
Enhancing Object Detection in Autonomous
Cars: A Fusion of YOLO and Cascade

R-CNN

MSc Research Project

Data Analytics

Kalyani Deshpande
Student ID: X21215961

School of Computing

National College of Ireland

Supervisor: Mr. Aaloka Anant

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Kalyani Deshpande

Student ID: X21215961

Programme: Data Analytics

Year: 2023

Module: MSc Research Project

Supervisor: Mr. Aaloka Anant

Submission Due Date: 31/01/2024

Project Title: Enhancing Object Detection in Autonomous Cars: A Fusion
of YOLO and Cascade R-CNN

Word Count: 5238

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kalyani Deshpande

Date: 29th January 2024

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



ENHANCING OBJECT DETECTION IN
AUTONOMOUS CARS: A FUSION OF YOLO AND

CASCADE R-CNN

Kalyani Deshpande
X21215961

31st January 2024

Abstract

This study presents a novel hybrid implementation of an object detection system
based on the YoloV4 and Cascade RCNN models. The research aims to understand
the performance dynamics of these models in terms of precision, recall, Average
Precision (AP), and mean Average Precision (mAP). During the comparison test,
the YoloV4 model did pretty well, showing that it could handle high recall situations
but had trouble keeping its precision steady. Its AP and mAP were both 0.16. It
was easier for the Cascade RCNN Standalone model to keep its precision across a
wider range of thresholds, as shown by its AP and mAP scores of 0.625. It was
the YoloV4-Cascade RCNN hybrid model that did the best, with the highest scores
(AP and mAP of 0.79) and a great balance between accuracy and recall. Combining
different object detection methods to improve overall detection accuracy works, as
shown by this hybrid model’s excellent performance. Understanding the study’s
results is important for making progress in real-world applications like self-driving
cars.

1 Introduction

The advent of increased processor powers equipped with the improvement in imaging
technology has seen a sharp rise in research towards building cars that do not require
human drivers to drive. These self-driving or autonomous cars are considered to be a
game-changing technology. These autonomous vehicles provide an important aspect of
road transportation in that they can avoid the errors that humans tend to make while
driving. These errors can cause both financial and human losses Faisal et al. (2019). Sev-
eral companies, including Waymo, Baidu, Cruise, etc., are working towards building these
autonomous cars. Tesla, on the other hand, introduced the Tesla Autopilot technology
that makes use of the Light Detection and Ranging (LiDAR), cameras and other hard-
ware to provide semi-autonomy in driving, mainly in navigation and lane changingIngle
and Phute (2016). On the other hand, fully autonomous vehicles are being designed
for their use in multitudes of businesses ranging from freight transport and taxi services
(Faisal et al., 2019). This technology is a composite of three stages of operations that
involve object detection, action prediction and acting. The object detection is considered
to be the most important aspect in autonomous driving Hnewa and Radha (2021).
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The motivation for undertaking lies in the limitations associated with the current
object detection techniques. Current models catering to object detection in autonomous
vehicles, exemplified by standard iterations of YOLO (You Only Look Once) and R-CNN
(Region-Based Convolutional Neural Networks), have undeniably achieved noteworthy
progress in the real-time identification and classification of objects. However, these mod-
els are not exempt from limitations. For instance, YOLO, despite its acclaimed speed,
occasionally compromises accuracy, especially when confronted with small or overlap-
ping objects. Conversely, R-CNN variants, renowned for their precision, often lag in
processing speed, a critical consideration for real-time decision-making in autonomous
driving scenarios. The specific shortcomings of YOLO and R-CNN models, and these
limitations manifest in real-world scenarios, potentially compromising safety. These lim-
itations manifest tangibly in practical scenarios as accidents or near-misses arising from
failure to detect and respond to road objects. Inaccurate or delayed object detection
instances translate into real-world consequences, posing risks to passenger safety and
disrupting efficient traffic flow.

This study aims to develop a hybrid model based on the YoloV4 and RCNN models
to use both technologies’ strengths in developing an object detection algorithm. This
approach provides a comprehensive and effective solution that is well-suited to the com-
plex and dynamic environment in which autonomous vehicles operate. The intention of
this hybrid model is to address the inherent trade-offs between speed and accuracy. This
hybrid model capitalises on the fast detection capabilities of YOLOv4 and the accuracy
of Cascade R-CNN. Integrating these models facilitates the creation of a system that
expeditiously identifies potential objects using YOLOv4 and subsequently refines these
detections with higher accuracy through the Cascade R-CNN framework.

