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A Machine Learning approach for Short-Term Traffic
Flow Prediction

Aaditya Ravindra Gajendragadkar
22158758

Abstract

Traffic congestion presents a complex problem, impacting not just the con-
venience of commuters, but also imposing significant economic and environmental
consequences. While various models have been employed in traffic prediction, there
remains a need for accurate, robust, and practical solutions to aid traffic managers
in understanding patterns, reducing congestion, and optimizing traffic management
strategies. This research focuses on predicting short-term traffic flow using stat-
istical, machine learning, and deep learning models on the PEMS-08 Dataset from
San Bernardino, covering July to August 2016 in five-minute intervals. In three
case studies, deep learning models of LSTM, CNN, RNN, and machine learning
models like KNN, Random Forest, Gradient Boosting, and Decision Tree demon-
strate commendable performance, especially Random Forest, Decision Tree, and
KNN, outshining others and making them first choice with R2 values of 0.99,0.98
and 0.97 respectively with extremely low RMSE and MAE values. Deep learning
models LSTM, CNN, and RNN follow closely with R2 values of 0.958,0.957, and
0.91 respectively but with slightly higher RMSE and MAE, and statistical models
of SARIMA and ARIMA Performed well with R2 of 0.95 and 0.90 but with an
extremely high RMSE and MAE values. K cross-validation is performed on each
machine learning and deep learning model that confirms the model’s performance,
robustness, and reliability. This research offers valuable insights to policymakers,
presenting optimal models for developing proactive strategies. The findings contrib-
ute to fostering sustainable and efficient urban transportation systems by addressing
dynamic traffic patterns.

1 Introduction

Today in the world of rapid urbanization every smart city faces a massive challenge that
brings a city’s infrastructure to a slowdown traffic congestion. The urban population
continues to grow exponentially resulting in massive road traffic on roads and taking a
toll on the city’s roadways. The economic impact is very severe. As per the report from
the World Bank, global traffic congestion costs huge losses worth $1 trillion annually,
draining businesses through wasted time and inflated transportation costsNakat et al.
(2014). Environmentally, the toll is equally worrisome. The EPA estimates that traffic
accounts for 29% of nitrogen oxide emissions and 27% of volatile organic compounds
in the United States aloneHockstad and Hanel (2018). These pollutants poison the air
we breathe, fueling respiratory problems, acid rain, and a great threat to climate change
Willetts et al. (n.d.). The adverse impact on health due to prolonged exposure to polluted
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air and rising levels of stress among commuters underscores the urgency to solve the
complex issue as explained by Gomes et al. (2023).

Hence in the context of sustainable urban development addressing traffic congestion
and the need for innovative solutions becomes paramount. The research envisions contrib-
uting to curbing traffic congestion by predicting traffic flow at various locations offering
a comprehensive approach by developing innovative traffic flow prediction models that
offer statistical models, Machine learning models, and deep learning models. Through
this approach, the research paves the way for a more responsive and efficient transporta-
tion system, thereby addressing the challenges posed by traffic congestion in contempor-
ary urban environments. The overall benefits of Traffic flow prediction research include
enabling real-time traffic management, optimized route planning, and efficient public
transportation, thereby enhancing overall traffic efficiency, and reducing environmental
impact. The above problems gives rise to our research question How effectively can a
comparative evaluation of statistical, machine learning, and deep learning models for
traffic flow prediction at specific locations using the PEMS-08 dataset improve traffic
management systems and enhance traffic flow optimization across urban road networks?

While different Machine learning algorithms are explained by Sun et al. (2020) in
the paper, “a vital consideration for the Internet of Vehicles (IoVs)”. The research
project aims to bridge this gap by conducting a comprehensive analysis of the efficiency
and accuracy of various statistical, Machine learning, and Deep learning-based prediction
models. The main objective of this project is to improve the accuracy of traffic prediction
by incorporating statistical methods, machine learning algorithms, and deep learning
techniques and offer the best-suited model. Additionally, the project aims to reduce
computational time and provide the most optimal model for traffic prediction to enhance
the efficiency of transportation networks in urban areas. The research aims to offer
valuable insights that can drive the development of reliable and real-time traffic prediction
systems, which have the potential to revolutionize modern urban transportation.

1.1 Research question

How effectively can a comparative evaluation of statistical, machine learning, and deep
learning models for traffic flow prediction at specific locations using the PEMS-08 dataset
improve traffic management systems and enhance traffic flow optimization across urban
road networks?

1.2 Project Objective

The main objective of the research is to develop
• an advanced, effective accurate traffic prediction model to forecast traffic flow at a

particular location for practical applications including optimizing traffic signals, contrib-
uting to more efficient traffic management.

• identify existing literature on different models present for traffic prediction.
• comparing and evaluating different Machine learning, deep learning, and statistical

models.
This research contributes to more efficient traffic management, benefiting daily com-

muters, urban planners, transportation agencies, and emergency responders with timely
and informed decision-making capabilities.
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1.3 Structure of Report

The paper is structured into six sections. Section 1 serves as the introduction, providing
an overview of the paper. Section 2 explores existing literature on traffic prediction and
existing approaches. Section 4 outlines the implemented models by segregating them
into three parts A, B, and C. An evaluation of the model is presented in Section 5. The
paper concludes in Section 6, determining the most suitable model, and offers insights
into potential future research directions. Figure 1 shows the overall benefits of Traffic
flow prediction Sayed et al. (2023).

Figure 1: Benefits of Traffic flow Prediction

2 Related Work

Most of the traffic flow prediction models are classified based on Statistical models, Ma-
chine learning models, deep learning models, and hybrid models. In this section, we will
dive deep into these traffic prediction models.

2.1 Traffic flow prediction using statistical models

In their researchKumar and Vanajakshi (2015) dealt with challenges in predicting traffic
flow using a SARIMA model, showing its practicality on a Chennai Road. Their model
achieved a 4–10% MAPE, outperforming historical averages and naive methods, making
it useful for real-time short-term predictions. They also suggested future research areas,
like exploring generalizability and hybrid approaches.

In another study a different approach was proposed by Tan et al. (2009) an aggrega-
tion model for traffic flow prediction. They combined MA, ES, ARIMA, and NN models
and applied their data aggregation (DA) model to data from National Highway 107 in
Guangzhou, China. The DA model, blending predictions from different time series, per-
formed better than individual models, highlighting the benefits of using diverse modeling
approaches. ARIMA model performed Fourth best with 12.5% MAPE while the proposed
DA model performed best with 5.9% MAPE, while NP and NN performed with 9.5 and
9.7% MAPE, respectively. They also noted the impact of non-recurring events and re-
commended further research on applying the DA approach in scenarios with multiple
detectors.

