Configuration Manual

MSc Research Project
Data Analytics

Aaditya Ravindra Gajendragadkar
StudentID:22158758

School of Computing
National College of Ireland

Supervisor: Furgan Rustam

~

~ National

Collegef
Ireland

National College of Ireland .
Project Submission Sheet N National

School of Computing College of
Ireland
Student Name: Aaditya Ravindra Gajendragadkar
Student ID: 22158758
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Furqan Rustam
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: 989
Page Count: 15

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Aaditya Ravindra Gajendragadkar

Date: 14th December 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).
Attach a Moodle submission receipt of the online project submission, to each
project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.
Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Aaditya Ravindra Gajendragadkar
22158758

1 Introduction

This manual serves as a guide for executing and configuring the implementation code
within the scope of the current research project. It offers explicit information about
both the machine hardware specifications and the requisite programs for execution.
Following the outlined steps will empower users to generate paper summaries utilizing
the Models developed during the project.

2 Configuration details

The hardware features an Intel Core i5 processor, 16GB of RAM, 250GB of SSD storage, a
dedicated GTX 1650 graphics card, and runs on Windows 11 for smooth performance.

The software system utilized is Jupyter Notebook system is equipped with an Intel Xeon
E5-2699 v4 22-core, 44-thread processor with a base clock speed of 2.2 GHz (up to 3.6
GHz with Turbo Boost), complemented by a spacious 250GB storage and an impressive
128GB of RAM, ensuring optimal performance for data-intensive tasks.

3. Software Tools

3.1 Python

Python software was utilized as a programming language in this project. Python stands
out as the ideal language for implementation. Its extensive libraries like TensorFlow and
PyTorch, sckitlearn coupled with a supportive community, make it a top choice. Python's
readability, simplicity, and versatility ease the learning curve, while its adaptability
facilitates seamless integration with various technologies. Its industry-wide adoption and
active development further solidify Python as the go-to language for cutting-edge
machine learning applications detailed in this manual. In addition to this python offers
vast visualization libraries. Figure 1 shows

Python

e python a

About Downloads Documentation

Community Success Stories News Events

Download Python 3.9.6

Looking for Python with a different 0S? Python for
NIX, Mac OS X, Other

opment versions of Python?
ages

Looking for Python 2.72 See below for specific releases

Figure 1: Python image from its official website

3.2 Jupyter Notebook.

Jupyter Notebook was used to code due to its interactive environment, supporting a mix
of code, text, and visualizations in a single document. Its versatility extends to multiple
programming languages, including Python, R, and Julia. The platform excels in data
exploration, and visualization, and fosters reproducibility, making it a preferred choice
for collaborative work and educational purposes. Its integration with big data tools and
ease of sharing further solidify Jupyter Notebook as a key tool in data science, machine
learning, and educational settings. Figure 2 shows jupyter notebook installation from its
official website.

4 Navigator o

i) ANACONDA NAVIGATOR Er—)

Figure 2 shows the installation of jupyter notebook.

4. Implementation of Project

4.1 Importing libraries.

All the important libraries were downloaded. Figure 3 shows importing all libraries.

In [32]: M import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import seaborn as sns

import statsmodels.api as sm
from itertools import product

Figure 3 shows importing of all Libraries.

After understanding data frame data was visalised with the help of line charts and scatter

plots and understandd the relationship between data.

Read the CSV file

data = pd.read_csv('C:\\Users\\apoor\\Desktop\\NCI\\RP\\traffic_Kaggle.csv')

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Load your dataset, replace 'your dataset.csv' with your actual dataset file
Example: data = pd.read csv('your_dataset.csv')

Display basic information about the dataset
print("Dataset Information:")
print(data.info())

Display summary statistics of numerical columns
print("\nSummary Statistics:")
print(data.describe())

Dataset Information:

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 1©48575 entries, © to 1048574
Data columns (total 5 columns):

Column Non-Null Count Dtype

e timestep 1048575 non-null inté4

1 location 1848575 non-null inte4
2 fFlow 1848575 hon-null inte&4
3 occupy 1948575 non-null floated
4 speed 1248575 non-null floate4

dtypes: float64(2), inte4(3)
memory usage: 4©.© MB
None

Summary Statistics:

timestep location flow occupy speed
count 1.248575e+06 1.048575e+06 1.048575e+06 1.248575e+06 1.048575e+06
mean 3.084544e+03 8.445889e+01 2.270468e+0 6.33172%e-02 6.388404e+01