In order to fulfil the aim of the research, the following research question has been put
forth:

”To what extent does the integration of YOLO and cascade R-CNN increase mAP
(mean Average Precision) in detecting objects for a self-driving car?”

The rest of the report is arranged in 5 chapters. Chapter 2 discusses the literature
review of the state-of-the-art systems, Chapter 3 discusses the methods used to fulfil
the objective of the study, Chapter 4 discusses the system architecture, and Chapter
5 discusses the implementation of the system. The system is evaluated and discussed
thoroughly in Chapter 6 and Chapter 7 concludes the study with key takeaways and
provides future directions for further research in the field.

2 Related Work

This section of the report analyses past literature in the field of object detection in
autonomous vehicles. The section provides overall understanding of the different meth-
odologies, deep learning models and their performance in object detection for autonomous
vehicles.

Zhou et al. (2021) augment the Faster-RCNN object recognition method for auto-
mated driving, integrating spatial attention, deformable convolution, and an enhanced
feature pyramid structure. These integrations aim to improve object recognition by
addressing false and missing discoveries. The method employs a ResNet-50 backbone
for enhanced feature extraction, particularly benefiting the detection of tiny objects.
The side-aware boundary localization further enhances frame regression in the process.
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Advancements include three cascade detectors collaborating to minimize IOU threshold
mismatches, contributing to improved overall object detection accuracy. The proposed
method employs Soft-NMS for determining optimal bounding boxes, refining them ef-
fectively compared to other methods. Empirical findings on COCO2017 and BDD100k
datasets demonstrate a practical 7.7% and 4.1% accuracy improvement for detecting
tiny and obstructed objects, showcasing efficacy in real-world automated driving scen-
arios. Dhayighode et al. (2022) emphasize the importance of accurate object detection in
autonomous vehicles and discuss challenges addressed by computer vision. Efforts to en-
hance model efficiency for Automatic Driving Systems (ADSs) involve strategies contrib-
uting to realizing the full potential of ADSs. The introduction of a weighted bidirectional
feature pyramid network (BiFPN) facilitates effective multi-scale feature composition,
offering advantages over alternative techniques. An integrated scaling strategy optimizes
the overall model performance, resulting in a 4×-9× reduction in model size and 2×–4×
faster GPU processing, enhancing the efficiency of AV object recognition.

Li et al. (2022) presents an enhanced Faster R-CNN technique for precise traffic sign
identification. AutoAugment technology, attention-guided context feature pyramid net-
work (ACFPN), and a ResNet50-D feature extractors are integrated to improve traffic
sign identification. The ACFPN minimizes the loss of contextual information, contrib-
uting to overall improvement. On the CCTSDB dataset, a mean average accuracy of
99.5% and 29.8 frames per second highlights superior performance compared to standard
approaches, with implications for real-world applications. Carranza-Garćıa et al. (2021)
introduce an improved 2D object detector based on Faster R-CNN for driverless cars.
Evolutionary algorithms for anchor optimization and a perspective-aware methodology
address challenges in anchor production and performance decline in minority classes.
The proposed module, integrating spatial data of potential areas, enhances accuracy and
addresses related challenges. An ensemble approach shows a 9.69% mAP improvement,
effectively enhancing mean Average Precision and overall model performance. Fang et al.
(n.d.) tackle challenges in segmenting and detecting targets in autonomous driving scen-
arios, replacing ResNet with the ResNeXt network in Mask R-CNN. Bottom-up path
augmentation in the Feature Pyramid Network (FPN) efficiently contributes to feature
fusion, offering advantages over alternative methods. The use of the ”CIoU loss” reduces
errors and accelerates model convergence, demonstrating efficacy with a 62.62% mAP for
target recognition on the CityScapes dataset.

Hu et al. (2020) categorize 3D object recognition techniques in autonomous driv-
ing into lidar-based, stereo-image-based, and monocular image-based approaches. Their
proposed technique combines cascading geometric constraints with monocular pictures,
contributing to robust detection. Monocular images are utilized for 3D object recogni-
tion, overcoming associated challenges. Shi et al. (2022) introduce Sparse R-CNN 3D
(SRCN3D), a two-stage fully-sparse detector for tracking and recognizing moving objects
in autonomous driving scenarios. SRCN3D addresses computational efficiency challenges
through sparse queries and attention mechanisms, with a special sparse feature sampling
module contributing to effective box refining and overall efficiency.