In the study Shekhar and Williams (2007) tackled the limitations of static traffic
forecasting models, introducing a novel approach with the Kalman filter, recursive least
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squares, and least mean squares for automated parameter estimation in the SARIMA
model. Although the ML model performs slightly better with 7.19% as MAPE as com-
pared to 7.31% of KF in real-time systems, KF performs much better also with a lower
RMSE score the study suggests future research directions, including the application of
adaptive techniques to other models and cross-dataset validation.

2.2 Traffic flow prediction using Machine Learning models.

In the Li and Xu (2021) research investigated improvements in video vehicle detection and
proposed an SVR-based traffic flow prediction model. By evaluating current algorithms,
they demonstrated that the SVR model had better accuracy, especially during busy peak
hours, with lower Mean Absolute Percentage Error (MAPE) and Root Mean Squared
Error (RMSE). The MAPE of SVR shows a reduction of 19.94% and 42.86%, while
the RMSE demonstrates a decrease of 29.71% and 47.22%, respectively. respectively also
introduced a new method for counting pedestrians using Histogram of Oriented Gradients
(HOG) features. The study recommends refining calculations and pointing toward future
possibilities, making use of the PeMS dataset.

In the study Meena et al. (2020) took a thorough approach to predict traffic flow by
combining machine learning, genetic algorithms, and soft computing. They opted not to
use deep learning due to limitations in data availability. Their algorithm, which utilized
Decision Tree with an accuracy of 88%, Support Vector Machines with an accuracy of
88%, and Random Forest, achieved an impressive 91% accuracy. The study emphasizes
the need for advanced methods to handle big data and improve intelligent transportation
systems. In their conclusion, they highlight future avenues, such as integrating their
approach with web servers. In their study on smart city traffic management.

In the studyMohammed and Kianfar (2018) used machine learning techniques for
short-term traffic prediction. They applied Deep Neural Networks (DNN), Distributed
Random Forest (DRF), Gradient Boosting Machines (GBM), and Generalized Linear
Model (GLM) to Interstate 64 data. The results indicated similar performance among
these models, and r2 values of all four model lies between 0.91 and 0.93 % with DRF
slightly outperforming the others. Notably, the inclusion of upstream traffic data did
not significantly improve accuracy, providing valuable insights for further exploration in
various contexts.

2.3 Traffic flow Prediction using Deep Learning models.

In their pursuit of better traffic flow prediction, Shao and Soong (2016) proposed a
Long Short-Term Memory (LSTM) model, demonstrating its effectiveness with a 5.4%
Mean Absolute Percentage Error (MAPE) and with RMSE as 40.3 They highlighted
the importance of smart transportation within a broader smart nation program. The
study explores the optimization of hyperparameters, underscoring the efficiency, while
the second best-performing model was SAE with MAPE of 6.7% and with RMSE of 47.3
of the LSTM models in achieving accurate predictions for traffic flow.

In the study Zheng and Huang (2020) explored the prediction of the traffic flow by
comparing several types of models, including statistical, machine learning, and deep learn-
ing approaches. Analyzing data from Open ITS, they discovered that Long Short-Term
Memory (LSTM) models performed better than the other methods. Out of the tested
models of ARIMA and BPNN, LSTM with RMSE of 14.4438 and MAPE of 4.82% yielded
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the most accurate traffic flow prediction. They emphasized the significance of employing
advanced models, like LSTM, to effectively handle the unpredictable nature of urban
congestion. Lv et al. (2014) explored by using deep learning for traffic flow prediction,
employing Stacked Autoencoders (SAEs). They achieved an impressive accuracy rate
of over 93% on the PeMS dataset. By addressing challenges related to big data, their
model successfully captured intricate features, indicating the promising potential of deep
learning in practical applications for predicting real-world traffic patterns.

In the study Yang et al. (2016) introduced the SAE-LM (Stacked Autoencoder Leven-
berg–Marquardt)model for traffic flow prediction, attaining a high accuracy rate of 90%
when applied to M6 freeway data. The model proves effective in handling irregular traffic
conditions, showing potential for reducing congestion. However, it is worth noting that
the model has limitations when dealing with smoother traffic patterns.

In the study Yi et al. (2017) used TensorFlow™ Deep Neural Network (DNN) for
predicting traffic flow, achieving an impressive 99% accuracy, especially in congested and
non-congested conditions. This study is a pioneer in applying TensorFlow™ in the field
of transportation engineering. It underlines the importance of refining the model and
extending its application to broader datasets to enhance its effectiveness.

In another studyChen et al. (2018) introduced FDCN, a fuzzy deep-learning approach
designed for predicting citywide traffic flow. FDCN recorded the least RMSE of 0.336.
This method stands out for its effectiveness in handling uncertain and extensive datasets.
By combining fuzzy theory with a deep residual network, the model surpasses existing
methods, highlighting the promise of using fuzzy representation in traffic flow prediction.

In his study Polson and Sokolov (2017) presented a deep learning model designed
for accurate short-term traffic flow predictions, surpassing the performance of sparse
linear methods. R2 and MSE recorded were 0.79 and 9.14. While stating certain limita-
tions such as concerns about interpretability and the absence of comparisons with more
advanced neural network architectures, the study suggests that future research should
explore alternative models suitable for diverse traffic conditions

2.4 Summary and limitation of work

In the review of existing literature, various methods for predicting traffic flow are ex-
plored. This includes statistical models, machine learning approaches, deep learning
models. Some notable statistical models, like SARIMA and an adaptive approach using
the Kalman filter, are effective in dealing with challenges related to the availability of
data. They have proven to be practical for making real-time short-term predictionsKumar
and Vanajakshi (2015)and Shekhar and Williams (2007) and Tan et al. (2009). Machine
learning models, such as Support Vector Regression (SVR), and ensemble techniques like
Decision Trees, Support Vector Machines, and Random Forests, have shown improved
accuracy, especially during peak traffic hours. These models highlight the importance of
using advanced methods to handle large datasets and contribute to intelligent transport-
ation systems Li and Xu (2021) and Meena et al. (2020) and Mohammed and Kianfar
(2018). In the world of deep learning for traffic prediction, certain models like LSTM and
Stacked Autoencoders (SAEs) have proven to be effective. They do a great job of under-
standing complex patterns and handling a large amount of data, making them valuable
for predicting traffic flow Shao and Soong (2016) Lv et al. (2014) Chen et al. (2018)Yang
et al. (2016) Despite their effectiveness, some of these models face challenges in terms of
understanding how they make predictions, using evaluation metrics that aren’t consist-
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ent, and not thoroughly comparing with more advanced neural network methods. Some
models have difficulty in applying different models in different situations and at different
traffic conditions. Hence in the future requirement, it is necessary to improve this model’s
interpretability. Using this method this can make the models more flexible and useful in
a wide range of traffic scenarios.

