‘ﬁ
\ National

College o
Ireland

A comprehensive comparison analysis of scholarly
investigations on Human Iris detection on deep neural
network

MSc Research Project
Data Analytics

Debmalya Deb
Student ID: x21242101

School of Computing
National College of Ireland

Supervisor: Aaloka Anant

‘*
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet
School of Computing

Student Name: Debmalya Deb

Student ID: x21242101

Programme: MSc Data Analytics Year: 2023
Module: MSc Research Project

Lecturer: Aaloka Anant

Submission Due

Date: 14/12/2023

Project Title: A comprehensive comparison analysis of scholarly

investigations on Human Iris detection on deep neural network

Word Count:725 Page Count:10

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Debmalya Deb

Date: 14/12/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

A comprehensive comparison analysis of scholarly
investigations on Human Iris detection on deep neural
network

Debmalya Deb
x21242101

1 Introduction

This document aims to provide the entire configuration and setup details of this Iris Detection thesis project,
including the model building with ResNet152V2 and CNN model. This manual will be followed to set up the
code and detection model. This code was performed in the 3 different IDEs due to some computation
resources and technical constrains. The three IDEs are Jupyter Notebook, Google Colab Pro and Pycharm.

2 Hardware and Software

This project was entirely performed on a MacBook M1 laptop and Figure 1 shows the hardware
configuration of the laptop.

[) Overview Displays Storage Support Resources]

macOS Monterey

Version 12.0.1

MacBook Air (M1, 2020)

Chip Apple M1

Memory 8 GB

Serial Number CO2DWS5TRQ6L4

System Report... Software Update...

Figure 1: MacBook conﬁgufation setlip

Now Figure 2 represents the Jupyter Notebook version. In Jupyter Notebook the Dataset
creation, Data Pre-processing, and Data augmentation have been performed.

About Jupyter Notebook x

Server Information:

You are using Jupyter notebook.

The version of the notebook server is: 6.4.5

The server is running on this version of Python:
Python 3.9.16 (main, Mar 8 2023, 04:29:44)
[Clang 14.0.6]

Current Kernel Information:

Python 3.9.16 (main, Mar 8 2023, 04:29:44)
Type 'copyright', ‘'credits' or 'license' for more information
IPython 8.12.0 —— An enhanced Interactive Python. Type '?' for help.

Figure 2: Jupyter notebook version

Figure 3 presents the Google Colab Pro Configuration details where the actual model
building has been done and both of the models have been trained in Google Colab Pro.

V100 RAM
v High-RaM Disk __

Resources X

You are subscribed to Colab Pro. Learn more.
Available: 72.71 compute units

Usage rate: approximately 5.45 per hour

You have 1 active session. Manage sessions

Want even more memory and disk space? Upgrade to Colab Pro+ x

Python 3 Google Compute Engine backend (GPU)
Showing resources since 4:42PM

System RAM Disk
1.7/51.0GB GPU RAM 27.0/166.8 GB

Figure 3: Google Colab Pro Version

Figure 4 represents the configuration details of the PyCharm. The models have been
deployed in the PyCharm and here only the real-time tracking trials performed although it's
on the future scope.

About PyCharm

PyCharm 2022.3.3 (Community Edition)

Build #PC-223.8836.43, built on March 10, 2023

Runtime version: 17.0.6+1-b653.34 aarch64
VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o.

Powered by
Copyright © 2010-2023 JetBrains s.r.o.

Close

Figure 4: PyCharm version

3 Dataset Collection

Short videos were collected from https://www.kaggle.com/code/mmmarchetti/deep-fake-
chalenge/input based on different iris movement scenarios. Figure 5 shows the collected videos
in the local directory.

