

Configuration Manual

MSc Research Project

Data Analytics

Gokhan Fidan

Student ID: 22148795

School of Computing

National College of Ireland

Supervisor: Hicham Rifai

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Gokhan Fidan

Student ID:

22148795

Programme:

MSc in Data Analytics

Year:

2023

Module:

MSc Research Project

Supervisor:

Hicham Rifai

Submission Due
Date:

14/12/2023

Project Title:

Configuration Manual

Word Count:

987 Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Gokhan Fidan

Date:

14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Gokhan Fidan

Student ID: 22148795

1 Introduction

This manual provides guidance on setting up and running a Python project aimed at

predicting Bitcoin prices using Long Short-Term Memory (LSTM) models combined with

technical indicators such as Super Trend, Kaufman's Adaptive Moving Average, Fibonacci's

Weighted Moving Average, and Average True Range Trailing Stop Loss.

2 System Requirements

2.1 Software Configuration

Python: Version 3.7 or higher

Libraries: pandas, numpy, matplotlib, pandas_ta, talib, sklearn, tensorflow

Development Environment: Jupyter Notebook or any Python IDE

2.2 Data Source

Dataset: BTC-USD.csv (Bitcoin price data)

Source: https://finance.yahoo.com/quote/BTC-USD/history/. Enter this website and in

time period section choose ‘Max’. After that apply and directly download historical data. In

this study data used for the period of September 17, 2014, through December 5, 2023.

3 Environment Setup

Install Python: Ensure Python 3.7 or higher is installed on your system.

Install Required Libraries: Use pip to install the necessary libraries. Run the following

commands in your terminal or command prompt:

4 Implementation

4.1 Data Preparation

Load Data: Read the Bitcoin price data from the CSV file by using ‘data =

pd.read_csv("BTC-USD.csv")’ comment

Calculate Technical Indicators: Use the pandas_ta and talib libraries to calculate Super

Trend, KAMA, and FWMA. SuperTrend, KAMA, and FWMA are calculated using the

pandas_ta library. ATR (Average True Range) and ATR Trailing Stop are computed using

the talib library.

https://finance.yahoo.com/quote/BTC-USD/history/

2

Data Cleaning and Preparation: Convert date columns to datetime objects, handle missing

values, and drop unnecessary columns.

4.2 Data Transformation

Normalize Features: Use ‘MinMaxScaler’ from ‘sklearn.preprocessing’ module to scale the

features. Following feature engineering, the dataset was ready for the LSTM model. This

required using the MinMaxScaler from the sklearn.preprocessing module to normalize the

features. Deep learning models require normalization because it uniformizes the input feature

range and promotes faster training convergence. The normalization process involved to the

Trailing_Stop_Long, Trailing_Stop_Short, KAMA, SuperTrend, Close and FWMA features.

3

Create Sequences: Transform the data into sequences for LSTM input. Sequences are the

type of input data that the LSTM model needs. As a result, the prepared dataset was split up

into sequences, each of which stood for a distinct time period 60 days in this case. For the

data to show the temporal dependencies, this transformation was essential. From the

normalized data, these sequences were produced using a custom function called

create_sequences.

4.3 Model Building

Model Architecture: The Sequential model from the tensorflow.keras.models module was

used to construct the LSTM model. As previously mentioned, the model architecture

consisted of Dense, Dropout, and LSTM layers. The LSTM layers in the model are made to

process sequential data and retain patterns over extended periods of time. The model's 100

units per LSTM layer strikes a balance between computational efficiency and model

complexity. Dropout layers, which randomly remove a percentage of the neurons (set at 20%

in this study) during the training phase, are used to prevent overfitting. By doing this, it is

made sure that the model is not unduly dependent on any one feature or pattern found in the

training set. Dense layers are employed after the LSTM layers to interpret the features that

the LSTM has learned. The model consists of a 35- unit Dense layer and a final Dense layer

with an output of one unit, which represents the anticipated price.

Optimizer: Adam optimizer is used for compiling the model. The Adam optimizer, which is

well-liked for deep learning applications because of its effectiveness in managing sparse

gradients and adaptable learning rates, is used to compile the model.

4

Loss Function: Mean Squared Error (MSE) is set as the loss function. Mean squared error

(MSE) is the loss function that is employed, and it is suitable for regression tasks such as

price prediction.

4.4 Cross Validation Setup

K-Fold Cross Validation: Use ‘KFold’ from ‘sklearn.model_selection’ for model

validation. The model is then trained on 'k-1' folds, and its validity is checked on the

remaining fold. Every fold serves as the validation set once during the 'k' iterations of

this process. Five-fold cross-validation is employed in this work. With a batch size of

32, the model is trained on each fold for 15 epochs. The LSTM model is trained by

feeding it data sequences, including technical indicator data, and modifying the model

weights to minimize the loss function. ‘KFold’ is a model cross-validator that divides

the dataset into k consecutive folds (in this case, 5 folds). Each fold is then used once

as a validation while the k - 1 remaining folds form the training set. ‘shuffle’=True

ensures that the data is shuffled before splitting into batches. ‘random_state’=42 sets a

seed for the random number generator that shuffles the data, ensuring reproducible

splits.

Training and Validation: Train the model on training folds and validate on the remaining

fold.

5

4.5 Evaluation

Calculate Metrics: The model's performance was evaluated using metrics like MAE, MSE,

RMSE and R2 Score. These metrics provided a comprehensive understanding of the model's

accuracy and predictive power. The evaluation included visualizing the performance metrics

and learning curves to gain an intuitive understanding of the model's learning process and

predictive accuracy.

Visualization: Plot training and validation loss, and other metrics for each fold.

Fold Set MSE RMSE MAE R2

1 Train 0.000352 0.018766 0.010465 0.993800

1 Validation 0.000320 0.017877 0.009788 0.994454

2 Train 0.001415 0.037617 0.024075 0.974639

2 Validation 0.001623 0.040281 0.025692 0.973666

3 Train 0.000299 0.017278 0.009514 0.994827

3 Validation 0.000346 0.018604 0.010065 0.993604

4 Train 0.000420 0.020505 0.011713 0.992668

4 Validation 0.000476 0.021827 0.011928 0.991427

5 Train 0.000320 0.017902 0.010685 0.994407

5 Validation 0.000283 0.016835 0.010248 0.994916

6

5 Running the Code

Execute the Script: Run the Python script in your development environment.

Monitor Outputs: Check the console or output cells for model performance metrics and

visualizations.

6 Running the Code

This manual provides a comprehensive guide to setting up and running the Bitcoin price

prediction project. Ensure all dependencies are correctly installed and follow the steps

outlined for data processing, model building, training, and evaluation.

References

	1 Introduction
	2 System Requirements
	2.1 Software Configuration
	2.2 Data Source

	3 Environment Setup
	4 Implementation
	4.1 Data Preparation
	4.2 Data Transformation
	4.3 Model Building
	4.4 Cross Validation Setup
	4.5 Evaluation

	5 Running the Code
	6 Running the Code
	References

