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Future Evolution of Telemedicine: Enhancing  

Healthcare Accessibility and Reliability through the 

Integration of Machine Learning Techniques  

  

  Arpitha Bhaskara Rao Ghat  

  22123318  
  

  

Abstract  

  

The research investigates the future evolution of telemedicine, focusing on enhancing 

healthcare accessibility through the integration of machine learning techniques. Amidst the 

COVID-19 pandemic, a four-week survey in the United States was conducted to analyse the 

increasing trend in telemedicine usage. Utilizing this dataset, the research applies ARIMA, 

SARIMA, LSTM, and Bi-LSTM models to forecast telemedicine utilization, with Mean 

Squared Error (MSE) as the error metric for evaluating predictive accuracy. MSE is pivotal in 

determining the model's precision in forecasting, measuring the average squared difference 

between predicted and actual values. The ARIMA model, serving as the baseline, registered a 

higher MSE of 22.2804, revealing its limitations in handling complex data. The SARIMA 

model showed improvement, reducing the MSE to 17.7817 and demonstrating better capability 

in addressing seasonal variations. The LSTM model further advanced accuracy, lowering the 

MSE to 7.1710, indicating its strength in deciphering intricate data patterns. However, the Bi-

LSTM model proved to be the most effective, achieving the lowest MSE of 2.3902, which 

highlights its exceptional ability in forecasting. This signifies an approximately 89.42% 

increase in accuracy from ARIMA to Bi-LSTM. These findings illustrate that advanced ML 

models, especially the Bi-LSTM outperforms the to transform telemedicine into a more 

efficient medical platform.  

  

1. Introduction  

1.1 Background  

Telemedicine leverages technologies to deliver healthcare services remotely. Its journey, 

dating back to the late 1900s, reflects a transformation from basic remote consultations to a 

comprehensive digital healthcare solution. The COVID-19 pandemic accelerated this 

evolution, showcasing telemedicine's critical role in ensuring continuous healthcare delivery. 

This period of rapid growth, however, has also highlighted the need for advanced technological 

integration to meet the increasing demands of modern healthcare systems.  

1.2 Importance  

The integration of machine learning (ML) in telemedicine represents a crucial step 

towards addressing current healthcare challenges. Despite its potential, telemedicine's full 

capabilities are yet to be realized. Advanced ML algorithms promise significant enhancements 
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in disease prediction, data analysis, and resource management. The application of machine 

learning algorithms stands to revolutionize telemedicine by offering more insights on patient 

care insights, and more accurate predictions related to health and medicine.  

1.3 Research Question and Objectives  

Central to this research is the question: "How can the integration of time series machine 

learning techniques elevate telemedicine's impact on healthcare accessibility and 

reliability?"   

This in-depth study focuses on implementation of time series models, that is ARIMA, 

SARIMA, LSTM, and Bi-LSTM, applied to a dataset having categorical data. The research 

explores their effectiveness in forecasting telemedicine usage trends, overcoming current 

limitations, and it concludes by proposing actionable strategies for the integration of ML into 

telemedicine, aiming to revolutionise healthcare delivery.  

1.4 Limitations  

With respect to data scope, the reliance on specific datasets, mainly from the United 

States, may not fully represent global telemedicine trends. Rapid technological advancements 

that have fast-paced evolution of machine learning technologies might outpace the current 

analysis, potentially affecting the long-term applicability of the findings. Different healthcare 

infrastructures across regions may affect the feasibility of applying the study's 

recommendations universally.  

1.5 Outline of the Report  
  

Section 2 (Related Work): Offers a comprehensive review of existing literature, examining 

the historical development, challenges, and emerging trends in telemedicine, and setting the 

stage for the study's context.  

Section 3 (Research Methodology): Elaborates on the methodological framework, 

encompassing data collection, pre-processing, KPSS test for ML models applications. Section 

4 (Design Specification): Provides an in-depth discussion on the selection of machine learning 

models, detailing the rationale behind choosing ARIMA, SARIMA, LSTM, and Bi-LSTM, and 

their relevance to the research objectives.  

Section 5 (Implementation): Describes the practical application of the selected models, 

including the process of model fitting, data analysis, and the interpretation of results. Section 

6 (Evaluation): Critically assesses the performance of each model, exploring their strengths 

and limitations in the context of telemedicine forecasting.  

Section 7 (Results): Presents the outcomes of the model comparisons, integrating visual and 

statistical analyses to provide a clear understanding of each model's efficacy.  

Section 8 (Findings and Discussions): Reflects on the research findings, discussing their 

implications for telemedicine and machine learning, and how they address the research 

question and objectives.  

Section 9 (Conclusion): Summarizes the study's key contributions, highlights its significance 

in the broader context of telemedicine and machine learning, and suggests potential avenues 

for future research in this evolving field.  

  

  

  

  



3  

  

  

2. Related Work  
  

“Over the next 10 years, the healthcare system will change to focus more on preventive 

medicine and healthcare in the home, with fewer doctors and a new class of home healthcare 

providers. Healthcare professionals need to debate how best to manage these changes.”  

-  Peter M Yellowlees and Peter M Brooks (1999)  

  

With the quote stated above, this literature review includes various sets of academic 

databases and papers to represent the current state of research in this field. The papers were 

chosen to trace the history of telemedicine and highlight the role of technological innovations, 

particularly Machine Learning, in understanding the prospects of telemedicine and how their 

techniques can improve its use in the future. The report addresses telemedicine issues including 

accessibility, diagnostic accuracy, patient involvement, and costeffectiveness. Exploring 

challenges and growth, our research provides a deeper insight into time series analysis, and at 

the end of the section we see how the distinctive nature of our research is envisioned to 

understand the future of telemedicine.  

2.1 Background and Challenges of Telemedicine  

According to Dr. Liji Thomas, telemedicine has made patient-doctor interactions 

digital, challenging traditional healthcare. Vuononvirta et al., 2011 explored the conflict 

between telemedicine's promise and its efficacy and expense. This topic is expanded by 

Bashshur, Shannon, and Krupinski (2011), who examined telemedicine's resiliency across 

infrastructure and privacy issues. Iribarne et al. (2020) investigated its use in several medical 

specializations, whereas Nittari et al. (2020) evaluated its ethical and legal implications in 

healthcare.  

2.2 Growth, Trends, and Overcoming Challenges  

Telemedicine has evolved and survived. Bashshur et al. (2018) vividly describe its 

dramatic rise during COVID-19, altering healthcare. Mehrotra et al. (2021) highlight the 

growing relevance of telemedicine in mental health, particularly in rural healthcare. Lluch 

(2011) acknowledges integration issues but highlights outstanding progress toward accessible 

healthcare. Mars (2013) examines Africa's healthcare revolution and how telemedicine might 

benefit global health.  

