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1 Introduction

This document gives a detailed description of the steps to be followed to replicate the
results of the research that have been enlisted in the project report. The document covers the
different tools required to simulate the experiments and provides a detailed explanation of the
steps to be followed for code execution.

2 Environment Setup

2.1 Hardware Specifications

For successful telemedicine research project implementation, we ensure hardware
configurations match these specifications:

e Processor: Used a bespoke M2 chip with an 8-core CPU. The robust processor
architecture is ideal for LSTM and Bi-LSTM machine learning models used in
telemedicine forecasting.

e Memory (RAM): For smooth machine learning algorithm execution and effective
time series analysis of huge datasets, 16 GB of unified memory is recommended.

e Storage: Chose SSD storage from 256 GB to 2 TB for the project's needs. Working
with large datasets requires ample storage for datasets, codebase, and model files.

e Graphics: The embedded M2 chip's GPU for graphics can aid machine learning and
visualization in the telemedicine research project.

MacBook Air

Displays
Bl Built-in Liquid Retina Display

Display Settings...

Figure 1: Hardware Specifications
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2.2 Software Requirements
We ensure the following software components are installed in the system:

e Anaconda Navigator (Version 2.4.2): Anaconda provides a comprehensive platform
for Python-based data science and machine learning, streamlining package
management and environment setup.

e Python (Version 3.7.6): The Python programming language serves as the foundation
for the codebase, ensuring compatibility with machine learning libraries and tools.

{2 ANACONDA NAVIGATOR

A tom

Al applications ~| on anacondal - Channels c

@ Environments

. ‘.v . ﬁ-
W Learning % Jupyter
% N

' DataSpell Anaconda Notebooks JupyterLab Notebook
&% Community P Pyt

A2 6.4.12
Cloud-hosted notebook service from An extensible environment For interactive ‘Web-based, interactive computing notebook
Anacenda. Launch a preconfigured and reproducible computing, based on the ronment, Edic and run human-readable

DataSpell is an IDE for exploratory data
is and pro! envi .
models, It combs ity o environment with hundreds of packages and Jupyter Notebook and Architecture, docs while describing the data analysis.

Figure 2: Anaconda Navigator for software requirements

2.3 Code Execution

The python code used to run the technical aspect of the research can be found in the artefact
zip file saved as “22123318 | Python Code and Dataset”.

Following these steps on JupyterLab, we execute the code:

Launch JupyterLab 3.4.4 from Anaconda Navigator — anaconda 3.

The interface opens in web browser, displaying the system's folder structure.
Navigate to the folder containing the code file.

Open the code file within the notebook.

To run the code, navigate to the Kernel menu and select "Run all cells."

agrwnE

3 Data Collection

The dataset, "Telemedicine Use in the Last 4 Weeks" is sourced from the National
Center for Health Statistics (NCHS) and the Health Resources and Services Administration’s
Maternal and Child Health Bureau (HRSA MCHB). Collected through the Household Pulse
Survey, an experimental data system, this 20-minute online survey monitors recent changes
in telemedicine use, providing crucial insights into the social and economic impacts of the
COVID-19 pandemic on American households.

3.1 Data Exploration

We use various libraries to enhance our code functionality. Pandas and NumPy assist in
handling and analyzing data efficiently. The pandas_datareader is employed for fetching
financial data from the web, while matplotlib aids in creating visualizations. Scikit-learn
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provides metrics for evaluating model performance, and statsmodels supports time series
analysis. The Keras and TensorFlow libraries are essential for building and training neural
network models, and warnings are managed using the warnings library. These tools
collectively streamline tasks such as data manipulation, statistical analysis, machine learning,
and deep learning, contributing to the overall effectiveness of our code.

