~

National
Collegef
[reland

Configuration Manual

MSc Research Project
Data Analytics

Himani Chauhan
StudentID:x22118021

School of Computing
National College of Ireland

Supervisor: Mr Teerath Kumar Menghwar

National College of Ireland .
Project Submission Sheet N National

School of Computing College of
Ireland
Student Name: Himani Chauhan
Student ID: x22118021
Programme: Data Analytics
Year: 2023
Module: MSc Research Project
Supervisor: Mr Teerath Kumar Menghawar
Submission Due Date: 14/12/2023
Project Title: Configuration Manual
Word Count: XXX
Page Count: 8

[hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 13/12 2023
PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:
Attach a completed copy of this sheet to each project (including multiple copies). o
Attach a Moodle submission receipt of the online project submission, to each | o
project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your own | o
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Himani Chauhan
x22118021

1 Introduction

This configuration manual explains the entire project's procedure in detail, from
environment setup to implementation and assessment. The purpose of this project was
to perform advanced sentiment analysis and topic modeling on e-commerce reviews from
Flipkart and Amazon. The programming language that is used, the system settings, and
any necessary libraries are all covered in this setup manual.

The results of this study, the many experiments carried out, and the evaluation standards
applied to each experiment are the main topics of discussion.

2 Environment Setup

2.1 System Specification

Jupyter notebook was used i to carry out the implementation of this study. It is used to
create and share documents with live code, equations, graphs, and narrative prose using
the open-source, interactive online application Jupyter Notebook. Because of its
versatility and usability, it is frequently used in data science, machine learning, and
scientific research.

2.2 System Specification

Python language was used in this project, with all the packages and libraries listed below.
e NumPy

e Matplotlib

e Pandas

e NLTK

e pytorch

e tensorflow

e Seaborn

e Scikit-Learn

e Transformers

e Bert and Roberta
e LabelEncoder

e AdamWOptimizer

2.3 Data Source

The datasets used in this project are downloaded from Kaggle. Two datasets related to e-
commerce reviews of widely known platforms called Flipkart and Amazon are
downloaded.

3 Implementation

In this section, all the steps are showcased right from start to end of the implementation
proposed in this project. We are showcasing all the Libraries loading, data preparation
and implementing models.

3.1 Importing Libraries

In figure 1. all the necessary libraries are imported for this project.

import pandas as pd

import re

import nltk

import matplotlib.pyplot as plt
import seaborn as sns

from wordcloud import WordCloud

from collections import Counter

from sklearn.feature_extraction.text import CountVectorizer
import datetime

Figure 1 Importing Libraries

3.2 Data Loading and Pre-processing

In figure 2. and 3 data loading process is done for both the topics: sentiment analysis and
Topic Modeling. Data Pre-processing was performed to remove non-English words, URLs,
stop words, removing duplicates, and normalizing data and null values etc. Below

snippets show some of the steps carried out to input data.
import pandas as pd
import re
import nltk
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
from collections import Counter
from sklearn.feature_extractitn.text import CountVectorizer
import datetime

lLoad the data
amazon_data = pd.read_csv('7817_1.csv')
flipkart_data = pd.read_csv('flipkart_product.csv', encoding="latinl"')

Figure 2 Loading the data

Remove duplicates
amazon_data.drop_duplicates(subset="reviews.text', inplace=True)
flipkart_data.drop_duplicates(subset="Review', inplace=True)

Filter out non-English reviews (this is a simple approach and might not catch all non-English reviews)
amazon_data = amazon data[amazon data['reviews.text'].apply(lambda x: bool(re.search('[a-zA-Z]', str(x))))]
flipkart_data = flipkart_data[flipkart_data['Review'].apply(lambda x: bool(re.search(’'[a-zA-Z]"', str(x))})]

Text Normalization
def preprocess_text(text):
If text is not a string type, return an empty string or convert to string
if not isinstance(text, str):
return ™"

Convert to lowercase
text = text.lower()

Remove URLs
text = re.sub(r'http\S+', "', text)

Remove punctuations
text = re.sub(r'[~Ww\s]", '", text)
return text

amazon_datal "'processed_review'] = amazon_data['reviews.text'].apply(preprocess_text)
flipkart_data['processed_review’'] = flipkart_data['Review’].apply(preprocess_text)

Figure 3 Data Preprocessing

3.3 Exploratory Data Analysis

Preliminary exploratory data analysis is performed on both the datasets to get more
insights about dataset.

