positives + True Negatives

Total Number of Instances
(1)

• Confusion Matrix: An essential tool for comprehending how well the models perform
for each class is the confusion matrix. It differentiates between true positives, true
negatives, false positives, and false negatives by tabulating the proportion of accur-
ate and inaccurate forecasts(Stehman; 1997). This dissection is especially helpful
in assessing how well the model can distinguish between each class in unbalanced
datasets.

• Precision and Recall: Precision is the ratio of true positive predictions to all positive
predictions, and recall (also known as sensitivity) is the percentage of real posit-
ives that the model properly recognized(Davis and Goadrich; 2006). When there
are large differences in the costs associated with false positives and false negatives,
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these measurements become quite important. To guarantee that the fatality pre-
diction models accurately identify the maximum number of genuine instances while
minimizing the number of false alarms, precision and recall are crucial.

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

• F1 Score: This single metric provides an evaluation of a model’s performance; it
is the harmonic mean of precision and recall(van Rijsbergen; 1979). Given that it
strikes a compromise between recall and precision, this score is especially helpful
with this dataset. Because it accounts for both false positives and false negatives,
it is a more dependable metric than accuracy for imbalanced datasets as suggested
in He and Garcia (2009).

F1 Score = 2× Precision× Recall

Precision + Recall
(4)

4 Design Specification

The design specification describes the libraries and plan for the machine learning system
that predicts fatalities. The tools, methods and algorithms are explained in depth during
this phase.

4.1 Tools Used

Python was the primary programming language used in this study, offering a compre-
hensive library of tools for modeling, analysis, and visualization, thereby facilitating easy
programming and interpretation of results. Key libraries employed include Pandas and
NumPy for data manipulation and numerical computations, Scikit-learn was used for
implementing various machine learning algorithms such as AdaBoost, Support Vector
Machines, Random Forests, and Logistic Regression, and for tasks like preprocessing,
model selection, and performance metrics evaluation. Imbalanced-learn library was used
for addressing imbalanced datasets using techniques like SMOTE (Synthetic Minority
Over-sampling Technique) and Random Under Sampling. XGBoost used for a robust
and efficient implementation of gradient boosting. Matplotlib and Seaborn used for com-
prehensive data visualization, providing clear graphical representation of results, Tensor-
Flow and Keras used for the design and training of neural network models, particularly
the Multi-Layer Perceptron (MLP) Classifier; and additional utilities such as Joblib for
model serialization and statistical functions from SciPy.

4.2 Modelling Specification

Based on the methodology, data preprocessing was conducted using Python libraries such
as Pandas and NumPy. Post one-hot encoding, numerical variables were normalized using
the MinMaxScaler from scikit-learn, ensuring uniformity in data scale.
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During the modeling phase, the SVM model from scikit-learn utilized a radial basis
function (RBF) kernel. This choice was motivated by the kernel’s ability to handle
non-linear data, a common characteristic in complex datasets(Han et al.; 2012). The Ad-
aBoost model, also implemented using scikit-learn, was combined with Decision Trees,
thus enhancing their performance by focusing on more challenging instances. The MLP,
comprised of multiple layers and neurons, was implemented using scikit-learn as well. It
employed a ReLU activation function and the Adam optimizer, which are suitable for cap-
turing deep, non-linear relationships in the data. Additionally, a Sequential deep learning
model was constructed using TensorFlow and Keras. This model included multiple Dense
layers with Dropout for regularization and also utilized the ReLU activation function and
the Adam optimizer. Such an architecture was specifically designed to extract complex
patterns and relationships within the data, potentially too intricate for more traditional
models(Pomerat et al.; 2019).

5 Implementation

5.1 Exploratory Data Analysis

The results of Ireland’s Exploratory Data Analysis (EDA) of workplace incidents have
been noteworthy, showing the incidents distribution across a variety of industries and
demographic groups. Figure3 shows the yearly incident counts, indicating that the num-
ber of incidents fluctuates over the years. The distribution suggests that certain factors,
potentially economic cycles or regulatory changes, could have impacted the frequency
of workplace incidents. The NACE Sector Distribution of Incidents (Figure 4) provides
insights into the frequency of incidents within specific sectors. Human health and social
work activities, for instance, show a high number of incidents, pinpointing sectors where
safety improvements are most needed.