#Import relevant libraries

import pandas as pd

import numpy as np

import pandas_datareader.data as web

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler, LabelEncoder

from statsmodels.tsa.stattools import kpss

from statsmodels.graphics.tsaplots import plot_pacf, plot_acf

from statsmodels.tsa.api import ARIMA, SARIMAX

from sklearn.metrics import mean_squared_error, mean_absolute_error
import functools as ft

from keras.models import Sequential

import tensorflow as tf

from keras.layers import Dense, LSTM, Input, Bidirectional, Flatten, Dropout
import warnings

warnings.filterwarnings("ignore'")

Figure 3: Necessary Python Libraries required to run the time series models for forecasting
accuracy

3.2 Data Analysis and Model Preparation

The code pd.to_datetime(data[ Time Period Start Date']) is employed to specifically
convert the 'Time Period Start Date' column from an object data type to a datetime data type.
This conversion is crucial in time series modelling, particularly when analysing temporal
patterns and trends.

# converting column to datetime type from ojbect type

data['Time Period Start Date'l = pd.to_datetime(data['Time Period Start Date'])
data
Indicator Grou State Subgroup Phase Time Time Period Value Low High
P group Period Start Date cl cl
Adults Who Had Appointment National United United e
o with Health Profess... Estimate States States 31 28 20210414 257 250 264
Adults Who Had Appointment United 18-29 A
L with Health Profess... By Age States years & e AERHSL dls iR 2
Adults Who Had Appointment United 30-39
2 with Health Profess... By Age States years El ZE ZUZLU S A 2
Adults Who Had Appointment United 40 - 49 e
3 with Health Profess... By Age States years 31 28 2021-04-14 267  24.2 273
Adults Who Had Appointment United 50 -59 04
4 with Health Profess... By Age States years 31 28 2021-04-14 263 246 281
Households With Children
3338 Where Any Child Had A... By State Vermont Vermont 35 48 2022-07-27 231 146 336
3339 B L~V Tt Virginia Virginia 3.5 48 2022-07-27 188 129 261

Where Any Child Had A...

Households With Children " .
3340 Where Any Child Had A... By State Washington  Washington 35 48 2022-07-27 18.9 15.1 23.3

Households With Children

3342 Where Any Child Had A...

By State Wisconsin Wisconsin 35 48 2022-07-27 138 88 203

Households With Children

3343 Where Any Child Had A...

By State  Wyoming Wyoming 35 48 2022-07-27 107 66 162



Figure 4: Converting Time Period Start Date to datetime format as it is crucial for time series
analysis

The KPSS test for stationarity on a given time series calculates the test statistic, p-
value, and critical values, then prints the results and determines the stationarity of the series
based on the significance level. Additionally, the code generates and displays autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots for further analysis.

kpss_test(datal'Value'l) # Test indicate that the data follows trend and seasonality

KPSS Statistic: 3.023199187659166
p-value: 0.01

num lags: 28
Critial Values:
10% : @.347
5% : 0.463
2.5% : 0.574
1% : 0.739
Result: The series is non-stationary
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Figure 5: Autocorrelation Function (ACF) Plot and Partial Autocorrelation Function (PACF)
Plot of Differenced Time Series
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Figure 6: Autocorrelation Function (ACF) Plot and Partial Autocorrelation Function (PACF)
Plot for Stationarised Time Series

3.3 Model Import and Model Forecasting

e The ARIMA model is configured with parameters (28, 1, 20) for autoregression,
differencing, and moving average. Here choosing p=28 for the number of lags, d=1
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for differencing achieving stationarity, and q=20 (p, d, q) for the moving average,
considers lags, stationarity through differencing, and changes in plots after 20 lags,
reflecting the moving average impact in the time series model.

In the SARIMAX model, the seasonal component is explicitly introduced to capture
recurring patterns that occur at regular intervals. The seasonal order (0, 1, 2, 28)
indicates that there is a seasonal moving average component (2) with a seasonal
period of 28. The value of O for the seasonal autoregressive order (P) indicates that
there is no seasonal autoregressive component. So, while the autoregressive and
differencing components may resemble those in ARIMA, the focus is on seasonal
differencing (D), seasonal moving average (Q), and the seasonal period (S) of 28-time
units. so SARIMAX suggests a pattern that repeats every 28 observations.