2.3 Evolution of Telemedicine from 1990s to 2019  
With the increase in technology and devices, telemedicine began during the early 1990s 

with pioneers like Angaran (1999) and Heinzelmann et al. (2005) who saw a trend toward 

customized, home-based care. Wang et al. (2019) examined the economic benefits and market 

dynamics of telemedicine before the pandemic, setting the groundwork for a disruptive 

healthcare delivery strategy.  

2.4 Rise and Extensive Usage During COVID-19  

During the outbreak of COVID-19, telemedicine grew its popularity. Bouabida et al. 

(2021) highlighted Medicaid's rapid adoption of telemedicine, while Nittari et al., 2022 and 

Panahi (2021) examined its potential to reduce health disparities. Telemedicine's adaptation 

and resilience in preserving care continuity during worldwide lockdowns are documented by 

Patel et al. (2021) and Bokolo (2021). Bashshur et al. (2021) and Calton et al. (2020) 



4  

  

  

emphasized telemedicine's pandemic response and long-term healthcare delivery potential. 

Telemedicine platforms have improved Virtual Diagnostic Solutions, as seen in Figure 1.  

  

  
Figure 1: Telemedicine Infrastructure and Components (Image Source)  

2.5 Post-pandemic Utilisation of Telemedicine via Machine Learning  

Pandya et al. (2021) and Mehrotra et al. (2021) addressed how to validate telemedicine 

in healthcare. Rubin (2021) promoted cross-state policy coherence. Machine learning opens a 

new chapter for Dhanya et al. (2022) on telemedicine app user perceptions. Wyld et al. (2022) 

and Schünke et al. (2022) investigated the relationship between AI and telemedicine, 

highlighting revolutionary changes in diagnoses and patient monitoring and presenting a future 

where healthcare relies increasingly on data.  

2.6 Time Series Analysis in Telemedicine  
Bouslama et al.'s latency-driven data controller in Spark Streaming aligns with our focus 

on managing temporal variability in telemedicine. Similarly, Wang et al.'s approach lies in 

leveraging image encoding and tiled CNNs for time series classification. With the forthcoming 

section, we detail our research for cleaning and modelling the dataset to see how time series 

analysis in telemedicine for utilising models like ARIMA, SARIMAX, LSTM and Bi-LSTM 

shall be evaluated and discussed.  

  

3. Research Methodology  
  

This section provides a guide through the procedural steps from data collection to 

advanced data modelling. The methodology for data preparation and pre-processing adopted in 

this study is depicted in the provided flowchart in figure 2.   

 
Figure 2: Workflow Diagram of Data Pre-processing   

https://www.researchgate.net/publication/362591109_AI_in_Telemedicine_An_Appraisal_on_Deep_Learning-Based_Approaches_to_Virtual_Diagnostic_Solutions_VDS
https://www.researchgate.net/publication/362591109_AI_in_Telemedicine_An_Appraisal_on_Deep_Learning-Based_Approaches_to_Virtual_Diagnostic_Solutions_VDS
https://www.researchgate.net/publication/362591109_AI_in_Telemedicine_An_Appraisal_on_Deep_Learning-Based_Approaches_to_Virtual_Diagnostic_Solutions_VDS
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3.1 Data pre-processing  

3.1.1 Data Loading  

The dataset, Telemedicine Use in the Last 4 Weeks was sourced from the Household 

Pulse Survey conducted by the National Center for Health Statistics (NCHS). The U.S. Census 

Bureau, in partnership with federal agencies, initiated the Household Pulse Survey to capture 

pandemic impacts on U.S. households. As conducted online, it gauges effects on employment, 

spending, food security, housing, education, and wellness, ensuring accurate and timely 

estimates. This dataset captures recent changes, aligning with the survey's focus on assessing 

the impact of the COVID-19 pandemic on the aspect of utilising accurate and timely estimates, 

making it well-suited for analysing telemedicine usage trends.  

  

3.1.2 Data Cleaning  

We focused on identifying and handling missing values. This was accomplished using 

the isnull().sum() method. As seen in the left-hand side of figure 3, we observe the that out of 

13 columns, 9 columns having missing values, we consider columns to be removed with a 

percentage of 60, where we make an assumption that more than the 60% missing values were 

removed to maintain a balance between data integrity of the dataset with a threshold of 0.6. 

With this process, ‘Quartile Range’ and ‘Suppression Flag’ were removed, as they were 

irrelevant for our analysis, due to redundancy and lack of critical importance for our research 

objectives.  

  
  

Figure 3: Comparative Overview of Dataset Integrity Pre- and Post-Cleaning  

3.1.3 Exploratory Data Analysis (EDA)  

This step involved a detailed examination of various categorical variables in the dataset. 

We used bar horizontal plots to visualize categories like ‘Indicator’, ‘Group’, ‘State’, 

‘Subgroup’, and ‘Phase’. This process helped us understand the distribution and frequency of 

these categories, providing insights into the dataset's composition. One such bar plot is as 

shown in figure 4, adults who utilised telemedicine and children who utilised telemedicine in 

the dedicated time frame.   

  

https://data.cdc.gov/NCHS/Telemedicine-Use-in-the-Last-4-Weeks/h7xa-837u
https://data.cdc.gov/NCHS/Telemedicine-Use-in-the-Last-4-Weeks/h7xa-837u
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Figure 4: Comparative Bar Chart with Indicators of Telehealth Appointments in Households 

with Children Versus Adults Over a Four-Week Period  

  

  

3.1.4 Data Refinement  

After EDA, data refinement was performed that included streamlining the dataset by 

removing columns such as 'Time Period Label', 'Time Period End Date', and 'Confidence 

Interval' as shown below in figure 5. These columns were not essential for our analysis 

objectives.  

  

  
Figure 5: Streamlined Telemedicine Dataset Post-Refinement for Analysis  

3.1.5 Type Conversion  

We transformed the 'Time Period Start Date' column from an object type to a datetime 

format as shown below in figure 6. This conversion facilitated time-based analysis and was 

critical for subsequent time-series analysis that we intent to.  
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Figure 6: Transformation of 'Time Period Start Date' Column to Datetime Type in 

Pandas DataFrame  

3.1.6 Indexing Data  

The refined 'Time Period Start Date' column was then set as the DataFrame index, 

organizing the data chronologically. This allowed for more intuitive access of time-series data 

within the dataset.  

3.1.7 Data Synthesis  

Throughout the pre-processing phase, we ensured that all time related patient records and 

survey data were retained. The aim was to synthesize the dataset by including only the most 

accurate information for forecasting of the analysis. This synthesis ensured that each entry in 

the dataset contributed valuable insights for our research. The data pre-processing to convert 

categorical data into a machine-readable numerical data format ensures the ethical 

consideration to protect patient privacy and avoid retaining sensitive customer data that could 

be traced back to individuals. In figure 7, the dataset summary is presented post the 

preprocessing which showcases all the retained columns, ML-applicable data types, and the 

absence of NaN (Not a Number) values. This curated dataset is now primed for the application 

of time series models.  