Mahmoud and Nasser (2021) focus on real-time accuracy in object identification for
autonomous vehicles, utilizing a dual architecture combining a highly accurate multiclass
CNN with YOLOv3. The modified Feature Pyramid Network (FPN) and Region-Based
Convolutional Neural Networks (Faster R-CNN) enhance microscopic item recognition,
with the proposed Sniffer Faster R-CNN (SFR-CNN) camera-LiDAR sensor fusion archi-
tecture addressing challenges related to the regional proposal network (RPN). Cai et al.
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(2021) propose the YOLOV4-5D one-stage object detection system for improved accuracy
and genuine real-time operation in autonomous vehicles. Modifications to the

CSPDarknet53 dcn(P) backbone network enhance accuracy, and the inclusion of de-
formable convolution contributes to this improvement. Five scale detection layers and
the PAN ++ feature fusion module collectively address small object detection problems.

Islam and Karimoddini (2022) introduce a fusion framework combining semantic seg-
mentation networks with asymmetric inferences from object detectors to improve ped-
estrian identification. This framework addresses challenges associated with detecting
unexpected abnormalities and barriers, concurrently improving efficiency through re-
duced runtime costs. Thorough assessments demonstrate the effectiveness and resili-
ence of the fusion architecture, outperforming previous approaches. Carranza-Garćıa
et al. (2021) assess the effectiveness of 2D object identification systems for autonomous
vehicles, comparing two-stage detectors (Faster R-CNN) and one-stage detectors (Retin-
aNet, FCOS, YOLOv3). Findings consider performance factors, especially in identifying
minority classes.

Carranza-Garćıa et al. (2022) presents a camera and LiDAR data fusion architec-
ture for object identification in autonomous driving. Integration of an effective LiDAR
sparse-to-dense completion network addresses LiDAR data sparsity, bringing benefits to
overall object identification models. Dai (2019) introduces HybridNet, a two-stage cas-
cade object identification system for vehicle detection in autonomous driving. Leveraging
regression techniques, HybridNet achieves fast and accurate vehicle detection, offering
specific advantages over other methods. Lee et al. (2021) contribute to intelligent trans-
portation systems with a focus on object identification methods for monocular cameras
in automated driving systems. ”You Only Look Once (YOLO)” V2 and ”Faster R-CNN”
models serve the goal of improving safety, each providing unique advantages. Juyal et al.
(2021)suggests a method for anonymous activity detection in nearby vehicles, emphasizing
”deep learning” techniques, particularly ”You Only Look Once (YOLO),” for real-time
irregularity detection. Challenges associated with detecting unexpected abnormalities
and barriers are addressed.

Jia et al. (2023)built upon ”YOLOv5” to create a quick and precise object detector
for autonomous driving. Structural ”re-parameterization (Rep)” contributes to increased
precision and speed, with specific enhancements improving model recognition for tiny
cars and pedestrians. Peng et al. (2022) acknowledge challenges in accurate environ-
ment perception in autonomous vehicles with a single sensor. Multi-sensor fusion strikes
a balance between AV cost and detection accuracy, with various fusion methodologies
classified based on image and point-cloud fusion.

Zhao et al. (2018) present ”CFENet,” an enhanced one-stage object detector focusing
on detecting small objects and sustaining high detection speed for autonomous driving
applications. The ”Comprehensive Feature Enhancement (CFE)” module contributes
to improved performance, outperforming other techniques like ”SSD” and ”RefineDet.”
Chen et al. (2021) thoroughly examine popular object identification architectures and
feature extractors for autonomous driving. Evaluation and comparison of ”Faster R-
CNN,” ”R-FCN,” ’SSD,” ”ResNet50,” ”ResNet101,” ”MobileNet V1,” ”MobileNet V2,”
and

”Inception ResNet V2” consider accuracy, speed, and memory consumption. Liu et al.
(2023) introduce ”BiGA-YOLO,” a lightweight network derived from ”YOLOv5” for ob-
ject detection in autonomous driving. ”Coordinate Attention,” ”Ghost-Hardswish Conv”
module and the ”BiFPN” structure collectively contribute to improved performance in
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detecting objects of different sizes in dynamic situations. Yang et al. (2020) present a
system for real-time object recognition and range in autonomous driving, focusing on lane
detection using ”RGB-D” pictures. The system utilizes two networks for accurate data
analysis, with the ”multi-GPU” synchronization technique playing a role in improving
speed and accuracy.