ARIMA SARIMA

model=SARIMAX(train.Value,order=(28, 1, 28), seasonal_order=(#,1,2,28))
model_fit=model.fit()
print{model_fit.summary{))

model=ARIMA(train.Value,order=(28, 1, 20))
model_fit=model.fit()

print{model_fit.summary())

SARIMAX Results

RUNNING THE L-BFGS-8 CODE

o

Dep. Variable: value No. Observations: 3052
Model: ARIMA(28, 1, 20)  Log Likelihood -B678.655 Machine precision = 2.2260-16
Date: Thu, 89 Nov 2023  AIC 17455.309 N = 51 M= 10
Time: 18:35:12 BIC 17758.447
Sample: 3552 HIIC 17561.379 At X@ @ variables are exactly at the bounds
Covariance Type: opg At iterate @  f= 3.73490D+00  |proj g|= 6,01248D+00
coef std err P|z| [0.825 0.975] This problem is unconstrained.
ar.Ll -0.5858 3.592 -0.163 8.870 -7.626 6.454 At iterate 5 f= 3.875470+00 Iproj g|= 4.569360-01
ar.L2 =-0.1188 8.314 -0.378 a.705 -2.735 a.497
ar.L3 -0.2416 .344 -8.701 0,483 -2.917 8.434 At iterate 10  f= 2.01387D+00  |proj g|= 1.078200-01
ar.L4 -0.4038 0.734 -0.550 0.582 -1.843 1.036
ar.L5§ -0.2711 1.122 -0.242 @.809 -2.470 1.928 At iterate 15 f= 2.89885D+0@ |proj g|= 6.89614D-02
ar.L6 -0.1177 0.324 -0.363 0.716 -0.752 8.517
ar.L7 —-0.2856 0.330 -0.866 0,386 -0.932 8,361 At iterate 20 f= 2.890490+80  |proj g|= 9.994100-02
ar.L8 -0.2410 9,967 -0.249 0.803 -2,136 1.654
ar.Lo 0.1200 0.283 8.424 0.672 —0.435 0.675 At iterate 25 f= 2.87877D+00 Iproj g|= 8.32547D-02
ar.L10 -0.1481 9.560 -8.265 8,791 -1.246 8,049
ar.L11 -0.2553 9.810 -8.315 8.753 -1.843 1.333 At iterate 38  f= 2.B6714D+80  |proj g|= 6.568130-02
ar.L12 0. 1007 8.506 -0.199 0.842 -1.092 8.891
ar.l13 ~0.8955 9.186 -8.513 0,608 -0.460 8,269 At iterate 35  f= 2.B6326D+80  |proj g|= 3.07236D-02
ar.L14 -0.2831 8.262 -1.881 0.288 -0.796 0.230
ar.L15 0.0745 8.952 0.878 0.938 -1.792 1.941 At iterate 48 f= 2,B5903D+80  |proi ol= 3,49185D-02
Forecast Vs Actuals Forecast vs Actuals
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Figure 8: ARIMA and SARIMA Model Forecast versus Actual Time Series Data

The reshaping of input data, such as X train and X test, is crucial for the LSTM
model to process sequential information. The LSTM architecture is configured with
multiple layers, specifying units, activation functions, and dropout rates. The model is
compiled with mean squared error as the loss function and Adam optimizer. It is
trained on the training set (X_train, Y_train) for 10 epochs. The LSTM forecasts are
then compared with actual values, and the model's performance is evaluated using
metrics such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).
The LSTM's significance lies in its ability to capture complex temporal patterns, as
evidenced by its lower MSE compared to ARIMA and SARIMA models.



Bidirectional LSTM processes input sequences in both forward and backward
directions, capturing more extensive temporal dependencies compared to
unidirectional LSTM. The Bidirectional LSTM is configured with multiple layers,
including bidirectional ones, specifying units, activation functions, and dropout rates.
By processing input sequences in both forward and backward directions, Bidirectional
LSTM captures more comprehensive temporal dependencies. The model is trained on
the training set (X_train, Y _train) for 10 epochs. The Bidirectional LSTM's forecasts
are then compared with actual values, and its performance is evaluated using metrics
such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). The
addition of bidirectional processing allows the model to potentially capture more
complex patterns, demonstrating its superior ability, as evidenced by its competitive

MSE compared to other models.