  

  
Figure 7: Concise summary of dataset after performing data pre-processing  

3.2 Time Series Analysis  

The research aims to forecast telemedicine utilization over time, necessitating a time 

series analytical approach. This approach is particularly suited to our dataset, which chronicles 

the evolving usage patterns of telemedicine, as it can analyse the underlying trends, 

seasonalities, and temporal dynamics of telemedicine use which are critical in interpreting how 

telemedicine usage has changed and might change in the future.  

3.2.1 KPSS Test for Stationarity  

The KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test was applied to the 'Value' column 

to check for stationarity, which is a critical assumption in time-series analysis. A visual 

examination of autocorrelation and partial autocorrelation plots was also conducted. Following 

the comprehensive data pre-processing phase, we advance to the next stage of time series 

analysis that is the assertion of stationarity within our data, which is a prerequisite for the 
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reliability of our predictive models. The rationale for the KPSS test is grounded in its ability to 

interrogate the series for any presence of unit roots, that is the indicators of nonstationarity. The 

execution of the KPSS test proceeds as follows depicted on the flowchart below:  

1. Computation of the KPSS Statistic: The statistic is calculated as a measure of 

stationarity, indicating how strongly the series is defined by a trend.  

2. P-Value Assessment: The p-value offers a significance test of the KPSS statistic, with 

values below 0.05 typically rejecting the null hypothesis of stationarity.  

3. Lag Selection: The number of lags used in the test is determined based on the data to 

account for serial correlation.  

4. Critical Value Comparison: The KPSS statistic is compared with critical values at 

conventional significance levels to confirm or deny stationarity.   

The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots 

provided a visual inspection of correlations. The flowchart in figure 8 below shows the time 

series analysis process flow using KPSS test and data segmentation into train and test sets.  

  
  

Figure 8: Flowchart of Time Series Analysis Process Using KPSS Test and Data  

Segmentation  

  

Time series models cannot handle NaN values and require complete datasets for accurate 

forecasting. Before training the models, NaN values must be addressed either through 

imputation, which involves estimating the missing values based on available data to maintain 

the continuity of the time series. . According to solutions to missing data (Haitovsky 1968), 

kpss_test(data['Value'].diff().dropna()) is used on the differenced 'Value' column of a 

DataFrame, after removing NaN values, which helps determine if the series is stationary or if 

https://bookdown.org/mike/data_analysis/imputation-missing-data.html#s
https://bookdown.org/mike/data_analysis/imputation-missing-data.html#s
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it exhibits trends or seasonality. The KPSS test initially indicated that the 'Value' time series 

was non-stationary, likely due to the presence of trend and seasonality, as suggested by a KPSS 

Statistic significantly larger than the critical values and a low p-value. To achieve stationarity, 

a common approach is to apply differencing to the data. This involves subtracting the previous 

observation from the current observation. When the differencing operation 

data['Value'].diff().dropna() was applied to the series, the subsequent KPSS test yielded a much 

lower KPSS Statistic and a higher p-value, which fell above the critical values. This indicates 

that the differenced series does not have a unit root and can be considered stationary. This 

transformation is evident in the ACF and PACF plots (Figure 9 and Figure 10), where the 

autocorrelations of the differenced series dropped off more quickly compared to the original 

series, further suggesting the achievement of stationarity. This assessment was conducted in 

two stages. Initially, the KPSS test revealed that the original series did not meet the stationarity 

criterion (KPSS Statistic: 3.023; p-value: 0.01), implying the influence of trend and seasonal 

components. Subsequently, a differencing transformation was applied, which is a standard 

remedy for removing such non-stationary elements. The differenced series passed the KPSS 

test (KPSS Statistic: 0.032; p-value: 0.10), suggesting successful mitigation of the non-

stationary properties.   

  

           
Figure 9: Autocorrelation Function (ACF) Plot and Partial Autocorrelation Function (PACF)  

Plot of Differenced Time Series  

  

  
Figure 10: Autocorrelation Function (ACF) Plot and Partial Autocorrelation Function  

(PACF) Plot for Stationarised Time Series  

  

The KPSS (Kwiatkowski-Phillips-Schmidt-Shin) test was first performed to 'Value' column 

of the dataset to assess stationarity. The test showed non-stationarity with a KPSS Statistic of 

3.023199187659166 and a p-value of 0.01. These findings, especially the KPSS Statistic being 
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over the critical thresholds (10%: 0.347, 5%: 0.463, 2.5%: 0.574, 1%: 0.739), indicated data 

trends or seasonality. In time series analysis, non-stationarity can lead to misleading results 

because most forecasting models assume a consistent mean, variance, and autocorrelation. Our 

differencing code was data['Value'].diff().dropna(), with which by removing data changes, 

differencing stabilizes the mean of time series thus eliminating trend and seasonality 

implications. This task turns the data into a series of changes from one period to the next. When 

we reapplied the KPSS test on this differenced series, the KPSS Statistic decreased to 

0.03154485283141166 and the p-value rose to 0.1. The differenced series does not reject the 

null hypothesis of stationarity because this new KPSS Statistic is considerably below the 

critical values and has a larger p-value. Thus, differencing makes the series stationary. Time 

series forecasting relies on stationary data to keep model parameters constant, resulting in more 

accurate forecasts. The differencing technique's impact on KPSS test results shows that our 

dataset has stabilized, preparing us for the next phase of our research.   

3.2.2 Data Segmentation  

Upon establishing stationarity, the dataset was segmented into training and testing sets. A 

methodical approach was taken, preserving the final 52 observations (28 lags observed in 

stationarity test, 52 for train and test sets) to provide an unbiased assessment of the forecasting 

model's performance.   

  

  
Figure 11: Number of lags in non-stationary KPSS test  

3.2.3 Model Preparation  

Once we established segmentation, the data was partitioned into independent variables (X) 

and the dependent variable (Y), laying the groundwork for the application of predictive 

modelling techniques. The shapes of these datasets were duly recorded, ensuring congruence 

between the number of observations and the corresponding variables. A placeholder DataFrame 

named 'score' was created to serve as a repository for model evaluation metrics, encapsulating 

the performance of various forecasting algorithms like ARIMA, SARIMAX, LSTM, and Bi-

LSTM where we will examine how each of these models uses the stationary character of our 

dataset to make accurate forecasts.  