Figure 4 shows reading the data frame and understanding the
Scatter plot to visualize the relationship between time step and flow for the first 1060 values
plt.figure(figsize=(10, 6))
sns.scatterplot(data=data_first_1008, x='"timestep', y="flow')
plt.title('Scatter Plot: Time Step vs. Flow (First 1000 Values)')
plt.xlabel('Time Step')
plt.ylabel('Flow")
plt.shou()

Scatter plot to visualize the relationship between Location and flow for the first 1066 values
plt.figure(figsize=(19, 6))

sns.scatterplot(data=data_first_100@, x='location', y="flou')

plt.title('Scatter Plot: Location vs. Flow (First 1000 Values)')

plt.xlabel('Location')

plt.ylabel('Flow")

plt.shou()

Pair plot to visualize relationships between all numeric variables for the first 1000 values
sns.pairplot(data_first_1080, x_vars=['timestep’, 'location'], y_vars=['flow'], height=6)
plt.shou()

Heatmap to visualize the correlation between variables for the first 1060 values
correlation matrix = data_first_10@@[['timestep’, 'location’, 'flow']].corr()
plt.figure(figsize=(8, 6))

data.

CiTLLSU_UdlLad — UdlLd|UdLia| LULALLIUIl .12l d0lC0LEU_lulaLiviis) |

" Line plot for traffic flow over time for each location

1t.figure(figsize=(12, 6))

or location in selected_locations:
location_data = selected_data[selected_data['location'] == location]
plt.plot(location_data['timestep’'], location_data['flow'], label=f'Location {location}')

1t.title('Traffic Flow Over Time for First Five Locations')
1t.xlabel('Timestep')

1t.ylabel('Flow"')

1t.legend()

1t.show()

" Boxplot for traffic flow distribution for each location
1t.figure(figsize=(10, 6))

ns.boxplot(x="location’, y="flow', data=selected_data)
1t.title('Traffic Flow Distribution for First Five Locations')
1t.xlabel('Location')

1t.ylabel('Flow")

1t.show()

" Violin plot for traffic flow distribution for each location
1t.figure(figsize=(10, 6))

ns.violinplot(x="'location', y='flow', data=selected_data)
1t.title('Traffic Flow Distribution for First Five Locations®)

Figure 5 shows Data visualisation part of the project.

5. Implementation of models

5.1 ML Models

After visualization of Data implementation of models takes place, Figure 6 shows an
implementation of KNN model, decision tree, gradient boost and Random Forest model
takes place with train and test splits of varying % ranging from 50 to 90.

import pandas as pd

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import statsmodels.api as sm

Assuming you have a DataFrame called 'data' with 'location', 'timestep', and 'flow' columns

Get unique Locations
locations = data['location'].unique()

for location in locations[:5]:
location_data = data[data['location'] == location]

Extract X (independent variables) and y (dependent variable)
X = location_data[['timestep’, 'location’']]
y = location_data['flow']

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

Initialize the Decision Tree regression model
max_depth = 35 # You can adjust the maximum depth of the tree
model = DecisionTreeRegressor(max_depth=max_depth)

Fit the Decision Tree regression model
madATl L4V wrk

e e

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
Assuming you have a DataFrame called 'data' with 'location', 'timestep', and 'flow' columns

Get unique locations
locations = data['location’'].unique()

for location in locations[:5]:
location_data = data[data['location’] == location]

Extract X (independent variables) and y (dependent variable)
X = location_data[['timestep’', 'location']]
y = location_data['flow']

Split the data into training and testing sets
X_train, X_test, y train, y_test = train_test_split(X, y, test_size=6.2, random_state=42)

Initialize the XGBoost Regression model
xgb_model = XGBRegressor(n_estimators=100, learning_rate=0.1) # You can adjust parameters accordingly

Fit the XGBoost Regression model
xgb_model.fit(X_train, y_train)

Make predictions
y_pred = xgb_model.predict(X_test)