By comparing and evaluating different models, our research provides a clear and very
simple guide on the appropriate selection of traffic prediction models with ease of un-
derstanding evaluation metrics. The research focused on how well these methods could
capture the complex patterns that develop over both time and space. By applying ad-
vanced techniques like machine learning and deep learning models with great accuracy
and robust models the research becomes more practical, especially in managing and plan-
ning traffic. The research not only enhances our understanding of the PEMS-08 Dataset
but also provides insights to improve current models, tackle concerns about how easily
they can be interpreted, and guide future research in the field of traffic prediction.Table
1 shows summary of related work.

Table 1: summary of related work.

sr no Refrence Technique Data score
1 Kumar and Vanajakshi (2015) Arima Sarima Chennai roadway 4-10 Mape
2 Tan et al. (2009) Arima,DA,NN,MA ES PMS 5.9 MAPE
3 Shekhar and Williams (2007) ML,sarima,kf ITS 7.19 MAPE
4 Li and Xu (2021) SVR SVM RF Random 3.2 MAPE
5 Meena et al. (2020) svr RF decision tree ITS 0.99 R2
6 Mohammed and Kianfar (2018) DNN DRF GBM GLM Interstate 64 0.92 R2
7 Shao and Soong (2016) LSTM ITS 5.4 MAPE
8 Zheng and Huang (2020) LSTM BPNN ARIMA ITS 12.9 MAPE
9 Lv et al. (2014) SAE BPNN SVM RBF Random 34 MAE
10 Yang et al. (2016) saelm psonn rbfnn UK roadway 0.90 R2
11 Yi et al. (2017) DNN obd R2 0.99
12 Chen et al. (2018) cnn fdcn fcnn Arima random 21.126 RMSE
13 Polson and Sokolov (2017) LSTM RNN chcihago highway 0.79 R2

3 Methodology

In this section, we delve into to structured framework for predicting traffic flow for the
first five locations using PEMS-08. The four methodology phases involve PEMS-08 Data-
set collection, Dataset preparation and Exploratory Data Analysis, Applying ML models
with training and testing along with Hyperparameter Tuning, evaluating model perform-
ance with metrics such as R2 MSE and MAE. The research focuses on predicting traffic
flow across 5 different locations in San Bernardino using the PEMS-08 Dataset from
July to August 2016.The dataset records traffic data at 5-minute intervals with features
like flow, occupy, and speed. Employing statistical, machine learning, and deep learn-
ing, models. The aim is to provide insights into urban planning and develop a suitable
and optimum model for short-term traffic flow predictions. The goal is to make traffic
management in urban areas more efficient and effective. Figure 2 shows methodology
diagram.
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Figure 2: Methodology diagram

3.1 PEMS-08 Dataset Collection

The dataset contains the traffic data in San Bernardino from July to August 2016. There
are 170 locations with detectors recording every 5-minute interval of traffic information.
The dataset includes 3 features: flow, occupy, and speed. The details of the features are as
follows: The flow variable in the PEMS08 dataset represents the number of vehicles that
pass through the loop detector per time interval (5 minutes in this case). It is measured
in vehicles per 5-minute interval. The occupancy variable represents the proportion of
time during the time interval (5 minutes) that the detector was occupied by a vehicle.
It is measured as a percentage. The speed variable represents the average speed of the
vehicles passing through the loop detector during the time interval (5 minutes). It is
measured in miles per hour (mph). For the experiment considering the huge size of data
out of 170 locations, we have only predicted the first 5 locations of the dataset.

3.2 Data Preparation and Exploratory Data Analysis

In the data preparation stage, the jupyter notebook loads a traffic dataset, specifically
the PEMS-08 dataset, which contains information on traffic flow, occupancy, and speed
recorded at 170 different locations every 5 minutes over a specific period. The data is
initially stored in CSV format, and the notebook converts it into a more familiar format, a
pandas Data Frame, for ease of manipulation and analysis. The dataset is then analysed,
resulting in a data frame with over three million rows and five columns: timestep, location,
flow, occupy, and speed. The dataset is inspected for any missing values or anomalies,
and fortunately,there are no null values. The distribution of the three main features (flow,
occupy, and speed) is visualized to understand their spread. Subsequently, the notebook
selects data from a random location (in this case, location 50) and explores the trends in
occupancy, flow, and speed over the first 1000 timesteps. Data is then understood with
the help of Summary Statistic: Descriptive statistics (mean, std, min, max) are computed
and printed for numerical columns in the DataFrame. Visualization: Line plots illustrate
traffic flow over time for the first five locations, while boxplots and violin plots depict
the distribution of traffic flow at these locations exploration provides insights into the
temporal patterns and behaviors of the chosen location, which can inform the subsequent
steps in building predictive models for traffic-related tasks.

3.3 Applying ML model along with Hyperparameter Tuning

• In the applied phase of this study, determining the most effective model for predicting
traffic flow in the PEMS-08 Dataset involves a comprehensive model selection. The
primary prediction target is the traffic flow at the first five 5 locations. Overall, nine
models are applied with hyperparameter tuning. Nine models include Arima, Sarima,
KNN, Decision Tree, Random Forest, LSTM, CNN, and RNN.
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• In ARIMA model: The code employs a grid search to optimize three ARIMA
hyperparameters (p, d, q) for traffic flow prediction. It iterates over predefined ranges,
training and testing ARIMA models for each combination. The best hyperparameters
are chosen based on the highest R-squared score, and a final ARIMA model is trained on
the entire dataset, making predictions on the test set.

• In SARIMA model: The code conducts SARIMA hyperparameter tuning through
a grid search over p, d, and q values using itertools. product. It fits SARIMA models for
each parameter combination, fixed at a seasonal order of (1, 0, 1, 12) for monthly data,
with relaxed constraints. The best hyperparameters are chosen based on the highest
R-squared score, and a final SARIMA model is trained on the entire dataset, making
predictions on the test set.

• In KNN: The code utilizes K-Nearest Neighbors (KNN) regression with a hyper-
parameter, n neighbors, set to 5. This parameter controls the influence of neighboring
data points on predictions and can be adjusted based on data characteristics. KNN is a
non-parametric, supervised algorithm applied here for traffic flow prediction, leveraging
time step and location features for each location.