= vimp4

2= v2.mp4
v3.mp4
v4.mp4
v5.mp4
v6.mp4
v7.mp4
v8.mp4
v9.mp4
v10.mp4
v11.mp4
v12.mp4
v13.mp4
v14.mp4
v15.mp4
v16.mp4
v17.mp4
v18.mp4
v19.mp4

Figure 5: Selected videos from Kaggle

LB B R R RN B EEEE R E MR

4 Implementation

4.1 Dataset Preparation

Figure 6 shows how images were taken from the videos in the Jupyter Notebook followed by Figure 7 like how
the author’s images with different iris movements were captured using built-in webcam.

import os

import time
import uuid
import cv2

VIDEO_PATH = os.path.join("thesis image','video','v18.mpa')
IMAGES_PATH = os.path. join('thesis image','images')
number_inages = 5

Specify the desired width and height for the saved images
image_width = 450
image_height = 450

Create a VideoCapture object with the video file
cap = cv2.VideoCapture(VIDEO_PATH)

Check if the video file is opened successfully
if not cap.isOpened():
print('Error: Could not open the video file.')
exit()

total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_skip = total_frames // number_images

for imgnum in range(number_images):
print('Collecting image {}'.format(imgnum))
frame_number = imgnum * frame_skip

cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)

ret, frame = cap.read()

if not ret:
print('End of video reached.')
break

Resize the captured frame to the desired width and height
frame = cv2.resize(frame, (image_width, image_height))

imgname = os.path.join(IMAGES_PATH, f'{str(uuid.uuid1())}.jpg")
cv2.imwrite(imgname, frame)
cv2.imshow('frame', frame)

if cv2.waitKey(1) & OxFF == ord('q'):
break

cap.release()
cv2.destroyAlWWindows ()

Collecting image @
Collecting image 1
Collecting image 2
Collecting image 3
Collecting image 4

Figure 6: - Image captured from videos.

import os #it provides fuctions to insteract with the operating system

import time # it helps to provide the time which will be used to set delay between the image capture
import uuid # helps to create unique images guves unique id while image creation

import cv2 # helps to create video frame

AwWN P

number_images 5 # number of images capture
desired_width = 450
desired_height = 450

AWNR

1 cap = cv2.VideoCapture(0)

2

3 if not cap.isOpened():

4 print('Error: Could not open camera.')

5 exit()

6

7 for imgnum in range(number_images):

8 print('Collecting image {}'.format(imgnum))

9

10 ret, frame = cap.read()

11

12 if not ret:

13 print('Failed to capture a frame.')

14 break

15

16 imgname = os.path.join(IMAGES_PATH, f'{str(uuid.uuid1())}.jpg")
17

18 # Resize the captured frame to the desired dimensions (450x450)
19 frame = cv2.resize(frame, (desired_width, desired_height))
20
21 cv2.imwrite(imgname, frame)
22 cv2.imshow(' frame', frame)
23 time.sleep(0.5)
24
25 if cv2.waitKey(1) & OxFF == ord('q'):
26 break
27

28 cap.release()
29 cv2.destroyAllWindows ()

Collecting image @
Collecting image 1
Collecting image 2
Collecting image 3
Collecting image 4
Collecting image 5
Collecting image 6
Collecting image 7
Collecting image 8
Collecting image 9
Collecting image 10
Collecting image 11
Collecting image 12
Collecting image 13
Collecting image 14

Figure 7: Author’s images captured using the webcam.

4.2 Data Labelling

Figure 8 represents how to open the LabelMe window for data annotation.

IMAGES_PATH = os.path.join('thesis image','images') # defines path where the captured images will going to be sa

1 !'labelme # initiate the labelme window

Figure 8:- Data Annotation using labelMe

2 R o =

Figure 9: Image Annotation

Figure 9 shows the annotation procedure. Here the paper first chose the directory where all the unique
labelled images were stored and with that, an output directory was also selected where the JSON files
containing all labelled pieces of information would get stored. The study had to select the class name and the
key point annotation colour. For “RightEye” the colour was green and for “LeftEye” the colour was red.

4.3 Data scaling

Figure 10 shows how the images were cropped into 450x450.