3 Methodology

This section of the report details the methods used in the fulfilment of the study objective
of developing a robust and accurate system of object detection for autonomous vehicles as
a data mining approach. A research methodology can be implemented via two techniques
viz. Cross-Industry Standard Process for Data Mining (CRISP-DM) and Knowledge Dis-
covery in Databases (KDD). While the CRISP-DM is an industry standard and involves
steps that involve deploying the developed system in real-world applications, the KDD
methodology is more research-based and does not involve the deployment of the system.
Hence, the KDD methodology is implemented in the study as it involves studying the
effectiveness of the system in object detection and contributing to the existing knowledge
of object detection in autonomous vehicles. Figure 1 below shows the steps involved in
the KDD methodology.

Figure 1: Modified KDD methodology

The figure above shows that the KDD methodology is modified for the study as the
data processing part of the methodology is not needed as the dataset is already processed.

3.1 Data Collection

The study makes use of the Common Object in Context (COCO) dataset Lin et al.
(2014). The COCO dataset is a collection of 80 common everyday objects ranging from
small objects like needles, spoons, knife to large objects like cars and aeroplanes including
humans. There are thousands of instances for each category making it a vast dataset.
The dataset is not directly used in the study, but the models implemented are pre-trained
on the dataset. Some sample images from the dataset are shown in Figure 2 below.
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Figure 2: Sample images from the COCO dataset

3.2 Modeling

In the modelling part, the following detectors that are pre-trained on the COCO dataset
are used to obtain the bounding boxes housing the object of interest in a query image. The
accuracy of the detection is calculated using a metric known as Intersection over Union
(IoU). It involves comparing the ground truth bounding box to the predicted bounding
box. The IoU for a detector is obtained as a ratio given below:

Figure 3 below shows the IoU over an image using object detectors.

Figure 3: IOU in an image

(Source: www.pyimagesearch.com)

This metric is used to evaluate the performance of the detector at work. Figure 4
below shows the significance of different IoUs.

Figure 4: Evaluating IoU

(Source: www.pyimagesearch.com)
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3.2.1 You Only Look Once, Version 4 (YoloV4) Detector

YoloV4 is a cutting-edge object detection model that is known for having a great bal-
ance of speed and accuracy Mahasin and Dewi (2022). It can be used in real-time
applications and is much better than its predecessors. YoloV4 is built around a con-
volutional neural network (CNN), which can process an entire image in a single pass
and predict both the bounding boxes and the class probabilities. This one-pass detection
method, which is unique to the YOLO series, makes it possible to find things very quickly.
YoloV4’s architecture is made up of CSPDarknet53 as the main part for feature extrac-
tion, PANet and Spatial Pyramid Pooling for better feature integration in the neck, and
an anchor-based detection head Liu et al. (2018). It has many optimizations, such as Mish
activation, Weighted-Residual-Connections (WRC), and Cross-Stage-Partial-connections
(CSP). These improvements not only make the model more accurate at detecting things,
but they also keep it relatively light and flexible so it can be used in a wide range of
settings.

Figure 5: YoloV4 Architecture

(Source: www.ultralytics.com)

YoloV4 is better than many of its predecessors and modern competitors when it comes
to training and running operations efficiently. It’s made to be trainable on standard
hardware, like a single GPU, so that more people can use its advanced object detection
features. During training, advanced data enhancement methods such as Mosaic and
CutMix are used to make the model better at adapting to different object sizes and
aspect ratios Liu et al. (2021). Because of this, YoloV4 works really well in many real-
time detection situations, from surveillance systems to self-driving cars and even finding
anomalies in factories.

3.2.2 Cascade Region-based Convolutional Neural Network (RCNN) de-
tector

Cascade R-CNN is a novel approach to object detection that improves on the standard
Region-based Convolutional Neural Network (R-CNN) model by adding a new multi-
stage architecture. This design is made to improve the detection process by fixing some
of the problems that come with regular R-CNNs. Object detection is usually done in
just one step in standard R-CNN models, which means that recall and precision are often
not as good as they could be. Cascade R-CNN comes up with a creative way to get
around this problem by using a series of detectors, each trained with higher Intersection
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over Union (IoU) thresholds. This method works in a certain order so that each stage
improves on the predictions made by the previous stage. This makes the bounding boxes
more accurate over time while keeping the recall rates high.