  

4. Design Specification  
  

The design specification section provides an overview of the flow in figure 12 that has been 

followed throughout the research. Firstly, the telemedicine dataset was obtained from the 

Centers for Disease Control and Prevention catalogue. Subsequently, data pre-processing 

involved quality checks, cleaning, and refinement, ensuring stationarity through the KPSS test 

and differencing in time series analysis. The dataset was then segmented for training and testing 

sets, preparing for the application and evaluation of models (ARIMA, SARIMAX, LSTM, Bi-

LSTM). The subsequent section details the implementation of time series models, evaluating 

performance metrics, and interpreting results for telemedicine usage.  

  

https://data.cdc.gov/
https://data.cdc.gov/
https://data.cdc.gov/
https://data.cdc.gov/
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Figure 12: Design Workflow of Telemedicine Data Analysis from Pre-processing to Model  

Evaluation and Conclusion  

  

5. Implementation  
  

In time-series analysis, the ARIMA model is characterized by three parameters: p, d, 

and q. The parameter p represents the number of autoregressive terms, d indicates the degree 

of differencing involved, and q corresponds to the number of moving average terms. These 

parameters are pivotal in capturing the dependencies and dynamics of time-series data. The 

selection of these values is based on diagnostic tests and autocorrelation analyses, ensuring that 

the model captures the underlying patterns in the data effectively.  

5.1 Data Pre-processing for Time-Series Forecasting Models  

Data pre-processing is a critical step in the implementation of time-series forecasting 

models. For the ARIMA and SARIMAX models, pre-processing involved ensuring the data 

was stationary, a fundamental requirement for these statistical models. The KPSS test was 

employed on the 'Value' time series to identify trends and seasonality. In the case of the LSTM 

and Bidirectional LSTM models, pre-processing took a different turn. The data had to be 

converted into a three-dimensional array format that these neural networks require. This was 

achieved by reshaping the data into the form (samples, time steps, features) using NumPy's 

‘reshape’ function. In our approach, we have chosen error metrics, such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) to evaluate the 

performance of our forecasting models. We emphasise that a lower Mean Squared Error (MSE) 
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corresponds to higher forecasting accuracy enabling a comprehensive analysis of ARIMA, 

SARIMA, LSTM, and Bi-LSTM models for evaluating telemedicine forecasting precision.  

 

5.1.1 ARIMA Model  

The ARIMA (28, 1, 20) model fitting on 3052 observations was our first attempt. These 

values are chosen based on the time series characteristics, like 28 lags and a noticeable change 

in ACF and PACF plots after 20 lags and a differential of 1. The high AIC and BIC values 

suggested a complex model, but the tests showed the residuals were independent and normally 

distributed, which is good. Forecast comparisons and visualizations showed some 

discrepancies between expected and actual values, recommending improvement.   

5.1.2 SARIMA Model  

We added the SARIMA (28, 1, 20)x(0, 1, [1, 2], 28) model to account for seasonality in our 

time-series analysis. This seasonal order indicates that there is a seasonal moving average 

component (2) with a seasonal period of 28. The value of 0 for the seasonal autoregressive 

order (P) indicates that there is no seasonal autoregressive component.  So, while the 

autoregressive and differencing components may resemble those in ARIMA, the focus is on 

seasonal differencing (D), seasonal moving average (Q), and the seasonal period (S) of 28 time 

units.  so SARIMAX suggests a pattern that repeats every 28 observations. The model's 

structure was sophisticated, having non-seasonal and seasonal components to capture trends 

and seasonal changes. Although several coefficients were not statistically significant, the lower 

AIC and BIC values compared to the ARIMA model showed a better match. Performance 

measures showed higher accuracy over the ARIMA model, highlighting the importance of 

seasonal impacts in healthcare forecasting.  

  
Figure 13: ARIMA and SARIMA Model Forecast versus Actual Time Series Data  

5.1.3 LSTM Model  

The architecture of LSTM is configured with multiple layers, specifying units, activation 

functions, and dropout rates. The model is compiled with mean squared error as the loss 

function. It is trained on the training set (X_train, Y_train) for 10 epochs. The model's 

robustness was shown by its decreasing loss throughout training epochs and its improved test 

set performance, as shown by the lowest MSE.   

5.1.4 Bi-LSTM Model  

Finally, the Bi-LSTM model processed data in both forward and backward time 

orientations, improving temporal understanding. Its superior predictive power was shown by 

its lower loss and error metrics during training and top test set performance. The comparative 

analysis of ACF and PACF plots across the ARIMA, SARIMA, LSTM, and Bi-LSTM models 

provides a multifaceted view of time-series forecasting. These plots serve as a visual tool for 

understanding the correlation structure of the data and the lags that significantly influence the 
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models. For ARIMA and SARIMA, the plots help fine-tune the (p, d, q) parameters and 

seasonal components, ensuring the models are attuned to the inherent seasonality and trends. 

After thoroughly analysing each model's performance measures and found that as we 

proceeded from ARIMA to Bi-LSTM, our forecasts improved, which is crucial in telemedicine 

for resource allocation, demand prediction, and service optimization.  

  

  

  
Figure 14: LSTM Model and Bi-LSTM Model Forecast versus Actual Time Series Data  

  

  
Figure 15: Comparative Forecast Results of ARIMA, SARIMA, LSTM, and Bi-LSTM  

Models  

  
Figure 16: Error Metrics Comparison Across ARIMA, SARIMA, LSTM, and Bi-LSTM  

Models  

  

6. Evaluation   
  

Tableau visualization helps us interpret telemedicine usage data in the evaluation phase. 

Figure 17 shows telemedicine usage comparison over discrete time periods in bubble and pie 

charts, providing statistical confidence. The bubble chart on the left side in figure 17 displays 

telemedicine usage over discrete time periods. Each bubble's size is proportional to the value 

of telemedicine usage during that specific time period, with larger bubbles indicating higher 

usage.    



14  

  

  

6.1 Visualisation  

  

  
Figure 17: Comparative Visual Analysis of Telemedicine Usage: Bubble Chart of Usage 

by Time Period and CI, and Pie Chart Distribution by Phase  

  

The pie chart on the right side represents the distribution of telemedicine usage across 

different phases of a time period. Each slice of the pie corresponds to a distinctive time period, 

with its area representing the proportion of telemedicine usage in that phase. The colour coding 

matches each time period label with its corresponding slice in the pie chart.   

  
Figure 18: Age-Segmented Telemedicine Utilization Trends Over Time  

  

The graph in Figure 18 depicts the escalation of telemedicine use, segmented by age in the 

Subgroup, distinctively over dates, months, and years. Each colour within the bars corresponds 

to a specific age demographic, illustrating the proportional use within each group. The most 

notable uptick is observed in the '80 years and above' segment, indicating a significant pivot to 
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telemedicine among the elderly. The bar chart in Figure 19 presents two sets of telemedicine 

usage data over several time periods, distinguished by colour: orange for households with 

children and blue for adults. Each bar represents a four-week span, with the percentage of the 

two subgroups who had a health professional appointment via video or phone. The bar plot 

shows a maximum of 4% higher telemedicine usage among adults compared to households 

with children. This could reflect differing healthcare needs or accessibilities between these 

groups.   

