
Configuration Manual

MSc Research Project

Data Analytics

Chandrashekar Gettam Rajgopal
Student ID: X21226075

School of Computing

National College of Ireland

Supervisor: Mayank Jain

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Chandrashekar Gettam Rajgopal

Student ID: X21226075

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Mayank Jain

Submission Due Date: 14/12/2023

Project Title: Configuration Manual

Word Count: 1468

Page Count: 10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Chandrashekar Gettam Rajgopal

Date: 29th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Chandrashekar Gettam Rajgopal
X21226075

1 Introduction

This configuration manual contains step-by-step instructions for configuring the system
and the manual’s main goal is to provide comprehensive instructions on how to carry out
the research study. It also details the machine setup needed to compile and execute the
models, model evaluations, code snippets, and visualizations from exploratory data re-
search. The processes involve installing the necessary programs and packages in addition
to the minimal configuration that is advised for a project to succeed.

2 System Configuration

2.1 Hardware Requirements

• Operating System: Google Colab will run on a modern web browser and all Oper-
ating systems that can run a modern web browser can be used.

• RAM: Minimum 4GB but recommended 8GB for better performance.

• Processor: Modern processor Intel, AMD or Apple Silicon which can handle mul-
tiple tasks and run multiple browser tabs smoothly.

• Storage: Minimum of 256 GB Hard disk or Solid state drive to install the browser
and to run.

2.2 Software Requirements

• Web Browser: Mozilla Firefox, Google Chrome, Safari, or any other Chromium
browser for a good experience.

• Google Drive: Store the dataset in Google Drive and mount it to Google Colab.

• Microsoft Excel: To do initial exploration.

• Tableau: Used for initial exploration and exploratory data analysis.

• Python: Any version of Python 3.x

1



3 Code snippets

3.1 Data Collection

Data is downloaded from Kaggle using this link Investments VC Dataset Arindam235
(2023). The dataset contains an investments VC.csv file that has information on various
companies investment details.

3.2 Setup Google Colab

Store the downloaded investments VC.csv file in Google Drive and mount the Google
Drive into Google Colab as shown in Figure 1.

Figure 1: Google Drive mount in Google Colab

Choosing the run time of Google Colab Figure 2. Choose Python for Runtime type
and CPU can be chosen by default and click on save.

Figure 2: Google Colab Runtime

2

https://www.kaggle.com/datasets/arindam235/startup-investments-crunchbase


3.3 Install necessary Packages and Libraries

The next step is installing Pandas, Scikit-learn, Deap, gplearn, geopandas and plotly.
packages as shown in Figure 3.

Figure 3: Packages

Next step is importing all necessary libraries as shown in Figure 4

• matplotlib.pyplot as plt: Matplotlib is a popular library for creating static,
animated, and interactive visualizations in Python.

• numpy as np: NumPy is used for numerical operations and provides support for
arrays and matrices.

• pandas as pd: Pandas is used for data manipulation and analysis, particularly for
working with structured data in tabular format.

• plotly.express as px: Plotly is a library for creating interactive and visually
appealing plots and charts.

• seaborn as sns: Seaborn is a high-level interface for creating informative and
attractive statistical graphics.

• matplotlib.dates as mdates: A module within Matplotlib that provides tools
for working with date and time data in plots.

• deap: A library for evolutionary algorithms and genetic programming.

3



Figure 4: Importing Libraries

• gplearn.genetic: A library for symbolic regression using genetic programming.

• sklearn.compose: Part of scikit-learn, used for composing transformers and es-
timators into pipelines.

• sklearn.ensemble: Scikit-learn’s ensemble methods library, which includes tech-
niques like random forests.

• sklearn.impute: Provides tools for imputing missing data in scikit-learn pipelines.

• sklearn.linear model: Scikit-learn’s linear modeling tools, including linear re-
gression.

• sklearn.manifold: Part of scikit-learn, used for manifold learning techniques like
t-SNE.

• sklearn.metrics: Scikit-learn’s library for evaluating model performance with
various metrics.

• sklearn.model selection: Provides tools for model selection, including cross-
validation and train-test splitting.

• sklearn.neighbors: Scikit-learn’s k-neighbors-based methods, including k-nearest
neighbors regression.

• sklearn.pipeline: Part of scikit-learn, used for creating machine learning pipelines.

• sklearn.preprocessing: Scikit-learn’s library for data preprocessing, including
label encoding, standard scaling, and one-hot encoding.

4



• xgboost: A library for gradient boosting, often used for predictive modeling.

• scipy.stats: Part of SciPy, provides statistical functions and distributions.

• wordcloud: A library for creating word clouds, often used for visualizing word
frequencies in text data.

3.4 Loading the dataset

Loading the dataset and printing the dataset to understand the features present. Figure
5

Figure 5: Loading Dataset

3.5 Data preprocessing

Removing features that are not important for predicting the total funding USD. Figure 6
shows these features are removed from the dataset as it is not required for total funding
prediction “permalink”, “name”, “homepage url” and a few features like “category list,
“founded month”, “founded quarter”, “founded at” are redundant and repetitive in other
features present in the dataset. After this many other preprocessing were performed on
the dataset and performed in-depth analysis of the dataset through extensive exploratory
data analysis.