Figure 6: Framework of Cascade RCNN

(Source: www.researchgate.com)

Cascade R- CNN’s architecture is unique because it can change the IoU thresholds
in a way that makes the objects it finds more and more in line with the real world as it
goes through the stages. The model can handle a wide range of object sizes and shapes
well thanks to this progression. This makes it strong and useful for many detection tasks.
Cascade R-CNN is very complex, but it manages to find a good balance between accuracy
and computational efficiency. It is used a lot in situations where pinpointing the location
of things is very important, like in surveillance systems, medical image analysis, and self-
driving cars. Cascade R-CNN, like many other advanced object detection models, can be
hard on computers because it needs a lot of resources for training and inference, which
could be a problem for some uses.

3.2.3 Hybrid Model based upon YoloV4 and Cascade RCNN

The hybrid model based on the two detectors is developed through the strategy given be-
low: It integrates an IoU-based scoring mechanism to assess the overlap between bounding
boxes generated by YOLOv4 and Cascade R-CNN. In the event of identical IoU values
but divergent confidence scores, the box with the higher confidence score is determined,
and this conflict resolution strategy is employed. This role does a predetermined confid-
ence score threshold play in this determination, and it is integrated into the evaluation
process. To contend with computational complexity, the model is implemented within a
GPU-accelerated environment. This strategic choice was made, and it facilitate real-time
processing capabilities, especially when managing the increased computational load intro-
duced by Cascade R-CNN. So, this implementation choice impacts the overall efficiency
and effectiveness of the object detection model.

3.3 Evaluation Metrics

The object detection in the study is evaluated using the mAP score. mAP score is a
widely used metric, which stands for ”mean Average Precision,” to judge how well object
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detection models work, especially when they have to find more than one object in an
image. It gives a full picture of how accurate a model is by looking at both its precision
and recall across different types of objects and different levels of confidence in detection.

mAP score is based on Average Precision (AP). AP finds the mean value of the
precision and recall values over the range [0, 1]. The model’s detection outputs are used
to make a precision-recall curve for each class, which is then used to find the area under
the curve. Precision is the percentage of true positives found out of all the positives
the model found, and recall is the percentage of true positives found out of all the real
positives in the data. In object detection tasks, a finding is usually thought to be a true
positive if its Intersection over Union (IoU) with a ground truth bounding box is greater
than a certain value, which is usually 0.5.

Then, to get mAP, the AP values for all classes in the dataset are averaged. The mAP
score is very useful because it gives a single number that measures both how reliable the
model is (through accuracy) and how well it can find all relevant objects (through recall).
In object detection, this balance is very important because missing an important object
or labelling a non-important object wrongly can be expensive in autonomous vehicles.

4 Design Specification

This section of the study describes the architecture of the system implemented. The
system architecture employed in the study is shown in Figure 7 below.

Figure 7: Architecture of the system

The process flow of the system can be understood from the architecture above. The
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Faster R-CNN box is a component of the Cascaded R-CNN algorithm. It does two tasks:
classification, which determines the type of object in a suggested region, and bounding
box processing, which precisely locates the object. The relationship between these two is
based on the model’s ability to anticipate both the item class and accurately adjust the
bounding box coordinates at the same time. Cascade R-CNN enhances the Faster R-CNN
methodology by incorporating many iterative stages, each of which contributes to the en-
hancement of object detection precision. By employing a series of sequential procedures
to enhance the precision of the bounding box and classification, guarantees improved
accuracy in the detection process at each stage. In the presented study, pretrained de-
tectors are first used to obtain the bounding box and classification. The bounding box
is necessary to identify the IoU and confidence of the detector. The bounding boxes
obtained from the detectors are compared to the ground truths provided. Based on the
IoUs obtained for the detectors, through a comparison with the threshold of 0.5, the
classification as either 1 or 0 is obtained. Based on the classification, the mAP score is
then evaluated. The implementation of the system is further detailed in the upcoming
chapter.

5 Implementation

5.1 Environmental Setup

The environment to perform the study is created as a Jupyter environment in Google
Colab and is programmed in Python programming language. Important libraries such
as Open-CV (known as cv2 in Python), Scikit-learn, OpenMIM, mmdet, mmengine, and
mmcv are used to implement the system. The Scikit-learn library is already available for
use in Google Colab whereas the remaining libraries used are installed in line through
‘!pip install’ operation. The only data given as input to the system is the image over
which the object detection is to be performed.