  

  
Figure 19: Distribution of Telemedicine Indicators Over Time Periods  

  

7. Results  
  

Building upon the visual insights, the results section undertakes a numerical examination 

of forecasting models, as detailed in the below table. This table provides error metrics (MSE, 

RMSE, MAE) for ARIMA, SARIMA, LSTM, and Bi-LSTM models, providing a quantitative 

foundation for the analysis. Each model's distinct strengths and weaknesses become apparent, 

setting the stage for a concise exploration of their individual contributions to telemedicine 

forecasting. The subsequent subsections dissect the performances, revealing the superior 

accuracy of the Bi-LSTM model.   

7.1 Error Metrics Performance  

After testing all models, the Bi-LSTM was the most accurate, suggesting it could be the 

best telemedicine predicting model. ARIMA's basic insights, SARIMA's seasonal adjustments, 

and LSTM's deep learning finesse each contributed to our grasp of healthcare time-series 

forecasting. The examination and findings show that the Mean Squared Error (MSE) reductions 

across ARIMA, SARIMA, LSTM, and Bidirectional LSTM models demonstrate significant 
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accuracy improvements, with percentages ranging from approximately 12.54% to 81.02%, 

reinforcing their effectiveness in forecasting telemedicine trends. The Bi-LSTM model's grasp 

of bidirectional methodology in temporal data makes it an advanced prediction tool for 

telemedicine as it can learn from past and future data points concurrently, making it a demand 

forecasting time-series model. Figure 20 provides the comparative analysis of all the models. 

  
Figure 20: Comparative Analysis of Forecasting Performance for ARIMA, SARIMA, LSTM, 

and Bi-LSTM Models  

7.2 Comparative Analysis  

On comparing the performances of each of the time series models, we summarise the results 

through the table below, that synthesizes the performance of four distinct time-series 

forecasting models, highlighting their efficacy in predicting telemedicine-related metrics as 

tabled below in Table 1.  
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Model  Mean Squared 

Error  

Root Mean Squared 

Error  

Mean Absolute 

Error  

ARIMA  22.2804  4.7202  3.8236  

SARIMA  17.7817  3.5751  2.9747  

LSTM  7.1710  2.6779  2.3481  

Bidirectional LSTM  2.3902  1.5460  1.3236  

  

Table 1: Error Metric Comparison for ARIMA, SARIMA, LSTM, and Bi-LSTM Forecasting 

Models  

  

1. ARIMA: With an MSE of 22.2804, RMSE of 4.7202, and MAE of 3.8236, the ARIMA 

model has the highest error metrics, suggesting it is the least precise among the four 

models for this dataset.  

2. SARIMA: The improved scores with an MSE of 17.7817, RMSE of 3.5751, and MAE 

of 2.9747 indicate that incorporating seasonality through SARIMA yields better 

forecasting accuracy than ARIMA.  

3. LSTM: The LSTM model shows a marked decrease in error metrics (MSE of 7.1710, 

RMSE of 2.6779, and MAE of 2.3481), reflecting its superior capability to capture 

complex, non-linear patterns in the data.  

4. Bidirectional LSTM: The lowest scores across all metrics (MSE of 2.3902, RMSE of 

1.5460, and MAE of 1.3236) demonstrate that the Bidirectional LSTM model 

outperforms the others significantly, offering the most precise forecasts for the 

telemedicine data.  

  

The transition from ARIMA to SARIMA resulted in a roughly 20.2% increase in accuracy, 

while the shift from SARIMA to LSTM marked an approximately 59.8% improvement. 

Moving from LSTM to Bi-LSTM saw a significant jump, yielding around 66.6% higher 

accuracy. The cumulative accuracy improvement from ARIMA to Bi-LSTM is approximately 

89.42%.  

  

The line chart in Fig 21 compares the performance of four forecasting models against actual 

telemedicine metrics. The ARIMA model shows the largest deviation, while SARIMA 

improves on this, suggesting better handling of seasonality. The LSTM model's predictions are 

closer to the actual data, and the Bi-LSTM model's forecasts align most closely with the actual 

‘Value’ Column, confirming its superior accuracy as indicated by its lowest error metrics (MSE, 

RMSE, MAE). The graph solidifies the quantitative analysis, showing that the Bi-LSTM model 

is not only statistically superior but also practically more aligned with the actual data trends.   
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Figure 21: Comparative Forecasting Accuracy of ARIMA, SARIMA, LSTM, and Bi-LSTM  

Models Against Actual Telemedicine Data  

  

8. Findings and Discussions  
  

Advanced Machine Learning in Telemedicine Forecasting by employing ARIMA, 

SARIMA, LSTM, and Bi-LSTM models has not only addressed the gaps identified in the 

existing literature but also set new benchmarks in forecasting accuracy. Notably, the BiLSTM 

model outperformed the other models with the lowest Mean Squared Error (MSE), a finding 

that aligns with the growing emphasis on sophisticated data analysis techniques in healthcare, 

as suggested by studies like Pandya et al. (2021) and Wyld et al. (2022). The BiLSTM model, 

with its lowest MSE, demonstrated superior performance compared to the traditional ARIMA 

model, echoing the findings of Rubin (2021) and Schünke et al. (2022) on the potential of 

advanced analytical techniques in telemedicine. Our study extends the discussions initiated by 

authors like Dr. Liji Thomas, Vuononvirta et al., and Bashshur et al., who have laid the 

foundation in understanding the challenges of telemedicine utilisation by employing cutting 

edge technology. Although many concerns are raised regarding the limitations and future 

research, this research acknowledges limitations due to the primary reliance on U.S. datasets, 

as highlighted by Iribarne et al. (2020) and Nittari et al. (2022). The rapid evolution of machine 

learning technologies, as discussed by Dhanya et al. (2022), also poses a challenge to the long-

term applicability of these findings.   
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9. Conclusion   
  

This research project offers a thorough examination of the field's expanding importance in 

the world's healthcare organization. The study investigates how telemedicine might be 

revolutionized by time series models. The study demonstrates the effectiveness of machine 

learning approaches, particularly the Bi-LSTM model, in precisely predicting patterns of 

telemedicine utilization through a comprehensive assessment of multiple forecasting models. 