P L 1= L P U

locations = data['location’].unique()

For location in locations[:5]:

location_data = data[data['location'] == location]

Extract X (independent variables) and y (dependent variable)
X = location_data[['timestep’, 'location']]

y = location_data['flow']

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=68.2, random_state=42)

Initialize the Random Forest regression model
n_estimators = 180 # You can adjust the number of trees in the forest
model = RandomForestRegressor(n_estimators=n_estimators)

Fit the Random Forest regression model
model.fit(X, y)

Make predictions
y_pred = model.predict(X)

Calculate R-squared (R2)
r2 = r2_score(y, y_pred)

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsRegressor

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

Assuming you have a DataFrame called 'data’ with 'location’, "timestep’', and 'flow' columns

Get unique Locations
locations = data['location'].unique()

for location in locations[:5]:
location_data = data[data['location’'] == location]

Extract X (independent variables) and y (dependent variable)
X = location_data[['timestep', 'location']]

y = location_data['flow']

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=2.2, random_state=42)

Initialize the KNN regression model
n_neighbors = 5 # You can adjust the number of neighbors

Figure 6 shows an implementation of all ML models

5.2 DL Models

After this Deep learning models of CNN,LSTM and RNN were implemented with various
test splits as mentioned above. Figure 7 shows implemtation of LSTM,RNN and CNN.

trom sklearn.preprocessing import MinMaxsScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import ConvlD, MaxPoolinglD, Flatten, Dense, Dropout
from tensorflow.keras.callbacks import EarlyStopping

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

Assuming you have 'data' DataFrame Loaded

Select the first 5 lLocations
selected_locations = [0, 1, 2, 3, 4]

Select relevant features (e.g., flow, time, speed, Location)
selected_features = ['timestep', 'location', 'flow']

Initialize dictionaries to store metrics for each Location
r2_scores = {}

rmse_scores = {
mae_scores = {}

}

for location in selected_locations:
Filter data for the current lLocation
location_data = data[data['location'] == location][selected_features]

Check 1f the filtered_data is empty
if location_data.empty:
raise ValueError(f"No data available for location {location}.")

Lompline normaLized ‘X ana "y~ jor credting sequences
normalized_data = np.concatenate((X_scaled, y scaled), axis=1)

Create sequences for the LSTM model
def create_sequences(data, sequence_length):
sequences = []
for i in range(len(data) - sequence_length):
sequence = data[i:i+sequence_length, :]
target = data[it+sequence_length:i+sequence_length+l, -1] # Assuming the target column is the last one ('
sequences.append((sequence, target))
return np.array([s[e] for s in sequences]), np.array([s[1] for s in sequences])

Define sequence length
sequence_length = 18

Create sequences
X, y = create_sequences(normalized_data, sequence_length)

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

Build the LSTM model with dropout and early stopping

model = Sequential()

model.add(LSTM(units=5@, input_shape=(X_train.shape[1], X_train.shape[2]))) # Adjust input_shape if needed
model.add(Dense(units=1, activation='linear'))

model.compile(optimizer="adam', loss='mean_squared_error')

r2_scores = {
rmse_scores =
mae_scores =

bs
{2
¥

for location in selected_locations:
Filter data for the current Llocation
location_data = data[data[' location'] == location][selected_features]

Check 1if the filtered data is empty
if location_data.empty:
raise valueError(f"No data available for location {location}.")

Separate scaler for the 'flow' feature
flow_scaler = MinMaxScaler()
y_scaled = flow_scaler.fit_transform(location_data['flow'].values.reshape(-1, 1))

Normalize the data for other features
scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(location_data.drop('flow', axis=1))

Combine normalized 'X' and 'y' for creating sequences
normalized_data = np.concatenate((X_scaled, y_scaled), axis=1)

Create sequences for the RNN model
def create_sequences(data, sequence_length):
sequences = []

for'iiin ranﬁeilenidatai - seiuence lenﬁthi:
Figure 7 shows implementation of CNN,LSTM and RNN.