5.2 Data Handling

The image given to the system is read using the cv2’s imread() function. The class names
for the object detections are also read into the environment using a function developed
to read the contents of the file ‘coco.names’.

5.3 Implementation of the YoloV4 detector

The YoloV4 model is loaded with pre-trained weights (yolov4.weights) and configuration
(yolov4.cfg) files using the cv2 library’s dnn module. A function detect objects() is defined
to perform object detection on images. It converts images into a blob, sets it as the input
to the network, and gets the output from the specified output layers that are obtained
from the detector configuration file and the weights. A function get boxes yolo() is defined
that processes the network’s output to extract bounding boxes, confidences, and class IDs.
It checks for the confidence score in the detection and rejects those below a threshold of
0.5. The overlapping boxes from the detection are filtered out, keeping only those with
the highest confidence scores through a method called non-maximum separation.
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5.4 Implementation of the RCNN detector

The RCNN detector implementation starts with the model’s initialisation with the con-
figuration file and checkpoint file download. The checkpoint file contains the pre-trained
weights. The configuration file is available in the mmdetection object detection toolbox
that is cloned using the git clone option from the git repository. The inference detector()
function from mmdet library is used to perform object detection on the same query im-
age that takes the model and image path as inputs. The bounding boxes and prediction
scores are obtained for the objects detected in the images by the detector. A threshold
of 0.5 is applied on the scores to detect the class labels associated with detected objects
from the image.

5.5 Implementation of the YoloV4 and RCNN hybrid

A custom function compare bounding boxes() is defined to compare the bounding boxes
from YoloV4 and Cascade RCNN. It uses the IoU metric to find matches and keep the
best bounding boxes based on a threshold. The function accepts yolo and rcnn bounding
boxes as inputs, along with the confidence scores (yolo confidences and rcnn confidences).
Additionally, an iou threshold parameter is set; this parameter’s value is 0.5 by default.
If two models’ bounding boxes score the same in the Intersection over Union (IoU) test,
this threshold is used to decide if the two models represent the same thing. It measures
how much two bounding boxes overlap; a higher IoU means more overlap. Bounding
boxes from YOLO and Cascade R-CNN are iterated over in the function using nested
loops. IoU is found for each pair using the calculate iou() function. Two models have
found the same object in an image if their IoU values are higher than the set threshold.
The IoU scores and confidence scores from both models are then added to the matched
boxes list along with these pairs. In addition, the function labels the pair with the highest
IoU score as the best match and keeps track of it. This is especially helpful for figuring
out which detection is the most accurate if both models detect the same object. Lastly,
the function gives back two outputs: a list of all the matched bounding boxes that met
the IoU threshold; and the single best match with the highest IoU score. Comparing
and analysing how well the YOLO and Cascade R-CNN models work on the same set of
images can be made easier with this output. The relative strengths and weaknesses of
each model in detecting different objects can be found by looking at which model gives
higher confidence scores or better IoU in matched detections.

6 Evaluation and Discussion

The results obtained for the implementation of the study are discussed in this section.
Table 1 below shows the results obtained from the experimentation.

Model Precision Recall AP value mAP value
YoloV4 [0.33 0 1] [1 0 0] 0.16 0.16

Cascade RCNN [0.5 0.5 1] [1 0.5 0] 0.625 0.625
YoloV4-Cascade RCNN Hybrid [0.67 0.5 1 1] [1 0.5 0.5 0] 0.79 0.79