The study's conclusions highlight how important telemedicine is to improve the accessibility 

and dependability of healthcare, especially considering international emergencies like the 

COVID-19 pandemic. It shows a future in which machine learning-enabled telemedicine serves 

as a platform for effective and individualized patient care for delivering healthcare. The study 

highlights the necessity for ongoing innovation and the implementation of cuttingedge 

technologies in healthcare and offers insightful information for researchers and healthcare 

practitioners. This research project establishes the foundation for ongoing investigations in this 

area with the goal of advancing telemedicine and a hope for improving the quality of healthcare 

services around the globe.  

  

References  

A. Bouslama, Y. Laaziz and A. Tali, "Scalable and Real-Time Time Series Analytics: 

Telemedicine as Use Case," 2018 IEEE 5th International Congress on Information Science and 

Technology (CiSt), Marrakech, Morocco, 2018, pp. 70-73, doi: 10.1109/CIST.2018.8596544  

Angaran D. M. (1999). Telemedicine and telepharmacy: current status and future implications. 

American journal of health-system pharmacy : AJHP : official journal of the  

American  Society  of  Health-System  Pharmacists,  56(14),  1405–1426.  

https://doi.org/10.1093/ajhp/56.14.1405\  

Barnett, M. L., Huskamp, H. A., Busch, A. B., Uscher-Pines, L., Chaiyachati, K. H., &  

Mehrotra, A. (2021). Trends in Outpatient Telemedicine Utilization Among Rural Medicare  

Beneficiaries,  2010  to  2019.  JAMA  health  forum,  2(10),  e213282.  

https://doi.org/10.1001/jamahealthforum.2021.3282  

Bashshur, R. L., Doarn, C. R., Frenk, J. M., Kvedar, J. C., Shannon, G. W., & Woolliscroft, J. 

O. (2020). Beyond the COVID Pandemic, Telemedicine, and Health Care. Telemedicine 

journal and e-health : the official journal of the American Telemedicine Association, 26(11), 

1310–1313. https://doi.org/10.1089/tmj.2020.0328  

Bashshur, R. L., Reardon, T. G., & Shannon, G. W. (2000). Telemedicine: a new health care 

delivery system. Annual review of public health, 21, 613–637.  

https://doi.org/10.1146/annurev.publhealth.21.1.613  

Bashshur, R. L., et al., (2009). National telemedicine initiatives: essential to healthcare reform. 

Telemedicine journal and e-health : the official journal of the American Telemedicine 

Association, 15(6), 600–610. https://doi.org/10.1089/tmj.2009.9960  

https://doi.org/10.1109/CIST.2018.8596544
https://doi.org/10.1109/CIST.2018.8596544
https://doi.org/10.1109/CIST.2018.8596544
https://doi.org/10.1093/ajhp/56.14.1405/
https://doi.org/10.1093/ajhp/56.14.1405/
https://doi.org/10.1093/ajhp/56.14.1405/
https://doi.org/10.1001/jamahealthforum.2021.3282
https://doi.org/10.1001/jamahealthforum.2021.3282
https://doi.org/10.1089/tmj.2020.0328
https://doi.org/10.1089/tmj.2020.0328
https://doi.org/10.1146/annurev.publhealth.21.1.613
https://doi.org/10.1146/annurev.publhealth.21.1.613
https://doi.org/10.1089/tmj.2009.9960
https://doi.org/10.1089/tmj.2009.9960


20  

  

  

Bokolo A. J. (2021). Exploring the adoption of telemedicine and virtual software for care of 

outpatients during and after COVID-19 pandemic. Irish journal of medical science, 190(1), 1–

10. https://doi.org/10.1007/s11845-020-02299-z  

Bouabida, K., Lebouché, B., & Pomey, M. P. (2022). Telehealth and COVID-19 Pandemic:  

An Overview of the Telehealth Use, Advantages, Challenges, and Opportunities during 

COVID-19 Pandemic. Healthcare (Basel, Switzerland), 10(11), 2293.  

https://doi.org/10.3390/healthcare10112293  

Calton, B., Abedini, N., & Fratkin, M. (2020). Telemedicine in the Time of Coronavirus.  

Journal  of  pain  and  symptom  management,  60(1),  e12–e14.  

https://doi.org/10.1016/j.jpainsymman.2020.03.019  

Dávalos, María & French, Michael & Burdick, Anne & Simmons, Scott. (2009). Economic 

Evaluation of Telemedicine: Review of the Literature and Research Guidelines for Benefit– 

Cost Analysis. Telemedicine journal and e-health : the official journal of the American 

Telemedicine Association. 15. 933-48. https://doi.org/10.1089/tmj.2009.0067  

Ekeland, A. G., Bowes, A., & Flottorp, S. (2010). Effectiveness of telemedicine: a systematic 

review of reviews. International journal of medical informatics, 79(11), 736–771. 

https://doi.org/10.1016/j.ijmedinf.2010.08.006  

Gadzinski, A. J., Gore, J. L., Ellimoottil, C., Odisho, A. Y., & Watts, K. L. (2020). Implementing 

Telemedicine in Response to the COVID-19 Pandemic. The Journal of urology, 204(1), 14–16. 

https://doi.org/10.1097/JU.0000000000001033  

Giacalone, A., Marin, L., Febbi, M., Franchi, T., & Tovani-Palone, M. R. (2022). eHealth, 

telehealth, and telemedicine in the management of the COVID-19 pandemic and beyond:  

Lessons learned and future perspectives. World journal of clinical cq1ases, 10(8), 2363– 2368. 

https://doi.org/10.12998/wjcc.v10.i8.2363  

Håkansson, S., & Gavelin, C. (2000). What do we really know about the cost-effectiveness of 

telemedicine?. Journal of telemedicine and telecare, 6 Suppl 1, S133–S136. 

https://doi.org/10.1258/1357633001934438  

Heinzelmann, P. J., Lugn, N. E., & Kvedar, J. C. (2005). Telemedicine in the future. Journal of 

telemedicine and telecare, 11(8), 384–390. https://doi.org/10.1177/1357633X0501100802  

Hersh, W. R., Helfand, M., Wallace, J., Kraemer, D., Patterson, P., Shapiro, S., & Greenlick, 

M. (2001). Clinical outcomes resulting from telemedicine interventions: a systematic review. 

BMC medical informatics and decision making, 1, 5. https://doi.org/10.1186/1472-6947-1-5  

Hjelm N. M. (2005). Benefits and drawbacks of telemedicine. Journal of telemedicine and 

telecare, 11(2), 60–70. https://doi.org/10.1258/1357633053499886  

Iribarne, A., et al., & the American College of Cardiology Cardiac Surgery Section Leadership 

Council (2020). Cardiac surgery considerations and lessons learned during the  

COVID‐19  pandemic.  Journal  of  Cardiac  Surgery,  35(8),  1979–1987.  