1 import tensorflow as tf

2 dimport cv2

3 import json

4 import numpy as np

5 from matplotlib import pyplot as plt

2023-10-17 15:47:12.897155: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimize
d with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical op
erations: SSE4.1 SSE4.2

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

1 # # Avoid 00M errors by setting GPU Memory Consumption Growth
2 # gpus = tf.config.experimental.list_physical_devices('GPU')
3 # for gpu in gpus:

4 # tf.config.experimental.set_memory_growth(gpu, True)

1 images = tf.data.Dataset.list_files('thesis image/images/*.jpg')

1 images.as_numpy_iterator().next()

: b'thesis image/images/e3b@be3c-6cf5-11ee-bf8b-e251dab298e8. jpg"

def load_image(x):

byte_img = tf.io.read_file(x)

img = tf.io.decode_jpeg(byte_img)

return img

1 def load_and_resize_image(x):

2 byte_img = tf.io.read_file(x)

3 img = tf.io.decode_jpeg(byte_img)

4 img = tf.image.resize(img, [450, 450]) # Resize to the desired shape
return img

1 images = images.map(load_and_resize_image)

Figure 10:- Cropped the images into 450x450

The cropped images were plotted to check their sizes as shown in figure 11.

1 type(images)

: tensorflow.python.data.ops.dataset_ops.MapDataset
1 image_generator = images.batch(4).as_numpy_iterator()
1 plot_images = image_generator.next()

1 # # Plot the images with circles

2 # fig, ax = plt.subplots(ncols=4, figsize=(20, 20))
3 # for idx, images in enumerate(plot_images):

4 # ax[idx].imshow(images)

6 # plt.show()

8 # Normalize the images to the [0, 1] range
9 plot_images = plot_images / 255.0

11 # Plot the images with circles

12 fig, ax = plt.subplots(ncols=4, figsize=(20, 20))

3 for idx, images in enumerate(plot_images):
ax[idx].imshow(images)

16 plt.show()

o

Figure 11:- Scale visualisation of the snaps.

The images were split and moved into the train, test and validation directory manually, 75% were sent to train
and test and the validation dataset got 15% each of the entire dataset. After spiting the Figure 12 explains how
the annotations were moved with respect to their located folders.

: 1 import os

for folder in ['train', 'test','val'l:
for file in os.listdir(os.path.join('thesis image', folder, 'images')):

1
2
3
4 filename = file.split('.')[@]+'.json’

5 existing_filepath = os.path.join('thesis image','labels', filename)

6 if os.path.exists(existing_filepath):

7 new_filepath = os.path.join('thesis image',folder,'labels',filename)
8 os.replace(existing_filepath, new_filepath)

Figure 12:- Moving the annotations

4.4 Data Augmentation

The images and their labels were loaded into the respective functions as per Figure 13.
augmentation code

In [1): 1 import albumentations as alb
import cv2
import os
4 import json
5 import numpy as np

In [2): 1 # import os

print(os.getcwd())
In [3]: 1 img = cv2.imread(os.path.join('thesis image', 'train', 'images', '2f25lebc-6cf6-1lee-bcbb-e251dab298e8.jpg'))
In [4): 1 img.shape # we can see the image sizes are random so that we are gonna crop that down in the below code

Outl4]: (450, 450, 3)

In [5]: 1 with open(os.path.join('thesis image', 'train', 'labels', '2f25lebc-6cf6-1lee-bcbb-e251dab298e8.json'), 'r') as
label = json.load(f)

