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1 Introduction 
 

This manual provides guidance on setting up and running a Python project aimed at 

predicting Bitcoin prices using Long Short-Term Memory (LSTM) models combined with 

technical indicators such as Super Trend, Kaufman's Adaptive Moving Average, Fibonacci's 

Weighted Moving Average, and Average True Range Trailing Stop Loss. 

 

2 System Requirements 

2.1 Software Configuration 

Python: Version 3.7 or higher 

Libraries: pandas, numpy, matplotlib, pandas_ta, talib, sklearn, tensorflow 

Development Environment: Jupyter Notebook or any Python IDE 

 

2.2 Data Source 

Dataset: BTC-USD.csv (Bitcoin price data) 

Source: https://finance.yahoo.com/quote/BTC-USD/history/. Enter this website and in 

time period section choose ‘Max’. After that apply and directly download historical data. In 

this study data used for the period of September 17, 2014, through December 5, 2023. 

 

3 Environment Setup 
 

Install Python: Ensure Python 3.7 or higher is installed on your system. 

 

Install Required Libraries: Use pip to install the necessary libraries. Run the following 

commands in your terminal or command prompt: 

 

4 Implementation 

4.1 Data Preparation 

Load Data: Read the Bitcoin price data from the CSV file by using ‘data = 

pd.read_csv("BTC-USD.csv")’ comment 

 

Calculate Technical Indicators: Use the pandas_ta and talib libraries to calculate Super 

Trend, KAMA, and FWMA. SuperTrend, KAMA, and FWMA are calculated using the 

pandas_ta library. ATR (Average True Range) and ATR Trailing Stop are computed using 

the talib library. 

https://finance.yahoo.com/quote/BTC-USD/history/
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Data Cleaning and Preparation: Convert date columns to datetime objects, handle missing 

values, and drop unnecessary columns. 

 

 

4.2 Data Transformation 

 

Normalize Features: Use ‘MinMaxScaler’ from ‘sklearn.preprocessing’ module to scale the 

features. Following feature engineering, the dataset was ready for the LSTM model. This 

required using the MinMaxScaler from the sklearn.preprocessing module to normalize the 

features. Deep learning models require normalization because it uniformizes the input feature 

range and promotes faster training convergence. The normalization process involved to the 

Trailing_Stop_Long, Trailing_Stop_Short, KAMA, SuperTrend, Close and FWMA features. 
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Create Sequences: Transform the data into sequences for LSTM input. Sequences are the 

type of input data that the LSTM model needs. As a result, the prepared dataset was split up 

into sequences, each of which stood for a distinct time period 60 days in this case. For the 

data to show the temporal dependencies, this transformation was essential. From the 

normalized data, these sequences were produced using a custom function called 

create_sequences. 

 

 

4.3 Model Building 

 

Model Architecture: The Sequential model from the tensorflow.keras.models module was 

used to construct the LSTM model. As previously mentioned, the model architecture 

consisted of Dense, Dropout, and LSTM layers. The LSTM layers in the model are made to 

process sequential data and retain patterns over extended periods of time. The model's 100 

units per LSTM layer strikes a balance between computational efficiency and model 

complexity. Dropout layers, which randomly remove a percentage of the neurons (set at 20% 

in this study) during the training phase, are used to prevent overfitting. By doing this, it is 

made sure that the model is not unduly dependent on any one feature or pattern found in the 

training set. Dense layers are employed after the LSTM layers to interpret the features that 

the LSTM has learned. The model consists of a 35- unit Dense layer and a final Dense layer 

with an output of one unit, which represents the anticipated price. 

 

 
 

Optimizer: Adam optimizer is used for compiling the model. The Adam optimizer, which is 

well-liked for deep learning applications because of its effectiveness in managing sparse 

gradients and adaptable learning rates, is used to compile the model. 
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Loss Function: Mean Squared Error (MSE) is set as the loss function. Mean squared error 

(MSE) is the loss function that is employed, and it is suitable for regression tasks such as 

price prediction. 

 

 

4.4 Cross Validation Setup 

 

K-Fold Cross Validation: Use ‘KFold’ from ‘sklearn.model_selection’ for model 

validation. The model is then trained on 'k-1' folds, and its validity is checked on the 

remaining fold. Every fold serves as the validation set once during the 'k' iterations of 

this process. Five-fold cross-validation is employed in this work. With a batch size of 

32, the model is trained on each fold for 15 epochs. The LSTM model is trained by 

feeding it data sequences, including technical indicator data, and modifying the model 

weights to minimize the loss function. ‘KFold’ is a model cross-validator that divides 

the dataset into k consecutive folds (in this case, 5 folds). Each fold is then used once 

as a validation while the k - 1 remaining folds form the training set. ‘shuffle’=True 

ensures that the data is shuffled before splitting into batches. ‘random_state’=42 sets a 

seed for the random number generator that shuffles the data, ensuring reproducible 

splits. 

 

 

Training and Validation: Train the model on training folds and validate on the remaining 

fold. 
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4.5 Evaluation 

 

Calculate Metrics: The model's performance was evaluated using metrics like MAE, MSE, 

RMSE and R2 Score. These metrics provided a comprehensive understanding of the model's 

accuracy and predictive power. The evaluation included visualizing the performance metrics 

and learning curves to gain an intuitive understanding of the model's learning process and 

predictive accuracy. 

 

Visualization: Plot training and validation loss, and other metrics for each fold. 

 
Fold Set MSE RMSE MAE R2 

1 Train 0.000352   0.018766 0.010465   0.993800 

1 Validation 0.000320   0.017877   0.009788   0.994454 

2 Train 0.001415   0.037617   0.024075   0.974639 

2 Validation 0.001623   0.040281   0.025692   0.973666 

3 Train 0.000299   0.017278   0.009514   0.994827 

3 Validation 0.000346 0.018604   0.010065   0.993604 

4 Train 0.000420   0.020505   0.011713   0.992668 

4 Validation 0.000476   0.021827 0.011928   0.991427 

5 Train 0.000320   0.017902   0.010685   0.994407 

5 Validation 0.000283   0.016835   0.010248   0.994916 
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5 Running the Code 
 

Execute the Script: Run the Python script in your development environment. 

 

Monitor Outputs: Check the console or output cells for model performance metrics and 

visualizations. 

 

6 Running the Code 
 

This manual provides a comprehensive guide to setting up and running the Bitcoin price 

prediction project. Ensure all dependencies are correctly installed and follow the steps 

outlined for data processing, model building, training, and evaluation. 
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