https://doi.org/10.1111/jocs.14798  

https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.1007/s11845-020-02299-z
https://doi.org/10.3390/healthcare10112293
https://doi.org/10.3390/healthcare10112293
https://doi.org/10.1016/j.jpainsymman.2020.03.019
https://doi.org/10.1016/j.jpainsymman.2020.03.019
https://doi.org/10.1089/tmj.2009.0067
https://doi.org/10.1089/tmj.2009.0067
https://doi.org/10.1016/j.ijmedinf.2010.08.006
https://doi.org/10.1016/j.ijmedinf.2010.08.006
https://doi.org/10.1097/JU.0000000000001033
https://doi.org/10.1097/JU.0000000000001033
https://doi.org/10.12998/wjcc.v10.i8.2363
https://doi.org/10.12998/wjcc.v10.i8.2363
https://doi.org/10.1258/1357633001934438
https://doi.org/10.1258/1357633001934438
https://doi.org/10.1177/1357633X0501100802
https://doi.org/10.1177/1357633X0501100802
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1186/1472-6947-1-5
https://doi.org/10.1258/1357633053499886
https://doi.org/10.1258/1357633053499886
https://doi.org/10.1111/jocs.14798
https://doi.org/10.1111/jocs.14798


21  

  

  

Ishfaq, R. & Raja, U. (2021). "Telemedicine in Healthcare 1: Exploring its Uses, Benefits and 

Disadvantages," Journal of Communication in Healthcare, 14(1), pp. 8-16.  

Kichloo, A., et al., (2020). Telemedicine, the current COVID-19 pandemic and the future: a 

narrative review and perspectives moving forward in the USA. Family medicine and 

community health, 8(3), e000530. https://doi.org/10.1136/fmch-2020-000530  

Kruse, C. S., Kristof, C., Jones, B., Mitchell, E., & Martinez, A. (2016). Barriers to Electronic 

Health Record Adoption: a Systematic Literature Review. Journal of medical systems, 40(12), 

252. https://doi.org/10.1007/s10916-016-0628-9  

Lluch M. (2011). Healthcare professionals' organisational barriers to health information 

technologies-a literature review. International journal of medical informatics, 80(12), 849– 

862. https://doi.org/10.1016/j.ijmedinf.2011.09.005  

M., D. and S., S. (2022), "A machine learning approach on analysing the sentiments in the 

adoption of telemedicine application during COVID-19", Journal of Science and Technology 

Policy Management, Vol. ahead-of-print No. ahead-of-print. 

https://doi.org/10.1108/JSTPM01-2022-0017  

Mars M. (2013). Telemedicine and advances in urban and rural healthcare delivery in Africa.  

Progress  in  cardiovascular  diseases,  56(3),  326–335.  

https://doi.org/10.1016/j.pcad.2013.10.006  

Nittari, G., Khuman, R., Baldoni, S., Pallotta, G., Battineni, G., Sirignano, A., Amenta, F., & 

Ricci, G. (2022). Telemedicine Practice: Review of the Current Ethical and Legal Challenges. 

Telemedicine journal and e-health : the official journal of the American Telemedicine 

Association, 26(12), 1427–1437. https://doi.org/10.1089/tmj.2019.0158  

Oh, H., Rizo, C., Enkin, M., & Jadad, A. (2005). What is eHealth (3): a systematic review of 

published definitions. Journal of medical Internet research, 7(1), e1.  

https://doi.org/10.2196/jmir.7.1.e1  

Pandya, S., Doraiswamy, S., Hamid, P., Kuppuswamy, S. & Altuwaijri, M. (2021). "The  

Impact of Telemedicine on Health Care Delivery in the COVID-19 Pandemic," International 

Journal of Health Services, 51(4), pp. 463-477  

Patel, S. Y., Mehrotra, A., Huskamp, H. A., Uscher-Pines, L., Ganguli, I., & Barnett, M. L.  

(2021). Trends in Outpatient Care Delivery and Telemedicine During the COVID-19 Pandemic 

in the US. JAMA internal medicine, 181(3), 388–391.  

https://doi.org/10.1001/jamainternmed.2020.5928  

Rak, K. J et al., (2017). Identifying Strategies for Effective Telemedicine Use in Intensive Care 

Units: The ConnECCT Study Protocol. International journal of qualitative methods, 16(1), 

10.1177/1609406917733387. https://doi.org/10.1177/1609406917733387  

Ryu S. (2012). Telemedicine: Opportunities and Developments in Member States: Report on 

the Second Global Survey on eHealth 2009 (Global Observatory for eHealth Series, Volume  

2).  Healthcare  Informatics  Research,  18(2),  153–155.  

https://doi.org/10.4258/hir.2012.18.2.153  

https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1136/fmch-2020-000530
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1007/s10916-016-0628-9
https://doi.org/10.1016/j.ijmedinf.2011.09.005
https://doi.org/10.1016/j.ijmedinf.2011.09.005
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1108/JSTPM-01-2022-0017
https://doi.org/10.1016/j.pcad.2013.10.006
https://doi.org/10.1016/j.pcad.2013.10.006
https://doi.org/10.1089/tmj.2019.0158
https://doi.org/10.1089/tmj.2019.0158
https://doi.org/10.2196/jmir.7.1.e1
https://doi.org/10.2196/jmir.7.1.e1
https://doi.org/10.1001/jamainternmed.2020.5928
https://doi.org/10.1001/jamainternmed.2020.5928
https://doi.org/10.1177/1609406917733387
https://doi.org/10.1177/1609406917733387
https://doi.org/10.4258/hir.2012.18.2.153
https://doi.org/10.4258/hir.2012.18.2.153


22  

  

  

Schünke, L. C., Mello, B., da Costa, C. A., Antunes, R. S., Rigo, S. J., Ramos, G. O., Righi,  

R. D. R., Scherer, J. N., & Donida, B. (2022). A rapid review of machine learning approaches 

for telemedicine in the scope of COVID-19. Artificial intelligence in medicine, 129, 102312.  

https://doi.org/10.1016/j.artmed.2022.102312  

Scott R, Mars M. Telehealth in the developing world: current status and future prospects.  