In [6]: 1 label

Outl6]: {'version': '5.3.1',

[(label': 'LeftEye
[196. 4689265536723, 139.4067796610169411,
N

75704, 133. 2211,

.+ inages/2£251ebc-6cf6-11ee-behb-e251dab298es. pg',

geData': '/9j/4AAQSKZ. ICANICTSIxwcKDCpLDAX
NDOOHycSPngPCdzNDL/ZwBDAOgJC(JwLDBgNDngIRth‘I]lyH]IyM]IyM)IyH)IyM)Iyﬂjlyl‘l]lyf‘l]IyM]IyM)IyH)IyH)IijIyH]le;lyM]L/wAA
RCAHCACIDAST AWQFBgCICQoL, BAQAAAF ThMUEGE1FhBy
KH2JyggkKFNCYGRo 1) icoKSOONTY30DK6Q@RFRKALSUpTVFVIV1hZWnNKZWZNaG Lgc3R1dnd4eXaDhINGh4 1) ipKT LIWW L

Figure 13:- Images and Labels are getting stored

All the coordinates had checked whether they were coming properly or not, as described in Figure 14.

In [14]: 1 labell'shapes']

Out[14]: [{'label': 'LeftEye',

'points': [[196.4689265536723, 139.40677966101694]],
‘group_id': None,

‘description e

'shape_type': 'point',

‘flags': {}},

‘label': 'RightEye’,

‘points': [[218.50282485875704, 133.19209039548022]],
'group_id': None,

'description’: ''

‘shape_type':
‘flags': {}}]

-~

'point’,

In[]: 1
check the coordinates
In [15]: 1 coords = [0,0,0,0]
2 coords[0] = label['shapes'][0]['points'][e][0]
3 coords[1] = label['shapes'][0]['points'][0][1]
4 coords[2] = label['shapes'][1]['points'][0][0]
5 coords[3] = labell'shapes'][1]['points'][0][1]
In [16]: 1 coords

Out[16]: [196.4689265536723, 139.40677966101694, 218.50282485875704, 133.19209039548022]

In [17]: 1 coords = list(np.divide(coords, [640,480,640,480]))

In [18]: 1 coords

Outl18]: [0.306982697740113,
0.29043079096045193,
0.34141066384180785,
0.2774835216572505]

Figure 14:- Iris coordinates

Figure 15 and Figure 16 show the python albumentation function and the augmentation pipeline.

https://albumentations.ai/
we can keep the frame as same as bbox annotation

1

2

3

4 augmentor = alb.Compose([alb.RandomCrop(width=450, height=450),

5 alb.HorizontalFlip(p=0.5),

6 alb.RandomBrightnessContrast(p=0.2),

7 alb.RandomGamma(p=0.2),

8 alb.RGBShift(p=0.2),

9 alb.VerticalFlip(p=0.5)],

10 keypoint_params=alb.KeypointParams(format='xy', label_fields=['class_labels']))

12 # xy format is being used for keyPoint annotations https://albumentations.ai/docs/getting_started/keypoints_augm
Figure 15:- Python Albumentation code

augmentation pipeline

1 for partition in ['train', 'test', 'val'l:

2 for image in os.listdir(os.path.join('thesis image', partition, 'images')):

3 img = cv2.imread(os.path.join('thesis image', partition, 'images', image))
4

5 classes = [0,0]

6 coords = [0,0,0.00001,0.00001]

7 label_path = os.path.join('thesis image', partition, 'labels', f'{image.split(".")[@]l}.json"')
8 if os.path.exists(label_path):

9 with open(label_path, 'r') as f:
10 label = json.load(f)

11

12 if labell'shapes'][0]['label']=="'LeftEye':
13 classes([0] = 1

14 coords [@] np.squeeze(labell'shapes']1[@]['points']

~—
o

15 coords[1] np.squeeze(labell'shapes']1[@]['points'])[1

16

17 if labell['shapes'][@0]['label']l=='RightEye":

18 classes[1] = 1

19 coords[2] = np.squeeze(labell['shapes']1[@]['points'])[@]

20 coords [3] = np.squeeze(labell['shapes'][0]['points'])[1]

21

22 if len(labell['shapes']) > 1:

23 if label['shapes'][1]['label'] =='LeftEye':

24 classes[0] = 1

25 coords [@] = np.squeeze(labell'shapes']1[1]1['points*'])[@]

26 coords[1] = np.squeeze(labell'shapes'][1]1['points*'])[1]