Figure 3: Yearly Incident count

The Correlation Matrix using Cramér’s V (Figure 5) explores the strength of the asso-
ciation between categorical variables. This matrix is foundational for predictive modeling,
highlighting significant correlations that could predict incident likelihood. The Random
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Figure 4: Sector Distribution of Incidents

Forest Classifier identified gender, age, employment status, and specific sectors like hu-
man health as key predictors of workplace incidents, informing intervention priorities.

Figure 5: Correlation matrix heatmap between catogorical variable

Additional EDA approaches such as the generation of word clouds to identify common
triggers of incidents, indicate that ‘slip’, ‘fall’, and ‘level’ are frequently occurring terms
shown in Figure 6. This suggests that preventive measures in workplace safety could
focus on slip and fall hazards. Moreover, the analysis extended to heatmaps, which
offered a detailed view of the incidence rates by sector and trigger, as well as by gender
and age group, illustrating the distribution and prevalence of incidents across different
demographics and operational categories. Overall, these figures and analyses provided a
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detailed view of workplace incidents, contributing to a more comprehensive understanding
necessary for developing effective safety policies and practices.

Figure 6: Word cloud for Incident triggers

5.2 Data Preparation and Model Optimization

Commencing with data integrity checks, the data cleaning phase identified 125 missing
entries, reinforcing the dataset’s reliability. Following one-hot encoding of categorical
variables resulted in an expanded feature space, ultimately creating 85 distinct features
that encapsulated the dataset’s multi-faceted nature.

A feature selection process using a Decision Tree Classifier was used to assess the
importance and correlation of each feature against the ‘Incident Type’ target variable.
This rigorous approach distilled the feature set from 85 down to a more manageable and
potent 20 features, chosen for their significant impact on the prediction outcomes. This
reduction was crucial for model efficiency and interpretability, ensuring that only the most
relevant predictors were retained for analysis. Minmax scaling was then implemented to
normalize all features to have a consistent range between 0 and 1, inorder to ensure that
features with high magnitude dont dominate.

In addressing the skewed class distribution, Random Under Sampling was employed
to even the class representation to 50 instances each, effectively mitigating majority class
bias. Alternatively, the Synthetic Minority Over-sampling Technique (SMOTE) was also
applied, increasing each minority class to 30,000 instances to match the majority class’s
presence. These resampling techniques were instrumental in achieving a balanced class
distribution, which was crucial for unbiased model performance and robust generalization
to new data as shown in 7.

Hyperparameter tuning of the SVM classifier was conducted with precision, utilizing a
RandomizedSearchCV framework to systematically explore 100 parameter configurations
over 5-fold cross-validation. The search parameters included a range of ‘C’ values [0.1, 1,
10, 100], ‘gamma’ values [1, 0.1, 0.01, 0.001], and ‘kernel’ types [‘linear’, ‘rbf’, ‘sigmoid’].
The optimal parameters emerged as ‘C’: 10, ‘gamma’: 0.01, and ‘kernel’: ‘rbf’, which
yielded the highest cross-validation accuracy.
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Figure 7: Distribution after Class Balancing

6 Evaluation

In this critical phase of the machine learning research, the effectiveness of the models in
predicting workplace fatalities was assessed.