Smart  Homecare  Technology  and  TeleHealth.  2015;3:25-37  

https://doi.org/10.2147/SHTT.S75184  

Shaver J. (2022). The State of Telehealth Before and After the COVID-19 Pandemic. Primary 

care, 49(4), 517–530. https://doi.org/10.1016/j.pop.2022.04.002  

Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, 

L. J. (2020). Telehealth for global emergencies: Implications for coronavirus disease  

2019  (COVID-19).  Journal  of  telemedicine  and  telecare,  26(5), 

 309–313. https://doi.org/10.1177/1357633X20916567  

Thimbleby H. (2013). Technology and the future of healthcare. Journal of public health 

research, 2(3), e28.  Thomas, L., MD. (2023, January 18). What is Telemedicine? Retrieved 

from https://www.news-medical.net/health/What-is-Telemedicine.aspx  

Vuononvirta, Tiina & Timonen, Markku & Keinänen-Kiukaanniemi, Sirkka & Timonen, Olavi 

& Ylitalo, Kirsti & Kanste, Outi & Taanila, Anja. (2011). The compatibility of telehealth with 

health-care delivery. Journal of telemedicine and telecare. 17. 190-4. 

https://doi.org/10.1258/jtt.2010.100502  

Wade, V.A., Karnon, J., Elshaug, A.G. et al. A systematic review of economic analyses of 

telehealth services using real time video communication. BMC Health Serv Res 10, 233 (2010). 

https://doi.org/10.1186/1472-6963-10-233  

Wang, X., Zhang, Z., Zhao, J., & Shi, Y. (2019). Impact of Telemedicine on Healthcare  

Service System Considering Patients’ Choice. Discrete Dynamics in Nature and Society, 2019, 

Article ID 7642176, 16 pages. https://doi.org/10.1155/2019/7642176  

Wang, Z., & Oates, T. (2015, January). Encoding time series as images for visual inspection 

and classification using tiled convolutional neural networks. In Workshops at the twentyninth 

AAAI conference on artificial intelligence (Vol. 1). Menlo Park, CA, USA: AAAI.  

  

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.artmed.2022.102312
https://doi.org/10.1016/j.artmed.2022.102312
https://doi.org/10.2147/SHTT.S75184
https://doi.org/10.2147/SHTT.S75184
https://doi.org/10.1016/j.pop.2022.04.002
https://doi.org/10.1016/j.pop.2022.04.002
https://doi.org/10.1177/1357633X20916567
https://doi.org/10.1177/1357633X20916567
https://doi.org/10.1258/jtt.2010.100502
https://doi.org/10.1258/jtt.2010.100502
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1186/1472-6963-10-233
https://doi.org/10.1155/2019/7642176
https://doi.org/10.1155/2019/7642176


23  

  

  

Thesis Questionnaire 

Question 1:   

What is meant by the quality check of data in Figure 2 and how this feature is carried out in 

implementation?  

 

Answer: 

The Quality check of data step that is mentioned in the flowchart in Figure 2 is just to ensure 

that the data is loaded correctly and the steps taken are to view data information and printing 

the top few of the data.  

Question 2:  

Can you elaborate on what Figure 13 and Figure 19 represent? How about the description of 

Figure 15 and Figure 16?  

 

Answer:  

• Figure 13 shows the graph of forecasted value and actual values for ARIMA and SARIMA 

models. The graph shows actual values of the telemedicine growth data in the blue line and the 

orange line shows the forecasted values in by the  models ARIMA and SARIMA in their 

respected graphs. The graph of the forecasted values is not that close to the actual values but the 

trend is getting captured in the slopes of the graph.  

• Figure 15 shows the table of the actual and forecasted values of all the models. The Actual 

column shows the actual value and the forecast value column followed by the model names is 

the forecast value for the respective models. The forecast is taken for time period of 10 time 

steps.  

• Figure 16 shows the models performance table. In the later section of the code the column names 

are added in the table. The first column is the name of the Models, second column represents 

the Mean Squared Error score, third column represents the Root Mean Squared Error(RMSE) 

and last and fourth column represents the Mean Absolute Error.  

• Figure 19 shows two sets of telemedicine usage data over several time periods, distinguished 

by colour: orange for households with children and blue for adults. Each bar represents a four-

week span, with the percentage of the two subgroups who had a health professional appointment 

via video or phone. The bar plot shows a maximum of 4% higher telemedicine usage among 

adults compared to households with children. This could reflect differing healthcare needs or 

accessibilities between these groups.  

Question 3:  

How about the fine-tuning of parameters (p,d,q) in the ARIMA model? What parameters are 

considered in other models?  

 

Answer:  

The values for p (autoregressive), d (differencing) and q (moving average) in ARIMA 

(Autoregressive Integrated Moving Average) and SARIMA (Seasonal ARIMA) model are not 
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tuned they are fixed values considering the lags and stationarity of the data. The value of d is 

based on the stationarity of the data. We have used KPSS statistic test to check for data 

stationarity. The test showed that the series os not stationary, so we took the first differential to 

make the series stationary. To find the values of p and q, Autocorrelation and Partial 

Autocorrelation plots are generated. They are shown in Figure 9 and 10 in the report. Figure 9 

shows the graph before differential and Figure 10 show the graphs after differential is taken on 

the data. The significant lags that decay slowly in the ACF plot (indicating autoregressive 

components, AR) and PACF plot (indicating moving average components, MA) gives out the 

values of p and q.  

All the models have different hyperparameters that are mentioned below:  

1. SARIMA: other than order which is (p,d,q) same as in Arima it also considers Seasonality order  

(P, D, Q, s). P is the order of the seasonal autoregressive, D is the seasonal differencing, Q is 

seasonal moving average component and s is seasonal period or the number of time steps in 

each season. In our data the number of time steps is 28 days as each data is 4-week record of 

telemedicine. 

2. LSTM:  The hyperparameters of LSTM are units=128, activation = 'relu', return_sequences = 

True, input_shape = (8,1). The units are the number of memory cells in LSTM,  

ReLU is the activation function that adds non-linearity by setting the input for positive 

values and zero for negative values, return_sequences =True is used to stack multiple 

LSTM layers on top of each other and input shape is the shape of the input data. 

3. Bidirectional LSTM used the same LSTM hyperparameters. The difference lies in the 

bidirectional nature of the Bi-LSTM. By this we mean the model trains in both ways forward 

feeding and backward propagation. 

Question 4:  

Briefly present how your research outcome aligns with the current research in the telemedicine 

field that make use of time series machine learning techniques.  

 

Answer:  

While current studies primarily focus on trend analysis and the impact within hospital settings, 

our research takes a distinct approach where we concentrate on driving growth in the field of 

medicine, specifically by forecasting future telemedicine orders. With technological 

advancements and growth trends from our study, we employ machine learning models such as 

ARIMA, SARIMAX, LSTM, and Bi-LSTM. These are time series models that contribute on 

data-driven healthcare solutions. Our approach stands to provide a broader vision for the future 

of healthcare that could be preventive medicine, home healthcare, and all of this to be achieved 

using Machine Learning.  

Question 5:  

 Describe the process that was followed in the segmentation of the dataset into two sets for 

training and testing.  

Answer:  

The data segmentation into train and test data is done by taking the last 52 rows of the data in 

test and remaining in train. The usual 80-20% split is not done as we have time series data, so 

we need to consider the time frame in the data for the split, so a good chunk of time frame is 
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tested as well. When we did the stationarity test the number of lags in the data is observed is 

28. So, we took 52 data steps in test so we can cover maximum of the time lags in the data.  
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