Table 1: Comparison of model performances
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The presented results give a full analysis of three object detection models: YoloV4
Standalone, Cascade RCNN Standalone, and a hybrid of YoloV4 and Cascade RCNN.
These models are evaluated on their accuracy, recall, Average Precision (AP) value, and
mean Average Precision (mAP) value. These are all important metrics for judging how
well object detection systems work. When looking at the YoloV4 Standalone model, the
precision and recall values change a lot when the thresholds are changed. The precision
starts at 0.33 and the recall is 1. This means that when the model tries to find as many
relevant objects as possible, it gets a lot of false positives, which makes the precision
lower. The precision changes as the recall goes down, dropping to 0 before reaching a
perfect score at the lowest recall. The AP and mAP values for YoloV4 are both 0.16,
which means that it does about average at finding the right balance between accuracy
and recall. The Cascade-RCNN Standalone model, on the other hand, performs better
and more consistently. For higher recall levels, the precision values stay the same at 0.5,
which means that the ability to detect is balanced. As with YoloV4, though, the highest
level of accuracy at the end comes at the cost of no recall at all. The AP and mAP values
for Cascade RCNN are both much higher at 0.625, which shows that it is better at finding
objects than YoloV4 Standalone. The best results are obtained for the YoloV4-Cascade
RCNN hybrid model. It starts with a higher initial precision of 0.67 while keeping total
recall, which means it can find more true positives and fewer false positives. This balance
stays the same even as recall goes down, and the model stays very accurate the whole
time. The hybrid model has the best overall performance, as shown by its AP and mAP
scores of 0.79, which are the highest of the three models. This suggests that using YoloV4
and Cascade RCNN together makes the best of both models, making a more accurate
and dependable system for object detection.

Figure 8 below shows query image 1 given to the system.

Figure 8: Query Image 1

The performance of the model on the query image above is shown in Figure 9 below.
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Figure 9: Performance of the implemented detector

From the figure above, it can be seen that the model has been able to perfectly detect
all the cars in the image. Figure 10 below shows the second query image given to the
model.

Figure 10: Query Image 2

The performance of the model on the second query image is shown in Figure 11 below.
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Figure 11: Performance of the model on query image 2

From the figure above, it can be seen that the model performed decent detection
on the scene provided. The image consists of a large number of objects such as cars,
bicycles, persons etc. The model correctly detected the majority of them but with some
exceptions. A person crossing the road missed by the detector highlighting the difficulty
that exists in developing an object detection system.

7 Conclusion and Future Work

The study that compares YoloV4, Cascade RCNN, and a model that combines YoloV4
and Cascade RCNN is a big step forward in the field of object detection. The study’s
results are very important because they show how different models work in different
situations and how their strengths can be combined to make them work better. This
study only improves the accuracy as the speed of detection will be slower compared
to standalone the Cascade RCNN as well as the YoloV4. This is because the object
detection in the study is being performed as a combination of results from both models.
However, a significant improvement is obtained for the model implemented as shown by
the mAP and precision, recall values. The model created through the combination is also
expected to be fast as two fast models are used in the combination in the study. Yolo
is itself a fast algorithm and Faster RCNN also shows significant speed improvement as
compared to other RCNN models. So, the speed aspect of the model is considered by
incorporating these models. When it comes to object detection, precision and recall are
important metrics that are often linked to each other. The YoloV4 model is known for
being fast and efficient. It worked well when there was a high recall, but it struggled with
precision fluctuating. This makes it good for situations where finding all possible objects
is very important, but not so good when finding things accurately is very important.
Cascade RCNN, on the other hand, was very stable in its accuracy across a range of
thresholds, though it sometimes had lower recall. This trait is necessary when reducing
false positives is important, even if it means missing some true positives. However, the
YoloV4-Cascade RCNN hybrid model goes beyond these individual flaws and shows a
great balance between accuracy and recall. In the real world, where the cost of false
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positives and false negatives is high, this balance is very important. For example, in
autonomous vehicle navigation, it can be very bad if the vehicle misses an obstacle (low
recall) or thinks that a harmless object is an obstacle (low precision). In the same way,
it is important for medical imaging to accurately identify pathological features without
overdiagnosing them so that patients can get the best care. The way the study combined
the best features of YoloV4 and Cascade RCNN shows how useful hybrid models can be
in finding difficult objects. It shows that the future of object detection is not just making
new models, but also putting together smart combinations of models that have already
been used successfully. This plan could make object detection systems stronger, more
flexible, and more effective, so they can be used in a wider range of situations.

Future Work To build on what this study found, more research can be focused on
a few main areas: For the hybrid model to be used in real-time applications, especially
on devices with limited processing power, it will need to be streamlined so that it works
faster and more efficiently. Adding more difficult and varied datasets to the tests will help
figure out how stable and usable the models are in a range of settings and with different
kinds of objects. It is important to test and deploy these models in the real world in order
to see how well they work in practice and to make them perfect for specific use cases.
To conclude, the study not only compares how well object detection models work now,
but it also shows how hybridization can be used to make them work better. The future
of object detection lies in making models that are not only accurate and useful but also
flexible and responsible, so they can adapt to the changing needs of different fields and
everyday life.
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