6.1 Experiment 1 - Fatality Prediction with All Features

In the first experiment, all features were used to train each model. SVM model displayed
a remarkable recall by correctly identifying all instances of the fatality class. However, it
did so with a large number of false positives, as all non-fatality instances were incorrectly
classified as fatalities, possibly caused by an imbalanced emphasis on the minority class.
The XGBoost model, while not capturing all fatalities (with a recall of 0.41 for the fatality
class), achieved a precision of 1, indicating no false positives among its fatality predictions.
This led to an f1-score of 0.58 for the fatality predictions by XGBoost, suggesting a
balanced performance between precision and recall, though with some fatalities going
undetected. While the high precision is commendable, the missed fatality cases reflect a
conservative model that may be more suitable in scenarios where false alarms are costly.
The heatmap visualization of the confusion matrix for the XGBoost model shown in
Figure 8 shows performance across all classes. The results of the model shown in Table
1.

XGBoost
Testing accuracy 0.99
Precision 1.00
Recall 0.41
F1 score 0.58

Table 1: Results of XGBoost
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Figure 8: All Feature - XGBoost

6.2 Experiment 2 - Fatality Prediction with All Features and
RUS

In the second experiment of the study, after addressing the class imbalance through Ran-
dom Under Sampling (RUS), the machine learning models were re-evaluated. The SVM
model, with RUS-applied features, achieved an accuracy of 66.21% and demonstrated an
improved recall for the fatality class (class 1) at 0.62, indicating it could identify a signi-
ficant portion of the actual fatalities. However, its precision of 0.14 for the fatality class
suggested a relatively high number of false positives. The AdaBoost model showed a low
overall accuracy of 12.28% and a recall of 0.59 for fatalities, similar to SVM, but with
very low precision. The XGBoost model displayed better overall accuracy at 79.26% and
the highest recall for fatalities at 0.71, but with low precision of 0.04. This could be due
to a loss of vital information when the majority class instances are under-sampled, lead-
ing to poorer model generalization. Naive Bayes achieved the highest accuracy among
the models at 83.45%, with a recall equal to XGBoost for the fatality class. The Neural
Network, however, completely failed to identify any fatalities, with near-zero accuracy
and no correct fatality predictions. A heatmap for the XGboost model from Figure 9
gives a visual insight into its performance, especially its capability to detect fatalities
amidst the dataset balanced with RUS. The results of the model shown in Table 2.

XGBoost
Testing accuracy 0.79
Precision 0.04
Recall 0.71
F1 score 0.07

Table 2: Results of XGBoost
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Figure 9: All Feature RUS - XGBoost

6.3 Experiment 3 - Fatality Prediction with Selected Features

In Experiment 3, with the feature selection applied to the dataset, the machine learning
models showed varied performance. The SVM model achieved perfect recall in identifying
fatalities, which means it detected all fatality cases in the dataset. However, its overall
accuracy drop indicates a misclassification of non-fatality instances, suggesting that the
selected features may align too closely with the fatality class at the expense of others.
AdaBoost and Naive Bayes demonstrated moderate to low accuracy, with AdaBoost
achieving a recall of 0.76 for the fatality class and Naive Bayes reaching a recall of
0.97. This suggests that while they were able to detect most fatalities, they struggled
with correctly classifying non-fatality instances. XGBoost emerged with high accuracy
(99.52%) and maintained a strong precision for the fatality class. Nevertheless, its recall
for fatalities was 0.41, indicating that crucial features for detecting fatalities might have
been omitted during feature selection, or that the model requires a more comprehensive
set of features to improve fatality detection. The Neural Network, despite its high overall
accuracy, failed to identify any fatalities, indicating potential issues with the feature
selection process. The results from this experiment for the model XGBoost as shown in
Table 3 indicate that feature selection can impact the models’ ability to predict fatalities,
with some models like XGBoost maintaining high accuracy but not necessarily improving
in fatality detection. A heatmap for the confusion matrix of the XGBoost model as shown
in Figure 10 provides a visual interpretation of the results.