After the implementation of DL models Statistical Models were implemented with the
same train test split mentioned above.Figure 8 shows implementation of ARIMA and
sarima Model

5.3 Statistical Models

Extract and preprocess the data
y = location_data['flow’']

Split the data into training and testing sets (e.g., 80% for training, 20% for testing)
train_size = int(len(y) * ©.8)
train, test = y[:train_size], y[train_size:]

Hyperparameter tuning using a grid search
best_r2 = -np.inf
best_params = None

for p in range(3): # Adjust the range based on your dataset characteristics
for d in range(2): # Adjust the range based on your dataset characteristics
for q in range(3): # Adjust the range based on your dataset characteristics
order = (p, d, q)
model = ARIMA(train, order=order)
model_fit = model.fit()
y_pred = model_fit.predict(start=len(train), end=len(train) + len(test) - 1)
r2 = r2_score(test[d:], y_pred[d:])
if r2 > best_r2:
best_r2 = r2
best_params = order

Train the ARIMA model with the best hyperparameters
best_model = ARIMA(y, order=best_params)

Split the data into training and testing sets
train_size = int(len(y) * ©.8)
train, test = y[:train_size], y[train_size:]

Hyperparameter tuning using itertools.product
p_values = range(3)
d_values = range(2)
q_values = range(3)

best_r2 = -np.inf
best_params = None

for order in product(p_values, d_values, q_values):
try:
model = SARIMAX(train, order=order, seasonal_order=(1, ©, 1, 12), enforce_stationarity=False, enforce_invertil
model_fit = model.fit(disp=False, method='powell')
y_pred = model_fit.predict(start=1len(train), end=len(train) + len(test) - 1)
r2 = r2_score(test, y_pred)
if r2 > best_r2:
best_r2 = r2
best_params = order
except Exception as e:
print(f"Error fitting model with order {order}: {e}")

Train the SARIMA model with the best hyperparameters
try:

Figure 8 shows implementation of the SARIMA and ARIMA models.
6. Results
6.1 Results of ML Models

After implementation, we would like to look on how our models performed. First we will

look at how ML models performed.Fig 9 shows peromance of ML models.
Location ©:

R-squared (R2): ©.9867

Root Mean Squared Error (RMSE): 15.93
Mean Absolute Error (MAE): 5.3792
Location 1:

R-squared (R2): ©.9855

Root Mean Squared Error (RMSE): 18.46
Mean Absolute Error (MAE): 5.9633
Location 2:

R-squared (R2): ©.9999

Root Mean Squared Error (RMSE): 1.355
Mean Absolute Error (MAE): ©.1e7@
Location 3:

R-squared (R2): ©.9398

Root Mean Squared Error (RMSE): 38.28
Mean Absolute Error (MAE): 11.9697
Location 4:

R-squared (R2): ©.9957

Root Mean Squared Error (RMSE): 11.33
Mean Absolute Error (MAE): 3.1615

Location ©:

R-squared (R2): ©.9641

Root Mean Squared Error (RMSE): 26.1887
Mean Absolute Error (MAE): 19.3225
Location 1:

R-squared (R2): ©.9674

Root Mean Squared Error (RMSE): 27.4607
Mean Absolute Error (MAE): 206.5887
Location 2:

R-squared (R2): ©.9333

Root Mean Squared Error (RMSE): 30.6728
Mean Absolute Error (MAE): 21.8049
Location 3:

R-squared (R2): ©.9721

Root Mean Squared Error (RMSE): 25.8610
Mean Absolute Error (MAE): 19.4256
Location 4:

R-squared (R2): ©.9628

Root Mean Squared Error (RMSE): 33.3146
Mean Absolute Error (MAE): 24.4569

Location @ - Gradient Boosting Regressicn (XGBoost):
R-squared (R2): ©.9325
Roct Mean Squared Error (RMSE): 35.9€19
Mean Absolute Error (MAE): 28.1385
Location 1 - Gradient Boosting Regression (XGBoost):
R-squared (R2): ©.9255
Root Mean Squared Error (RMSE): 41.4971
Mean Absolute Error (MAE): 33.1441
Location 2 - Gradient Boosting Regression (XGBoost):
R-squared (R2): ©.8928
Root Mean Squared Error (RMSE): 38.8785
Mean Absolute Error (MAE): 29.5506
Location 3 - Gradient Boosting Regression (XGBoost):
R-squared (R2): ©.9397
Root Mean Squared Error (RMSE): 38.8564
Mean Absclute Error (MAE): 3@.5465
Location 4 - Gradient Boosting Regression (XGBoost):
R-squared (R2): ©.9361
Roct Mean Squared Error (RMSE): 43.6674
Mean Absolute Error (MAE): 33.7548
......... e e
location: ©.e000
Location 1:
R-squared (R2): ©.9954
Root Mean Squared Error (RMSE): 1©.4112
Mean Absclute Error (MAE): 7.5612
Feature Importances:
timestep: 1l.eeee
location: ©.ee0e
Location 2:
R-squared (R2): ©.9899
Root Mean Squared Error (RMSE): 11.9876
Mean Absolute Error (MAE): 8.4947
Feature Importances:
timestep: 1.ee00
location: ©.eeee
Location 3:
R-squared (R2): ©.9958
Root Mean Squared Error (RMSE): 1€.1855
Mean Absclute Error (MAE): 7.4088
Feature Importances:
timestep: 1l.eeee
location: ©.ee0e
Location 4:
R-squared (R2): ©.9947
Root Mean Squared Error (RMSE): 12.5811
; Mean Absolute Error (MAE): 9.0733

Figure 9 shows results for decision tree,knn , gradient boost, and Random forest.

6.2 Results of DL Models

After this Deep learning results are displayed OF LSTM,CNN and RNN.Figure 10 shows
the results of deep learning models of LSTM,CNN and RNN

LI LI L —————————————————————————————— J T &D AUIIDY CILCP T ALUODOD . U.uvLs - VﬂJ._J.UDD. Y.L
Epoch 56/1e@
154/154 [==============================] - 25 1llms/step - loss: ©.0027 - val_loss: ©.027
Epoch 57/1e@
154/154 [==============================] - 25 l0ms/step - loss: @.0027 - val_loss: ©.0828
Epoch 58/1e@
154/154 [==============================] - 2s 1lms/step - loss: ©€.8027 - val_loss: ©.6827

Epoch 59/1e@

- 2s 1@ms/step - loss: ©.0027 - val_loss: ©.0827
1s 4ms/step

Evaluation metrics for Location @:
R2 Score: ©.9580

RMSE: 28.3367

MAE: 21.4126

Epoch 1/1ee

154/154 [==============================] - 4s 13ms/step - loss: €.8073 - val_loss: ©.6839
Epoch 2/16@
154/154 [==============================] - 1s 1@ms/step - loss: ©€.0039 - val_loss: ©.0036

L T Y]

Overall Evaluation Metrics:

Location @:

R2 Score: ©.98319555909222258

Root Mean Squared Error (RMSE): 43.040184012033734
Mean Absolute Error (MAE): 33.714612822208851
Location 1:

R2 Score: ©.9230185692195514

Root Mean Squared Error (RMSE): 42.43369615117888
Mean Absolute Error (MAE): 32.770176280628554
Location 2:

R2 Score: ©.8750028148410159

Root Mean Squared Error (RMSE): 42.167681411887195
Mean Absolute Error (MAE): 3©.913365823476736
Location 3:

R? Srara- 6 Q177601AAGA014AGRA

Location 1:

R2 Score: .9623830049973586

Root Mean Squared Error (RMSE): 29.66119714082697
Mean Absolute Error (MAE): 22_.566484163333843
Location 2:

R2 Score: ©.9124354734213089

Root Mean Squared Error (RMSE): 35.293304857508933
Mean Absolute Error (MAE): 25.43836583719625
Location 3:

R2 Score: 2.96615e3215591642

Root Mean Squared Error (RMSE): 28.572839976796843
Mean Absolute Error {(MAE): 21.69661939298952
Location 4:

R2 Score: @.9571377299784966

Root Mean Squared Error (RMSE): 35.68937955@41154
N& Traffic Pradicrtion rnde invnh# AFY: 2R RIDEARAT 7RRAARS

Figure 10 shows the results of deep learning models of LSTM, CNN and RNN .