• In Decision Tree: The code utilizes a Decision Tree regression model with a hy-
perparameter, max depth, set to 35. This parameter controls the depth of the tree,
influencing model complexity. Decision Trees are non-linear, supervised algorithms em-
ployed here for traffic flow prediction, creating a tree structure where internal nodes make
decisions based on features, and leaf nodes represent predictions.

• In Random Forest Regressor, this model, comprising 100 decision trees, excels in
time series forecasting, combining ’timestep’ and ’location’ features for robust predic-
tions. Feature Importances: Highlighting ’timestep’ and ’location,’ the model discerns
feature importance is crucial for accurate predictions. Hyperparameter Setting: With
n estimators fixed at 100, this vital parameter shapes the forest’s size, impacting the
model’s complexity. In time series forecasting, Random Forest, an ensemble algorithm,
merges predictions from diverse decision trees, ensuring resilient predictions for traffic
flow.

• The RNN model is configured with 50 units in the SimpleRNN layer, a dropout rate
of 0.2, trained for 100 epochs with a batch size of 32. Technique/Algorithm: The RNN
is employed for time series forecasting, utilizing SimpleRNN for feature extraction and a
Dense layer for prediction. It employs the Adam optimizer with mean squared error loss
and incorporates early stopping to prevent overfitting. Sequences of length 10 are used
for training and capturing temporal dependencies.

• The LSTM model is configured with 50 units in the LSTM layer and trained for
100 epochs with a batch size of 32. The model employs the Adam optimizer with mean
squared error loss and incorporates early stopping to prevent overfitting’s (Long Short-
Term Memory) is used for time series forecasting. The model includes an LSTM layer for
capturing long-term dependencies and a Dense layer for prediction. Sequences of length
10 are employed for training, and the model is evaluated using the R2 score.

• The CNN model has a convolutional layer with 64 filters, a kernel size of 3, ReLU
activation, a max-pooling layer with a pool size of 2, a dense layer with 64 units and ReLU
activation, a dropout layer with a rate of 0.3, and an output layer with 1 unit using a linear
activation function. The model employs a 1D Convolutional Neural Network (CNN) for
time series forecasting. Sequences of length 10 are used, reshaped to fit the input of the
convolutional layer. The architecture includes convolutional layers with max pooling, a
flattening layer, and fully connected dense layers. Training involves mean squared error
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loss, Adam optimizer, and early stopping to prevent overfitting.
All models are fine-tuned and retrained to enhance their predictive performance, en-

suring robust and accurate traffic flow predictions. The data is split into varying per-
centages of 90,80, 70, 60, and 50 used for training and 10,20, 30, 40, and 50 for testing
for each model to check its robustness. After that K cross-validation is performed on
machine learning and deep learning models to enhance model reliability, optimize hy-
perparameters, maximize dataset utility, detect overfitting or underfitting, assess model
performance comprehensively, and reduce bias by iteratively splitting the data into K
subsets for training and testing. Table 2 shows hyperparameter tuning for all models

Table 2: Hyperparameter tuning of all models

Model Hyperparameter Tuning
ARIMA Nested loop grid search;Values: p=2, d=1, q=3.
SARIMA nested loop grid search with itertool product;
SARIMA Values : PDQm = (1, 1, 2)(1, 1, 1, 12)
KNN n neighbors=5

Random Forest n estimators=100
Decision Tree max depth=35
Gradient Boost n estimators=100, learning rate=0.1

LSTM units=50, sequence length=10, optimizer=adam, .
LSTM loss=mean squared error, batch size=32
RNN units=50, sequence length=10, dropout=0.2, optimizer=’adam’,
RNN Loss= mean squared error, batch size=32
CNN Conv 1D filters = 64, Conv 1D kernel size = 3, Conv 1D activation = relu
CNN Max Pooling 1D pool size = 2, Dense1 units = 64, Dense1 activation = relu,
CNN loss = mean squared error, epochs = 100, batch size = 16

3.4 Model Evaluation and Presentation

The models are evaluated based on insights from the Evaluation metrics, including R-
squared (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE)
which are employed to provide a comprehensive assessment of the model performance.This
helps to get a detailed picture, showing where each model shines and where it might
struggle. The study wraps up by suggesting how this research could push traffic flow
prediction methods forward and help with managing traffic in the real world. The results
are displayed in a clear table and visualizations that dive into the details of how we got
the best outcome.

4 Design Specification

In the initial stages of the project, the design specification is crucial for explaining the
requirements, limitations, and objectives of a machine learning system. The chosen tech-
niques and algorithms for the project are mentioned below:
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4.1 Modelling Technique

• Random forest, an ensemble learning method for classification and regression, combines
multiple decision trees to make predictions. It injects randomness into the training pro-
cess by randomly selecting a subset of features and training examples to consider when
splitting a node. This reduces overfitting and improves generalization performance. The
prediction for a new instance is the average of the predictions from all trees. Breiman
(2001). Mathematically, random forest can be represented as: y pred = 1/n estimators
* sum(T i(x)) where y pred is the predicted value, n estimators is the number of trees, T
i is the i-th decision tree, and x is the new instance.

• A decision tree regressor is a supervised machine learning algorithm used for regres-
sion tasks. It constructs a tree-like model that makes predictions by recursively splitting
the data into subsets based on certain decision rules. Each split is determined by the
feature that best reduces the variance or impurity of the data within the node. The
resulting tree structure represents a set of rules that map input features to the predicted
output. ( The equation for predicting the output of a decision tree regressor is: y pred =
leaf value where y pred is the predicted output and leaf value is the average or median
of the target values for the data points belonging to the leaf node.

• K-nearest neighbors (KNN) regressor is a non-parametric machine learning al-
gorithm used for regression tasks. It operates by identifying the k nearest neighbors
in the training data to a new instance and predicting the average value of the target vari-
able for those neighbors. The number of neighbors (k) is a hyperparameter that needs
to be tuned. Altman (1992)The equation for predicting the output of a KNN regressor
is: y pred = (1/k) * sum(y i)where y pred is the predicted output, k is the number of
neighbors, y i is the target value of the i-th neighbor, and the sum is over the k nearest
neighbors.