XGBoost
Testing accuracy 0.99
Precision 1
Recall 0.51
F1 score 0.58

Table 3: Results of XGBoost
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Figure 10: Feature Selected - XGBoost

6.4 Experiment 4 - Fatality Prediction with Selected Features
and SMOTE

In Experiment 4, models were applied to a dataset balanced using the Synthetic Minority
Over-sampling Technique (SMOTE) to predict the crucial fatality class. The SVM model
showed a significant improvement with a high accuracy of 95.75%, successfully identifying
most of the fatalities, as indicated by the recall of 0.47. However, its precision for the
fatality class was low, suggesting that while it could identify fatalities, it also incorrectly
labeled many non-fatalities as fatalities. AdaBoost struggled in this setup, with an overall
accuracy of just 11.08% and a high recall but low precision for the fatality class, meaning
it too was prone to false positives in fatality prediction. XGBoost continued to perform
well with an accuracy of 95.12%, demonstrating an ability to discern fatalities with a
recall of 0.59. However, similar to SVM and AdaBoost, it faced challenges with precision
in predicting the fatality class. Naive Bayes had a very low accuracy of 8.94%, but it
achieved a perfect recall score for the fatality class, identifying all fatalities correctly.
However, its precision was extremely low, which again indicates a high number of false
positives in turn indicating a need for more refined oversampling techniques or alternative
approaches to balance the dataset. The Neural Network model yielded an accuracy of
96.15%, with a recall of 0.50 for the fatality class, showing a balanced capability to
identify fatalities. The heatmap of the confusion matrix for these models, particularly
NaiveBayes, will provide insights into how effectively each model distinguished the fatality
class from other incident types after the application of SMOTE is shown in Figure 11.
The precision-recall curves for each model also illustrated the balance between sensitivity
and positive predictive value, with the AUC measure providing a summary of this balance
over all possible classification thresholds. The results of this experiment is shown in Table
4.
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Figure 11: Feature Selected SMOTE - NaiveBayes

NaiveBayes
Testing accuracy 0.08
Precision 0.01
Recall 1
F1 score 0.01

Table 4: Results of NaiveBayes

6.5 Experiment 5 - Fatality Prediction with Selected Features
and RUS

In Experiment 5, the study employed Random Under Sampling (RUS) to balance the
feature set and applied different models to predict fatality instances. The Naive Bayes
model stood out with the highest accuracy among all the models at 92.02%. It demon-
strated a balanced capability in identifying fatalities, with a precision of 0.06 and a recall
of 0.76 for the fatality class, indicating that it could recognize most of the actual fatalit-
ies, albeit with some false positives. The Support Vector Machine (SVM) model followed
closely with an accuracy of 84.36%, showing an impressive recall of 0.65 for the fatality
class, suggesting that it could identify a majority of the actual fatality instances. How-
ever, its precision was lower, indicating that it also misclassified some non-fatal incidents
as fatal. XGBoost showed an accuracy of 81.31% and displayed a strong recall of 0.59
for the fatality class, but similar to SVM, it faced a precision trade-off, leading to sev-
eral false positives. The AdaBoost model, with an accuracy of 78.11%, also achieved a
reasonable recall of 0.53 for the fatality class but faced challenges with precision. The
Neural Network model presented an accuracy of 78.07% and a recall of 0.68 for the fatal-
ity class, indicating a moderate level of sensitivity towards identifying fatalities. Overall,
the application of RUS impacted the precision of the model adversely while improving
or maintaining their recall for the fatality class, as indicated in the result of NaiveBayes
in Table 5. The heatmap of the confusion matrix from Figure 12 visually depicts the
distribution of predictions across all classes, illustrating each model’s ability to identify
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fatalities post-RUS application.