6.3 Results of Statistical Models

After this checked results of the ARIMA and SARIMA mode.Figure 11 shows graph and a
result of SARIMA and AARIMA

Location 1:

Best R-squared (R2): ©.9497 with order: (@, 1, @)
Mean Squared Error (MSE): 1183.4562

Mean Absolute Error (MAE): 24.7925

Mean Absolute Percentage Error (MAPE): 8.1116%

Location 1 - Actual vs Predicted

600 - — Actual

—— Predicted
500 A
400 4

wi "
|
|

2001 {

0.85 090 0.95 1.00 105
Timestep le6

Location 4:
Best R-squared (R2): 0.7771
Mean Squared Error (MSE): 7186.9457

Mean Absolute Error (MAE): 69.3170
Mean Absolute Percentage Error (MAPE): 8.2635

Figure 11 shows results of ARIMA and SARIMA models.

6.4 K cross Validation

After this Kcross validation on ML and DL models was performed, Figure 12 shows
implementation of kcross validation of ML and DL models.

from sklearn.neighbors import KNeighborsRegressor

from sklearn.tree import DecisionTreeRegressor

from sklearn.linear_model import LinearRegression

from xgboost import XGBRegressor # Import XGBRegressor

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

Set the number of folds for cross-validation
k = 5 # Adjust as needed

Assuming you have a DataFrame called 'data' with 'location', 'timestep', and 'flow' columns

Get unique Llocations
locations = data['location'].unique()

Define the models
models = {
'Random Forest': RandomForestRegressor(n_estimators=168),
'K-Nearest Neighbors': KNeighborsRegressor(n_neighbors=5),
'Decision Tree': DecisionTreeRegressor(),
'XGBoost': XGBRegressor(objective='reg:squarederror') # Specify objective for regression

}

Define the features and target variable
features = ['timestep’, 'location']
target = 'flow'

Initialize dictionaries to store metrics for each Location and model
r2_scores_lstm = {}

rmse_scores_lstm = {}

mae_scores_lstm = {}

r2_scores_rnn = {}
rmse_scores_rnn = {}
mae_scores_rnn = {}

r2_scores_chn = {}
rmse_scores_cnn = {}
mae_scores_cnn = {}

Set up k-fold cross-validation
kf = KFold(n_splits=5, shuffle=True, random_state=42)

for location in selected_locations:
Filter data for the current lLocation
location_data = data[data['location’'] == location][selected_features]

Check 1if the filtered _data is empty
if location_data.empty:

raise ValueError(f"No data available for location {location}.")

Senarate ccaler for the 'flow' feature

Figure 12 shows implementation of kcross validation of ML and DL models.
6.5 K cross validation Results

Results were displayed of Kcross validation of ML and DL models and were very
positive.Figure 13 shows k cross-validation results of ML and DL models..

Average R-squared (R2):0.9252

Average Root Mean Squared Error (RMSE): 32.6393
Average Mean Absolute Error (MAE): 23.4638
Location 3:

Average R-squared (R2):0.9686

Average Root Mean Squared Error (RMSE): 27.6034
Average Mean Absolute Error (MAE): 20.5638
Location 4:

Average R-squared (R2):0.9592

Average Root Mean Squared Error (RMSE): 34.8986
Average Mean Absolute Error (MAE): 25.1836

Cross-validation results for K-Nearest Neighbors:

Location @:

Average R-squared (R2):0.9661

Average Root Mean Squared Error (RMSE): 25.411@
Average Mean Absolute Error (MAE): 19.1112
Location 1:

Average R-squared (R2):08.9674

Average Root Mean Squared Error (RMSE): 27.6836
Average Mean Absolute Error (MAE): 26.3702
Location 2:

Average R-squared (R2):0.9293

Average Root Mean Squared Error (RMSE): 31.7273

¢

Location @ LSTM Metrics:

Average R2 Score: 0.9583450115763135
Average Root Mean Squared Error (RMSE): 28.15854085087896
Average Mean Absolute Error (MAE): 21.13679860843072
Location @ SimpleRNN Metrics:

Average R2 Score: 0.9071402023821028

Average Root Mean Squared Error (RMSE): 42.05714937770291
Average Mean Absolute Error (MAE): 32.81703400608872
Location @ CNN Metrics:

Average R2 Score: ©.9573618476625608

Average Root Mean Squared Error (RMSE): 28.484445598989826

Figure 13 shows k cross-validation results of ML and DL models..