5



Figure 6: Removing unnecessary columns

3.5.1 Grouping the market into market group bins to understand as sectors

There is a lot of market present in the dataset and it would be easier to analyze and
understand different markets when grouped into the market sector each market sector
contains a list of markets that is more relevant to that market sector as shown in figure
7. Market Groups are as below:

• Telecommunications

• Travel and Hospitality

• Others

• Technology and Software

• Marketing and Advertising

• Commerce and Retail

• Health and Wellness

• Real Estate and Construction

• Education and Training

• Food and Beverages

• Media and Entertainment

• Transportation and Mobility

6



Figure 7: Market to Market Group

• Financial Services

• Energy and Environment

• Manufacturing and Industrial

• Other

3.5.2 Handling state city missing data using external mapping

Several state code values were empty but the city value was present. So by using an
external mapper that maps the city to its state code values are imputed as shown in
figure 8. This sample of code shows several stages in the preprocessing and imputation
of data for a dataset. It loads a DataFrame with investment data and a CSV file with
state and city information first. Common suffixes like “City” and “County” are removed
from the city names to make them more pristine. After that, it updates the investment
dataset’s missing state codes and builds a mapping from city to state code using the
state-city dataset that was loaded. Furthermore, it uses the ‘first funding at datetime’
column to impute missing values in the ‘founded year’ column. ‘state code’ and ‘city’
values that are lacking are further imputed by the code by mapping them to the most
prevalent values in individual groupings. Lastly, it reports the count of null or missing
values for each column in the dataset and imputes missing “status” values using the mode
of the ”status” column. These procedures guarantee that the dataset is full and cleaner
for the analysis that comes after.

7



Figure 8: Handling missing data using imputing

3.5.3 TSNE

Code as shown in Figure 9 to generate the TSNE which is used for understanding the
dataset for dimensionality reduction and viewing the dataset in 2D graph.

• ‘city’

• ‘founded year’

• ‘venture’

• ‘market group’

• ‘state code’

• ‘funding total usd’

Above are among the company data subsets that are first chosen and stored in data
subset funding bins. After that, this subset is divided into bins according to the ‘fund-
ing total usd’ using predetermined ranges; a new column called ‘funding bins’ is then
created with names for these ranges. The high-dimensional data is then reduced to two
dimensions using a t-SNE analysis on the subset, which helps to visualize the data’s pat-
terns and clusters. The financing bins that correspond to the two-dimensional character-
istics that are obtained using t-SNE are saved in a DataFrame called tsne df. Ultimately,
a scatter plot is made to show the clusters of data points, with each point colored ac-
cording to its funding bin. This gives an overview of the distribution of funding amounts
among the companies and how they relate to each other.

8



Figure 9: TSNE

3.5.4 Model building

A code sample of one of the model buildings is given in Figure 10. The provided code
describes how to pick features for a linear regression model using a genetic algorithm
(GA) (Dasgupta et al.; 2013). Given that the goal is to minimize mistakes, a unique
‘FitnessMin’ class with negative weights has been developed. Furthermore defined is
an ‘Individual’ class that represents a solution (a set of features). The toolbox comes
pre-configured with ways to build individuals and populations, evaluate fitness using a
custom function called evalModel, and produce binary attributes (to determine whether
to include each characteristic). Using cross-validation on the training data, this function
chooses features that match the ones in each person’s binary string. If no features are
selected, a large error is issued.

The population size, crossover probability, mutation probability, and number of gen-
erations are established, and the genetic operators for mating, mutating, and selection are
defined. The algorithm determines the best individuals based on their fitness and runs
for the designated generations, estimating the time to completion. Lastly, it publishes
the total time as well as the most attractive and fit person. To reduce the prediction
error, this procedure automatically chooses the most important features for the linear
regression model.

9



Figure 10: Model building

References

Arindam235 (2023). Startup investments (crunchbase), https://www.kaggle.com/

datasets/arindam235/startup-investments-crunchbase. Accessed: 25/10/2023.

Dasgupta, K., Mandal, B., Dutta, P., Mandal, J. K. and Dam, S. (2013). A genetic
algorithm (ga) based load balancing strategy for cloud computing, Procedia Technology
10: 340–347. First International Conference on Computational Intelligence: Modeling
Techniques and Applications (CIMTA) 2013.

10

https://www.kaggle.com/datasets/arindam235/startup-investments-crunchbase
https://www.kaggle.com/datasets/arindam235/startup-investments-crunchbase

	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Code snippets
	Data Collection
	Setup Google Colab
	Install necessary Packages and Libraries
	Loading the dataset
	Data preprocessing
	Grouping the market into market group bins to understand as sectors
	Handling state city missing data using external mapping
	TSNE
	Model building