Figure 12: Feature Selected RUS - NaiveBayes

NaiveBayes
Testing accuracy 0.92
Precision 0.06
Recall 0.76
F1 score 0.10

Table 5: Results of NaiveBayes

6.6 Experiment 6 - Benchmarking the Approach with OSHA
Dataset

The OSHA dataset was utilized as part of a benchmarking exercise to validate the ef-
fectiveness of the applied machine learning methodology across different datasets. This
approach ensures that the predictive models are robust and not tailored to the idiosyn-
crasies of a single dataset, thereby demonstrating their general applicability and reliability
in varied contexts. The results were particularly impressive with certain models, notably
the XGBoost and Naive Bayes classifiers, both achieving perfect accuracy scores when
the dataset was balanced using SMOTE and RUS techniques. This indicates that with
appropriate preprocessing, these models can be highly effective in classifying workplace
incidents, thereby supporting their deployment in real-world settings. The SVM model
also showed significant improvement when SMOTE was applied, suggesting that the bal-
ancing of classes played a crucial role in enhancing its predictive accuracy. Meanwhile,
the AdaBoost classifier performed exceptionally well with SMOTE but experienced a
slight dip with RUS, pointing to some sensitivity to the method of class balancing. The
Neural Network’s performance varied, with a high accuracy when SMOTE was applied
but a reduced effectiveness with RUS. The results are shown in Table 6.
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Model Data Accuracy
SVM Feature Selected 0.03
AdaBoost Feature Selected 0.95
XGBoost Feature Selected 1.00
Naive Bayes Feature Selected 0.67
Neural Network Feature Selected 0.24
SVM SMOTE 0.99
AdaBoost SMOTE 0.67
XGBoost SMOTE 1.00
Naive Bayes SMOTE 1.00
Neural Network SMOTE 0.99
SVM RUS 0.64
AdaBoost RUS 0.99
XGBoost RUS 0.99
Naive Bayes RUS 1.00
Neural Network RUS 0.88

Table 6: Model accuracy with feature selection and class balancing techniques.

6.7 Discussion

This research has embarked upon a meticulous examination of machine learning and deep
learning methodologies to predict workplace incidents in Ireland. Initially confronted
with the challenge of class imbalance, a variety of strategies were implemented, including
oversampling, class weight adjustments, and feature standardization. However, these
preliminary measures yielded suboptimal outcomes, prompting an in-depth analysis of
confusion matrices. This analysis revealed a pattern of misclassification among similar
categories, which was suggested to be a consequence of inaccuracies within the self-
reported dataset.

In response to these findings, the approach was refined by merging analogous categor-
ies to enhance classification accuracy. This modification, accompanied by rigorous feature
selection and hyperparameter optimization, significantly improved model performance. In
the initial experiment, the use of all features to train the models revealed the SVM’s high
sensitivity in detecting fatalities, eventhough at the cost of a significant number of false
positives. This result raised questions about the trade-off between recall and precision in
the models used, prompting a deeper examination of the balance between these metrics.
Amongst the models tested, XGBoost distinguished itself, demonstrating accuracy rates
above 91% after feature selection. Additionally, the application of SMOTE and precise
hyperparameter tuning proved to be effective in addressing the issues of class imbalance
and overfitting, thereby refining the predictive precision of the models.

The research proceeded with the understanding that the dataset might include in-
accuracies, an assumption substantiated by the pattern of misclassification encountered
during initial experiments. This premise influenced the strategy adopted in subsequent
analyses and contributed to the development of a robust predictive framework capable of
discerning the severity of injuries with notable accuracy.
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7 Conclusion and Future Work

This research has advanced the use of machine learning in predicting workplace incidents,
particularly highlighting the effectiveness of SMOTE and RUS data balancing techniques
in improving model accuracy. Future work aims to broaden the dataset scope, enhan-
cing representation and robustness, and exploring alternative data balancing strategies.
Future work will incorporate domain-specific knowledge with an emphasis on practical
application to close the gap between statistical precision and real-world applicability.
Workplace safety measures could be greatly impacted by collaborative activities with
industry professionals to assure the validation and practical application of these models
in the real world. Additionally, scaling up and improving these models for broader use
will require utilizing technology developments in big data analytics and cloud computing.
A key area of future exploration is explainable AI (XAI), which promises to enhance
model interpretability and trustworthiness, thereby making the findings more accessible
and actionable for occupational health and safety professionals. This study sets a solid
foundation for the practical application and commercialization of machine learning tech-
niques in the field of workplace safety, contributing to the development of safer working
environments across various industries.
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