• Gradient boosting is an ensemble learning technique that builds an additive model
in a series of stages. Each stage consists of training a weak learner on the residuals of the
previous stage, where the residuals are the differences between the actual target values
and the predictions of the previous stage. The predictions of the weak learners are then
added to the predictions of the previous stages to obtain the final prediction. Friedman
(2001)The algorithm continues to build stages until a stopping criterion is met, such as
a maximum number of stages or a minimum error. y pred = F

n∑
i=1

xi

This is an equation for predicting the output of a gradient-boosting regressor.
• ARIMA (Autoregressive Integrated Moving Average) is a statistical method used to

forecast time series data. It assumes that the time series can be modeled as a combination
of autoregressive (AR) terms, which represent the dependence of the current value on past
values, integrated (I) terms, which account for non-stationarity by differencing the data,
and moving average (MA) terms, which represent the dependence of the current value on
past forecast errors. Box and Jenkins (1976) The ARIMA model is represented by the
equation: yt = c+ϕ1yt−1+ϕ2yt−2+ . . .+ϕpyt−p+ θ1εt−1+ θ2εt−2+ . . .+ θqεt−q + εt where
yt is the value of the time series at time t, c is the constant term, ϕi are the autoregressive
parameters, θi are the moving average parameters, εt is the white noise error term, p is
the order of the AR model, d is the degree of differencing, and q is the order of the MA
model.
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• SARIMA (Seasonal Autoregressive Integrated Moving Average) is an extension of
the ARIMA model specifically designed to forecast time series data with seasonal pat-
terns. It incorporates seasonal parameters to capture recurring patterns in the data,
making it particularly useful for forecasting time series with regular seasonal cycles, such
as monthly or quarterly sales figures. The SARIMA equation is:

yt = c+ ϕ1yt−s + ϕ2yt−2s + . . .+ ϕpyt−ps + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt.

Here, yt is the time series value at time t, c is the constant term, ϕi are the seasonal
autoregressive parameters, θi are the seasonal moving average parameters, εt is the white
noise error term, s is the seasonal period, p is the order of the seasonal AR model, d is
the degree of seasonal differencing, and q is the order of the seasonal MA model. The
SARIMA model’s parameters are estimated by minimizing the sum of squared errors
(SSE) between the predicted yt values and the actual yt values.

• Recurrent Neural Networks (RNNs) are a type of artificial neural network (ANN)
specifically designed to handle sequential data, such as text, speech, and time series data.
Unlike traditional feedforward ANNs, which treat each input independently, RNNs incor-
porate a feedback loop that allows them to consider the context of previous inputs when
processing new data. This makes RNNs well-suited for tasks that require an understand-
ing of temporal dependencies, such as machine translation, natural language processing,
and speech recognition. The core concept of an RNN is the use of hidden states, which
represent the network’s understanding of the input sequence at a given point in time.
The hidden state is updated as the network processes each input, allowing it to capture
the evolving context of the sequence learning. The equation of RNN is as follows:

ht = σ(Whhht−1 +Wxhxt + bh).

• CNNs are a powerful class of artificial neural networks that have revolutionized the
field of computer vision. At the heart of CNNs lie the convolutional layers, which are
responsible for extracting features from images. These layers apply filters, also known as
kernels, to the image pixels, sliding them across the image to generate feature maps. The
extracted features are then pooled using pooling layers, which downsample the feature
maps while preserving the most important features. This helps to reduce the dimension-
ality of the data and makes the network more efficient LeCun et al. (1998). The equation
for CNN is as following y pred = softmax(z).y pred is the predicted output is the output
of the final fully connected layer softmax is the softmax activation function, which nor-
malizes the outputs of the fully connected layer to sum to 1, making them suitable for
representing probabilities.

4.2 Evaluation Technique

The definitions for R-squared (R2), Root Mean Squared Error (RMSE), and Mean Ab-
solute Error (MAE) are as follows: R-squared (R2):

• R-squared is a statistical measure that represents the proportion of the variance in
the dependent variable (traffic flow, in this case) that is predictable from the independent
variables used in the model. It ranges from 0 to 1, where 1 indicates a perfect fit, meaning
the model explains all the variability in the traffic flow data. Following is the equation
for R2, R2 = 1 - (SSR/SST).where:SSR (Sum of Squared Residuals) and SST (Total Sum
of Squares)
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• Mean Absolute Error is a metric that calculates the average of the absolute dif-
ferences between predicted and actual values. It represents the average magnitude of
errors without considering their direction. MAE provides a clear measure of the model’s
accuracy in predicting traffic flow.

MAE =
1

n

n∑
i=1

|yi − ŷi|

n is the number of data points,
where:

n is the number of data points,

yi is the actual value of the dependent variable for thei-th data point,

ŷi is the predicted value of the dependent variable for the i-th data point.

• The root mean squared error (RMSE) is a popular metric for evaluating the per-
formance of regression models. It measures the average magnitude of the errors in a set
of predictions, where an error is the difference between the actual value and the predicted
value. The lower the RMSE, the better the model is at predicting the target variable.

RMSE =

√∑n
i=1(yi − ŷi)2

n

where:

n is the number of data points,

yi is the actual value of the dependent variable for the i-th data point,

ŷi is the predicted value of the dependent variable for the i-th data point.

5 Implementation

5.1 Tools Utilized

The software tools involved from the initial stage through to the final prediction are listed
below: 1. Language Python – Jupyter Notebook for code. 2. Microsoft Excel - Initial
data analysis and filtering of data.

5.2 Data Exploration

It is necessary to understand the nature of the data, hence it becomes important to
understand all variables in the dataset. To understand the data heatmap scatter plot,
histogram, and summary statistics were analyzed to understand the nature of the data.
The exploration starts with three scattered plots, explaining inter-variable relationships:
’Occupancy vs. Flow,’ ’Speed vs. Flow,’ and ’Speed vs. Occupancy.’ These visualizations
collectively offer us complete understanding of the traffic data’s statistical properties and
relationships, important for analytical and modeling endeavors. Below you can find in
figure 3 the scatter plot, Scatter Plot 1: Occupancy vs. Flow.

The first scatterplot shows the relationship between occupancy and flow. Occupancy
is a measure of how full the road is, while flow is a measure of the number of vehicles
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passing a point on the road per minute. The scatterplot shows that there is a positive
correlation between occupancy and flow, concerning location which means that as occu-
pancy increases, flow also increases similarly speed and flow scatter plots can be analysed
concerning location. The scatterplot shows that there is a negative correlation between
speed and flow, which means that as flow increases, speed decreases. On the other hand,
from Fig 4, we can get an idea about the distribution of flow speed and occupancy. The
distribution of flow is skewed to the right, with a median of 2,200 vehicles per minute.
The distribution of occupancy is also skewed to the right, with a median of 0.6. The
distribution of speed is skewed to the left, with a median of 30 miles per hour. Along
with this Heatmap is studied to understand the relationship between variables below is
a summary from Fig 5. Flow and occupancy have a strong positive correlation. Speed
and flow have a strong negative correlation. Location and the other three traffic metrics
have moderate correlations.