27

28 if labell'shapes']l[1]['label'] =='RightEye':

29 classes[1] = 1

30 coords[2] = np.squeeze(labell'shapes'][1]['points']) [@]

31 coords [3] = np.squeeze(labell'shapes'][1]['points'])[1]

32

33 np.divide(coords, [640,480,640,480])

34

35 Ewnys

36 for x in range(120):

37 keypoints = [(coords[:2]), (coords([2:1)]

38 augmented = augmentor(image=img, keypoints=keypoints, class_labels=['LeftEye', 'RightEye'])
39 cv2.imwrite(os.path.join('aug_data', partition, 'images', f'{image.split(".")I[0]1}.{x}.jpg'), aug
a0

41 annotation = {}

42 annotation['image'] = image

a3 annotation['class'] = [0,0]

a4 annotation['keypoints'] = [0,0,0,0]

45

46 if os.path.exists(label_path):

47 if len(augmented['keypoints']l) > @:

48 for idx, cl in enumerate(augmented['class_labels']):

49 if cl == 'LeftEye':

50 annotation['class'][@] = 1

51 annotation['keypoints'][@] = augmented['keypoints'] [idx] [@]
52 annotation['keypoints'][1] = augmented['keypoints'] [idx] [1]
53 if cl == 'RightEye':

54 annotation['class'][1] = 1

55 annotation['keypoints'][2] = augmented['keypoints'] [idx] [@]
56 annotation['keypoints'][3] = augmented['keypoints'] [idx] [1]
57

58 annotation['keypoints'] = list(np.divide(annotation['keypoints'], [450,450,450,450]1))
59

60

61 with open(os.path.join('aug_data', partition, 'labels', f'{image.split(".")[@]1}.{x}.json'), 'w"')
62 json.dump(annotation, f)

63

64 except Exception as e:

65 print(e)

image must be numpy array type
image must be numpy array type
image must be numpy array type

Figure 16:- Data Augmentation Pipeline

5 Model Building

The augmented dataset was mounted on the google colab and the essential Python libraries were imported as
shown in Figure 17.

[1 1 from google.colab import drive
2 drive.mount('/content/drive')

Mounted at /content/drive

import os

import cv2

import tensorflow as tf

import cv2

import json

import numpy as np

from matplotlib import pyplot as plt

©

No s WN R

Figure 17:- Dataset mount and important python libraries

Before modeling all the augmented images and their annotations were gathered. Figure 18 shows all together
8280 images were there in the training dataset, 1800 were in the test and 1800 were in the validation dataset.

[1 1 len(train_images)
2

8280

© 1 len(test_images)
2

[Z 1800

[1T 1 len(val_images)

1800

Figure 18:- Total number of augmented data

Finally, the images and annotations were zipped for train, validation and testing. Figure 19 visualises the key
point annotation with the images.

fig, ax = plt.subplots(ncols=4, figsize=(20,20)) # 4 different colomns to visualise the images and figsize is for how big I want
for idx in range(4): # looping 4 different images

©

1

2

3 sample_image = res[@] [idx] # access our key which is in index @

4 sample_coords = res[1] [0] [idx] # and we are going to the corresponding coordinates

L # open cv to draw the points with the perfect coordinates in 255 pixles because we scaled the images before in 255 pixles and we divided it before and that

6 # why we are multipling here

7 cv2.circle(sample_image, tuple(np.multiply(sample_coords[:2], [250,250]).astype(int)), 2, (255,0,0), -1)

8 cv2.circle(sample_image, tuple(np.multiply(sample_coords(2:], [250,250]).astype(int)), 2, (0,255,0), -1)

9

10 ax [idx] .imshow(sample_image)

[WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255) for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib. image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

0

100

150

Figure 19:- Zipped images with annotations

5.1 ResNet Model

Figure 20 represents the ResNet model building.