LSTM

X_train = X_train.to_numpy().reshape(X_train.shape[@], X_train.shape([1], 1)
X_test = X_test.to_numpy().reshape((X_test.shape[@], X_test.shape[l], 1))

X_train.shape, X_test.shape
((3e52, 8, 1), (52, 8, 1))

model. fit(X_train, Y_train, epochs=18)
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Figure 9: LSTM Model Forecasting
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Bidirectional LSTM

#Applying the LSTM model

model = Sequential()

# Configuring the parameters
model.add(Bidirectional(LSTM(units=128,activation = 'relu', return_sequences = True, input_shape =
# Adding a dropout layer

model.add(Dropout(0.2))

model.add(Bidirectional(LSTM(units=64,activation = 'relu’', return_sequences = True)))
model.add(Dropout(0.5))

model.add(Bidirectional(LSTM(units=32,activation = 'relu’', return_sequences = True)))
model.add(Dropout(0.5))

model.add(Bidirectional(LSTM(units=16,activation = 'relu')))

model.add(Dropout(0.2))

model.add(Dense(units=1,activation = 'relu'))

model.fit(X_train, Y_train, epochs=10)
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Figure 11: LSTM Model and Bi-LSTM Model Forec

Figure 10: Bi-LSTM Model Forecasting
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Comparitive Analysis

score.columns = ['Model', 'Mean Squared Error', 'RMSE', "Mean Absolute Error"]
score

Model Mean Squared Error RMSE Mean Absolute Error

0 ARIMA 22.280399 4.720212 3.823641
0 SARIMA 12.781661 3.575145 2.974683
0 LSTM 7171037 2677879 2.348136
0 Bidirectional LSTM 2.390244 1.546042 1.323637

Figure 12: Comparative Analysis of 4 time series models considering the error metrics —
MSE, RMSE, MAE

With the comparison of the performance of four forecasting models against actual
telemedicine metrics, the ARIMA model shows the largest deviation, while SARIMA
improves on this, suggesting better handling of seasonality. The LSTM model's predictions
are closer to the actual data, and the Bi-LSTM model's forecasts align most closely,
confirming its superior accuracy as indicated by its lowest error metrics (MSE, RMSE,
MAE). The graph solidifies the quantitative analysis, showing that the Bi-LSTM model is not
only statistically superior but also practically more aligned with the actual data trends. This
comparative analysis is essential for healthcare practitioners and policymakers who rely on
accurate forecasts to make informed decisions in the telemedicine domain.

m MSE
I RMSE
I MAE

20 1

151

Scores

10 4

04
ARIMA SARIMA LSTM Bidirectional LSTM

Figure 13: MSE, RMSE, MAE comparison for the 4 time series models implemented.

The Mean Squared Error (MSE) sees a reduction of approximately 89.3% from ARIMA
to SARIMA, 44.5% from SARIMA to LSTM, and a substantial 66.6% decrease from LSTM
to Bidirectional LSTM. Although there are changes in MAE and RMSE, we prioritize MSE
as the primary error metric. The transition from ARIMA to SARIMA resulted in a roughly
20.2% increase in accuracy, while the shift from SARIMA to LSTM marked an
approximately 59.8% improvement. Moving from LSTM to Bi-LSTM saw a significant



jump, yielding around 66.6% higher accuracy. The cumulative accuracy improvement from
ARIMA to Bi-LSTM is approximately 89.42%.

The plot reveals a maximum coincidence signifies that Bidirectional LSTM has
outperformed, exhibiting superior accuracy in predicting telemedicine trends. The alignment
underscores the model's exceptional performance, with a near-perfect match between
predicted and actual values.
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Figure 14: Comparative Forecasting Accuracy of ARIMA, SARIMA, LSTM, and Bi-
LSTM Models Against Actual Telemedicine Data
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