From Figure 6 overall flow at the first five locations can be understood through a line
plot. Location 0: Location 0 experiences the highest traffic flow during the morning rush
hour, and the lowest traffic flow during the late-night hours. Location 1 experiences a
moderate amount of traffic throughout the day, with slightly higher traffic flow during the
morning and evening rush hours. Location 2 experiences the highest traffic flow during the
evening rush hour, and the lowest traffic flow during the early morning hours. Location
3 experiences a consistent traffic flow throughout the day, with slightly higher traffic flow
during the morning and evening rush hours. Location 4 experiences a moderate amount
of traffic throughout the day, with slightly higher traffic flow during the midday hours.

Figure 3: scatter plot Occupancy vs. Flow,’ ’Speed vs. Flow,’ and ’Speed vs. Occupancy

Figure 4: Distributionof flow speed occupancy

5.3 Implementation of Models

After careful exploration of data and understanding, implementation of the model takes
place to determine which model suits best and is effective for traffic prediction. Overall,
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Figure 5: Heat map of flow speed occupancy

Figure 6: Traffic flow for five location
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the traffic dataset PEMS-08 contains 170 locations but for the experiment, we have chosen
the first five locations of the dataset to find the best-suited model for traffic prediction
at a particular location. Models have been categorized into three groups, Model A, B,
and C.

• Model A Utilizing Statistical Model
Model A consists of statistical models such as ARIMA and SARIMA. For ARIMA

model performs a grid search for optimal ARIMA hyperparameters, and the ARIMA
model is trained on the training data for each set of hyperparameters. The data is split
with varying percentages of 80, 70, 60, and 50% used for training and 20, 30, 40, and 50%
for testing. Traffic flow predictions are made at the first five locations using the test data,
and the R-squared (R2), MSE, and MAE scores are calculated to evaluate the accuracy of
the predictions. A similar experiment was performed utilizing the SARIMA model. The
model demonstrates time series forecasting highlighting hyperparameter tuning, model
fitting, and performance evaluation. It also includes error handling for potential model
fitting issues. The data is split into varying percentages of 90,80, 70, 60, and 50% used
for training and 10,20, 30, 40, and 50% for testing. Traffic flow predictions are made
at the first five locations using the test data, and the R-squared (R2), MSE, and MAE
scores are calculated to evaluate the accuracy of the predictions.

Model B utilizing ML Model.
• Four machine learning models were implemented Random Forest, Decision Tree,

KNN, and gradient boosting. A similar approach was built on implementing these four
models. The first five locations’ traffic flow are predicted considering timestep and loca-
tion as the independent variable and flow as the dependent variable. The hyperparameters
are tuned to produce the best results. For KNN n neighbors are set to five, decision trees
max depth is set to 35, gradient boosting and random forest n estimators are set to 100.
Various train-test splits, including 80, 70, 60, and 50%, with corresponding test set sizes
of 20, 30, 40, and 50% on the dataset. Traffic flow predictions are made at the first five
locations using the test data and the model is evaluated using R-squared (R2), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE).

• Model C utilizing DL Model.
Three Deep-learning models were implemented namely LSTM, simple RNN, and CNN.

In our research model choices, and hyperparameter tuning, and compare performance us-
ing metrics, emphasizing insights from visualizations. Various train-test splits, including
90,80, 70, 60, and 50%, with corresponding test set sizes of 20, 30, 40, and 50% on the
dataset. Traffic flow predictions are made at the first five locations using the test data
and the model is evaluated using R-squared (R2), Root Mean Squared Error (RMSE),
and Mean Absolute Error (MAE).

To validate performance robustness and reliability K cross-validation is performed on
ML and deep learning models where the parameter of k is set to 5 which divides the
dataset into 5 folds.

6 Evaluation

Evaluation plays a key role in machine learning, containing crucial activities such as meas-
uring model performance, selecting the optimal model, fine-tuning parameters, ensuring
generalization to new data, interpreting results, quantifying business impact, guiding con-
tinuous improvement, and communicating insights to stakeholders. It serves as a crucial
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point in the machine learning lifecycle, guiding decision-making, and ensuring models
align with objectives.

6.1 Case Study -1 Evaluation of Model A

The ARIMA model produces strong predictive capabilities across locations, capturing
a major variance in traffic flow data. Notably, location 0 stands out with the highest
R² at 0.9582%, demonstrating its great fit, while location 2 also performs exceptionally
well. Despite achieving consistent results across training and testing accuracies (ranging
from 50% to 90%), variations in R-squared values and MSE are observed. Specifically,
locations 1, 3, and 4 display moderate R-squared values with higher MSE compared to
locations 0 and 2. ARIMA performs well in predictive accuracy, particularly in locations
with higher R-squared and lower MSE, to enhance the need for better performance in
specific locations.

SARIMA: The SARIMA model impressively predicts traffic flow variations across loc-
ations, boasting R-squared values from approximately 0.8869% to 0.9628%—indicating
an excellent fit and exceptional pattern capture. Mean Squared Error (MSE) values are
moderate to low, signifying solid accuracy in predictions. Notable performances include
Location 3 with the highest R-squared (0.9628%) and lowest MSE (894.0896), and Loca-
tion 1 showing an incredibly good fit (R-squared of 0.9497%) with low MSE (1183.4562).
Locations 0 and 2 also demonstrate impressive performance. Overall, SARIMA emerges
as a highly effective tool for predicting traffic flow, earning a positive evaluation.

Both ARIMA and SARIMA models demonstrate strong predictive capabilities, with
SARIMA showing slightly better performance.

Table 2 shows the overall performance of ARIMA and SARIMA across all locations
with various train and test split. Figures 7 and 8 show actual vs predicted values for
traffic flow at location 0 for ARIMA and SARIMA.

Table 3: Perfromance of statistcal models.

Location Model R² RMSE MAE
0 ARIMA 0.9582 784 21.3
1 ARIMA 0.804 4590 57
2 ARIMA 0.8786 1492.47 27.29
3 ARIMA 0.803 4725 57
4 ARIMA 0.771 7186 69.3
0 SARIMA 0.987 982.3 24.3
1 SARIMA 0.9497 1183.4 24.7
2 SARIMA 0.886 1389 25.8
3 SARIMA 0.962 894.0 22.85
4 SARIMA 0.937 2018 31.2

6.2 Case study -2 Evaluation of Model B

Evaluation of Model B consists of all ML models implemented.
• Gradient Boost Regression Model: R-squared Values: Ranged are from 0.8928%

to 0.9397%, indicating a strong ability to explain the variance in traffic flow. RMSE
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Figure 7: Actual vs predicted values for traffic flow at location 0 for SARIMA

Figure 8: Actual vs predicted values for traffic flow at location 0 for SARIMA
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Values: Ranged are from 35 to 43, suggesting reasonable to high accuracy. MAE Values:
Ranged are from 28 to 33, indicating reasonable accuracy. Location 3: Highest R-squared
value (0.9397%) and lowest RMSE (38.0564), indicating excellent fit and high prediction
accuracy. Overall: gradient boost is Reliable tool for predicting traffic flow with superior
performance across all five locations.