1 from tensorflow.keras.models import Sequential # sequestinal neural network
2 from tensorflow.keras.layers import Input, Conv2D, Reshape, Dropout # input defines the shape, convolution neural network, to reshape, dropout for regularisation
3 from tensorflow.keras.applications import ResNet152V2 # trasnfer learning module/ pre-existing neural network

1 # input shape has to 250,250,3 and here I am using padding and relu activation fucntion throughout
2 model = Sequential([

3 Input(shape=(250,250,3)),

4 ResNet152V2(include_top=False, input_shape=(250,250,3)),

5 Conv2D(512, 3, padding='same', activation='relu'),

6 Conv2D(512, 3, padding='same', activation='relu'),

7 Conv2D(256, 3, 2, padding='same', activation='relu'), # 2 represents the stride
8 Conv2D(256, 2, 2, activation='relu'),

9 Dropout(0.05),

10 Conv2D(4, 2, 2),

1 Reshape((4,))

Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet152v2 weights tf dim ordering_tf kernels notop.hS
234545216/234545216 [1 - 1s Ous/step

Figure 20:- The ResNet model
5.2 CNN Model

Figure 21 represents the CNN model building.

1 from tensorflow.keras.models import Sequential # sequestinal neural network
2 from tensorflow.keras.layers import Input, Conv2D, Reshape, Dropout # input defines the shape, convolution neural network, to reshape, dropout for regularisation
3 from tensorflow.keras.applications import MobileNetV2 # trasnfer learning module/ pre-existing neural network

1 from tensorflow.keras.models import Sequential

2 from tensorflow.keras. layers import Input, Conv2D, Activation, MaxPooling2D, Flatten, Dense, Dropout, Reshape
3

4 model = Sequential([

5 Input(shape=(250, 250, 3)),

6 Conv2D(64, 3, padding='same', activation='relu'),

7 Conv2D(64, 3, padding='same', activation='relu'),

8 MaxPooling2D(pool_size=(2, 2)),
9

10 Conv2D(128, 3, padding='same', activation='relu'),
1 Conv2D(128, 3, padding='same', activation='relu'),
12 MaxPooling2D(pool_size=(2, 2)),

13

14 Conv2D(256, 3, padding='same', activation='relu'),
15 Conv2D(256, 3, padding='same', activation='relu'),
16 MaxPooling2D(pool_size=(2, 2)),

17

18 Flatten(),

20 Dense(512, activation='relu'),
21 Dropout(0.5),

22 Dense(d),
23 Reshape((4,))
241])

25

Figure 21:- The CNN model

5.3 Deployment

Figure 22 shows the code to load the model in .h5 format.

Save the model for real time performance

[[] 1from tensorflow.keras.models import load model # load model module from keras tuner
2

[1 1model.save('/content/drive/MyDrive/iristrackerresnet.h5')
2

Jusr/local/ib/python3. 10/dist-packages/keras/src/engine/training.py:3079: UserWlarning: You are saving your model as an HDFS file via ‘model.save()'. This file format is consi
saving_api. save_model(

[1model = load_model('/content/drive/MyDrive/iristrackerresnet.h5')
2

Figure 22:- Saving the model for deployment

Finally, the future scope of this thesis was real-time tracking. Figure 23 shows the code of real-time tracking.
This code for real-time tracking was written in PyCharm.

tensorflow.keras.models load_model
cv2

numpy np
model = load_model(
cap = cv2.VideoCapture(0)
cap.isOpened():
frame = cap.read()
frame = frame[50: : .1
rgb_img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

resized = cv2.resize(rgb_img, ())

yhat = model.predict(np.expand_dims(resized / 2
sample_coords = yhat[:4]

cv2.circle(frame, tuple(np.multiply(sample_coords[:2], [1) .astype(int))

cv2.circle(frame, tuple(np.multiply(sample_coords[2:], [1) .astype(int))

cv2.imshow(frame)

cv2.waitKey(1) &

cap.release()
cv2.destroyAllWindows ()

Figure 23:- Model deployment code

10