• KNN Regression Model: R-squared Values recorded are Consistently high, ranging
from 0.9333% to 0.9721%. RMSE Values are Moderate, ranging from 24 to 30, high-
lighting accurate traffic flow prediction. MAE Values: are Moderate, ranging from 19 to
24, indicating reasonable accuracy. Overall: Reliable and accurate asset in traffic flow
prediction. Specific characteristics and challenges in each location should be considered
for further improvements.

• Decision Tree Regression Model: R-squared Values: are extremely high, ranging
from approximately 0.9398% to 0.9999%. RMSE Values: recorded are Low, ranging from
1.3 to 38, suggesting excellent accuracy. MAE Values: are Consistently low, indicating
exceptional prediction accuracy. Location 2: is Near-perfect fit with an exceptionally
high R-squared (0.9999%) and extremely low RMSE (1.3556). Overall: Highly effective
tool for capturing temporal patterns in traffic flow with exceptional accuracy.

• Random Forest Regression Model: R-squared Values: Near-perfect, ranging from
approximately 0.9846% to 0.9958%. RMSE Values are Consistently low, varying from 9
to 12. MAE Values: are low, indicating high accuracy. Feature Importance: ’Timestep’
is crucial (100% importance), while ’location’ does not contribute significantly. Overall:
Exceptional performance with ’timestep’ is identified as the key driver of traffic flow
predictions. Consistent accuracy across locations indicates reliability.

In summary, all three models Gradient Boost, KNN, and Random Forest show robust
performance in predicting traffic flow, each with its strengths and areas of exceptional
accuracy. The Decision Tree and Random Forest models show outstanding fits to the
data. Continuous monitoring and potential adjustments are recommended for sustained
performance, especially in specific locations with unique characteristics.

Figure 9 shows a line plot of mapping of actual and predicted data with random forest
covering data exceptionally well.

Figure 9: mapping of real and predicted data of ML models

After performing k cross-validation, k-fold results for different regression models demon-
strate consistent and robust performance across various locations. Random Forest achieves
high average R-squared (0.9615), low RMSE (27.0817), and moderate MAE (20.3550)
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Table 4: Perfomance of Machine Learning models

Location Model R² RMSE MAE
0 gradient boost 0.9325 35 28
1 gradient boost 0.9255 41 33
2 gradient boost 0.8928 38 29
3 gradient boost 0.9397 38 30
4 gradient boost 0.936 43 33
0 Decision Tree 0.986 15 5
1 Decision Tree 0.985 18.4 5.9
2 Decision Tree 0.99 1.3 0.1
3 Decision Tree 0.9398 38 10.04
4 Decision Tree 0.9957 11 3
0 KNN 0.964 26 19
1 KNN 0.967 27.4 20..8
2 KNN 0.933 21 9.83
3 KNN 0.97 25 19
4 KNN 0.962 33 24
0 Random forest 0.994 11.68 9.20
1 Random forest 0.9954 11.68 7
2 Random forest 0.9899 11.68 10
3 Random forest 0.9958 11.68 7
4 Random forest 0.9947 11.68 9.20

across locations, indicating reliable predictive capabilities. K-Nearest Neighbors: Shows
robust performance with high average R-squared (0.9661), low RMSE (25.4110), and
moderate MAE (19.1112) across locations, indicating effective capture of temporal pat-
terns. Decision Tree: Performs well with moderate to high average R-squared (0.9454),
varying RMSE (32.2417), and MAE (24.0489) across locations, demonstrating solid pre-
dictive accuracy. XGBoost: Demonstrates consistent and impressive performance with
high average R-squared (0.9632), low RMSE (26.4915), and moderate MAE (19.9808)
across locations, highlighting its effectiveness in capturing complex relationships.

6.3 Case Study -3 Evaluation of Model C

Evaluation of Model C consists of analyzing three deep learning models of LSTM, simple
RNN, and CNN for traffic prediction of the first five locations.

• LSTM Model: Performance Metrics: R2 scores close to 1 (0.95-0.96), low RMSE
between 28 to 35 and MAE values 21 to 26. Consistency: Consistently satisfactory per-
formance across all locations. Training: Loss decreases over epochs, indicating effective
learning and generalization. Training Details: Trained for 100 epochs, batch size of 32,
50 LSTM layers. Stability: Consistent performance across epochs suggests the model is
not overfitting. Effectiveness: Strong predictive performance for traffic patterns across
various locations.

• Simple RNN Model: Performance Metrics: Good R2 scores (0.8786-0.9185), higher
RMSE and MAE compared to LSTM. Consistency: Performs consistently across all loc-
ations but slightly less than LSTM. Training: Loss decreases with training but does
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not match LSTM’s overall performance. Comparison: Slightly lower overall performance
metrics compared to LSTM.

• CNN Model: Performance Metrics: High R2 values (0.91-0.96), low RMSE between
21 to 25and MAE. Learning: Shows effective learning with decreasing loss. Consistency:
Consistent performance across epochs with no significant issues. Optimization: Suggests
potential for further optimization in Location 2.

K Cross-Validation Results: LSTMModels: Consistently high performance across loc-
ations, average R2 score around 0.958. Comparison: Simple RNN performs well but with
slightly lower R2 scores and higher error metrics. CNN Models: Reliable performance,
similar R2 scores to LSTM, slightly higher RMSE and MAE.

Overall Recommendation: LSTM is a robust choice, providing a balance of high
accuracy and generalization across various locations. In summary, the LSTM model
demonstrates strong and consistent performance, making it a recommended choice for
the traffic prediction task. followed by CNN and simple RNN models who also perform
well but with slight variations in performance metrics. Figure 10 shows plot for Actual
vs predicted traffic flow of LSTM for location 0.

Table 5: Perfomance of Deep learning models across locations

Location Model R² RMSE MAE
0 LSTM 0.958 28.3 21.4
1 LSTM 0.963 29.3 21.97
2 LSTM 0.914 34.8 25.05
3 LSTM 0.966 28 21
4 LSTM 0.9585 35.25 26.32
0 CNN 0.9585 28.1 21.2
1 CNN 0.9623 29 22.5
2 CNN 0.912 35.2 25.4
3 CNN 0.966 28.5 21.6
4 CNN 0.957 35.6 25.3
0 RNN 0.903 43.04 35.7
1 RNN 0.923 42.43 34.8
2 RNN 0.87 42.1 30.9
3 RNN 0.917 44.6 34.8
4 RNN 0.911 51.4 38.9

Figure 10: Actual vs predicted traffic flow of LSTM for location 0
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6.4 Discussion

Overall, three case studies which included, two statistical Models, four machine learning
models, and three deep learning models were implemented and evaluated with varying
training and testing data ranging from 50 to 90 for the first locations of the dataset to
predict their traffic flow.

Out of the two Statistical models ARIMA and SARIMA.
ARIMA relies on the differencing of past observations to achieve stationarity, making

it suitable for linear trends. The simplicity of ARIMA is attributed to its parameteriza-
tion, comprising three components (p, d, q) for autoregression, differencing, and moving
average. ARIMA may struggle in scenarios where traffic flow exhibits non-linear patterns,
abrupt changes, or intricate dependencies. SARIMA extends ARIMA by incorporating
seasonality components (P, D, Q) to capture periodic patterns. Its success in outper-
forming ARIMA suggests its superior ability to model time series with both linear trends
and seasonal variations. SARIMA models outperformed ARIMA models in terms of R-
squared, MSE, and MAE for the given locations. SARIMA’s ability to capture seasonality
and trends in the data seems to contribute to its better performance, but extremely high
MSE values as compared to Machine learning and deep learning models suggest that on
average, making larger errors in predicting the traffic flow for the given locations.

Out of four Machine learning models of KNN, Gradient-boosting, and decision tree
evaluated based on various training and testing sets, Random Forest performed best
model with its accuracy and precision for all locations with the highest R2 RMSE and
MSE followed very closely by a decision tree with a small difference.

Ensemble Learning and Complex Relationships: Gradient Boosting builds an en-
semble of weak learners sequentially, each correcting error of the previous. This mitigates
bias and variance issues, allowing the model to capture complex relationships by focusing
on areas with prediction errors.

Decision Tree: Interpretability and Low RMSE/MAE: Decision Trees create a hier-
archical structure of decisions based on features, offering interpretability. The tree struc-
ture contributes to achieving low RMSE and MAE as it effectively partitions the data
into homogeneous groups.

KNN: Proximity-Based Predictions: KNN predicts based on the proximity of data
points in feature space. The choice of distance metric (e.g., Euclidean, Manhattan)
impacts the model’s sensitivity to feature scales and influences performance.

Random Forest: Ensemble Robustness: Random Forest builds multiple decision trees,
each trained on a subset of data and features. This ensemble approach enhances robust-
ness by reducing overfitting and capturing diverse patterns in the data. All models
perform well, with high R-squared values indicating a good fit to the data but the choice
of the best model depends on the specific requirements and characteristics of the data.

Out of three deep learning models LSTM, RNN, and CNN, LSTM is a strong con-
tender, with comparable performance across locations with high R2 low MSE and MAE
scores closely followed by CNN as compared to RNN performs well but shows some lim-
itations.

LSTM: Capturing Long-Term Dependencies excels in capturing long-term dependen-
cies using memory cells that can store and retrieve information over extended periods.
The model is well-suited for traffic flow prediction where dependencies span multiple time
steps.

CNN: Spatial Feature Extraction: CNN’s effectiveness lies in spatial feature extrac-
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tion, suitable for capturing spatial patterns in traffic flow. Convolutional layers learn
spatial hierarchies, enabling the model to recognize patterns at different scales.

RNN:Long-Term Dependency Challenges’ struggles with vanishing or exploding gradi-
ent problems, limiting its ability to capture long-term dependencies. This limitation can
manifest in scenarios where traffic flow exhibits extended temporal dependencies.

After performing k cross-validation this was further proven that LSTM’s and CNN
performance.

From the Evaluation of the case study of A, B, and C, ML models have shown consist-
ent and accurate performance lowest RMSE and MAE with proven robustness that can be
visualized through charts and tables, this was followed by deep learning models followed
by statistical models. This is attributed to ML model’s adeptness at capturing com-
plex relationships in the traffic flow data, leveraging the ensemble nature of algorithms
of Random Forest Decision Tree, KNN, and gradient boosting demonstrating high in-
terpretability. Out of ML models, there is a clear scope in the future of integrating
ML models and performing a highly accurate and robust model. The minor limitation
of research includes considering small size of data considering immense size would be
interesting to watch the performance of these models.

Overall, the project was extremely successful considering the models’ performance
of A, B, and C. The research’s results are a great encouragement in the field of traffic
prediction as ML and DL models show exceptional results that will effectively traffic
management strategies, optimize resource allocation, and facilitate timely interventions to
improve overall traffic efficiency and reduce congestion. The research meets its objective
of developing and implementing a high-performance model that is effective in the practical
world of traffic management. Bar graphs of R2 values of all models

Figure 11: Bar graphs of R2 values of all models

7 Conclusion and Future Work

The overarching goal of the project is to find the potential of various ML, DL, and statist-
ical models in the field of short-term traffic flow prediction and to find the most optimum
model suitable for its application in the field of traffic management systems. The re-
search was extremely successful in implementing Statistical, Machine learning, and deep
learning traffic prediction with remarkable accuracy and identified the shortcomings of
each model. Out of which average performance of ML models in the likes of random
forest achieved R2 of 0.99, decision tree with 0.98 and 0.97 performed exceptionally well
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followed by LSTM with R2 of 0.95.8, CNN with 0.95.2, and RNN with 0.91 Statistical
models like Sarima and Arima performed well too with high accuracy of 0.81, and 0.95
respectively, but a higher RMSE and MAE make them the latter choice. With this re-
search ML models of random forest, Decision tree, and KNN remain the first choice. The
models developed in this study provide a solid foundation for real-time traffic monitor-
ing, resource optimization, and data-driven decision-making. Their applications include
adaptive signal control and dynamic route planning, contributing to a more responsive
and efficient traffic management infrastructure. This study sets the stage for intelligent
traffic management solutions to alleviate congestion and enhance overall transportation
system performance. The limitation of work would be the sizeable use of dataset, it
would be interesting to know if the models that performed well can retain their results
with increase in the size of dataset.

In future works with the use of the PEMS 08 dataset with each model having some
drawbacks, they can be integrated to find a robust and accurate model which can reduce
traffic congestion at a location. In addition to this traffic congestion is a huge topic and
several factors come into picture that led to it, and amalgamation of weather datasets
and accident datasets could provide us with a more comprehensive way of providing
actionable insights for effective traffic management and improved transportation systems
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