Check for missing values
print(amazon_data.isnull().sum())

Distribution of ratings

plt.figure(figsize=(8, 6))

sns.countplot(x="reviews.rating', datazamazon_data, palette='viridis")
plt.title('Distribution of Ratings')

plt.show()

Distribution of review Lengths

amazon_data['review length'] = amazon data['processed review'].apply(len)
plt.figure(figsize=(10, 6))

sns.histplot(amazon_data['review_length'], bins=30, kde=True, color="skyblue')
plt.title('Distribution of Review Lengths')

plt.xlabel('Review Length")

plt._ylabel('Frequency")

plt.show()

Word cloud for reviews
from wordcloud import WordCloud

Concatenate all reviews into a single string
all_reviews = ' '.join(amazon_datal 'processed_review'].astype(str))

Generate word cloud
wordcloud = WordCloud(width=860, height=400, random_state=42, max_font_size=110).generate(all_reviews)

Display the word cloud
plt.figure(figsize=(10, 8))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis(' off")

plt.title('Word Cloud for Amazon Reviews')
plt.show()

Figure 4 Exploratory Data Analysis

3.4 Sentiment Analysis using VADER

We are creating a baseline model for sentiment analysis on both Flipkart and Amazon
dataset which will lay foundation for our advanced models. Below snippet shows the code
and results of the methods applied.

Apply VADER to each review

flipkart_data['vader_sentiment'] = flipkart_data['processed_review'].apply(lambda x: analyzer.polarity_scores(x)['compound’])
true_labels = flipkart_data['sentiment’]

vader_sentiment = flipkart_data['vader_sentiment’]

from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder

Convert categorical Labels to numeric using LabelEncoder
label_encoder = LabelEncoder()
true_labels_encoded = label encoder.fit_transform(true_labels)

Apply threshold to VADER sentiment scores (replace 8.5 with your threshold)
vader_sentiment_thresholded = (vader_sentiment > ©.5).astype(int)

Print classification report

print("VADER Sentiment Analysis Report:")
print{classification_report(true_labels_encoded, vader_sentiment_thresholded, target_names=label_encoder.classes_))

VADER Sentiment Analysis Report:

precision recall fl-score support

negative 9.28 1.08 8.43 237
neutral 0.02 0.08 0.03 111
positive 0.00 0.00 0.00 911
accuracy 8.19 1259
macro avg 9.10 9.36 8.16 1259
weighted avg 9.05 9.19 Q.08 1258

Figure 5 Sentiment Analysis using VADER

Accuracy: 9.80
Classification Report:

precision recall fl-score support

Negative 0.00 0.00 0.00 9.0
Neutral 0.00 0.00 0.00 0.0
Positive 0.00 0.00 0.00 0.0
nan 0.00 0.00 0.00 150.0
negative 0.00 9.00 8.980 72.0
neutral 0.00 .00 0.00 69.0
positive 0.00 0.00 0.00 757.08
accuracy 8.00 le48.0
macro avg 9.00 9.00 8.00 1048.0
weighted avg 0.00 0.00 0.00 1048.0

Confusion Matrix:

[[@ 6 @ © © o o]
[e 8 @ @ o @8 0]
[@ @6 © © © @ 0]
[22 1127 © © @8 0]
[31 6 35 8 © @8 0]
[11 3 55 8 © @8 0]
[36 3268 6 © 8 0]]

3.5 Sentiment Analysis using BERT

The next model built is sentiment analysis using BERT embeddings on both Flipkart and
Amazon Datasets. A methodical approach to fine-tune the BERT model for multi-class

sentiment classification is to use Sentiment Analysis on the Flipkart Dataset using BERT.
The BERT tokenizer and sequence classification model are initially implemented using
the Hugging Face Transformers library.

Training lLoop
optimizer = AdamW(model.parameters(), lr=2e-5)

Fine-tune the model
for epoch in range(3): # Adjust the number of epochs based on your project
model.train()
for batch in train_dataloader:
optimizer.zero_ grad()
input_ids, labels = batch
outputs = model(input_ids, labels=labels)

Convert labels to the correct data type
labels = labels.type(torch.LongTensor)

loss = outputs.loss
loss.backward()
optimizer.step()

Evaluation

model.eval()

predictions = []

true_labels = []

with torch.no_grad():

for batch in test dataloader:

input_ids, labels = batch
outputs = model(input_ids)
logits = outputs.logits
predictions.extend(torch.argmax(logits, dim=1).tolist())
true_labels.extend(labels.tolist())

Calculate metrics

print("BERT Sentiment Analysis Report:")

print(classification_report(true_labels, predictions))
Figure 6 Sentiment Analysis using BERT

BERT Sentiment Analysis Report:
precision recall fl-score support

0 8.58 0.88 6.70 16

1 1.00 0.06 0.12 16

2 0.89 0.96 6.92 95

accuracy 0.83 127
macro avg 8.83 0.63 0.58 127
weighted avg 8.87 0.83 8.79 127

Figure 7 Flipkart Sentiment Analysis

BERT Sentiment Analysis Report:

precision recall fl-score support

2] 0.00 0.00 0.00 28

1 0.00 0.00 .00 11

2 8.67 0.95 0.78 63

3 8.00 0.00 .00 4

accuracy .57 106
macro avg 8.17 0.24 0.20 106
weighted avg 8.48 8.57 .47 106

Figure 8 Amazon Sentiment Analysis

3.6 Sentiment Analysis using ROBERTa

Utilizing state-of-the-art language models, a systematic and detailed method is used to
execute sentiment analysis using RoBERTa on the Flipkart dataset. First, the code loads
the pre-trained RoBERTa tokenizer and model using the Hugging Face Transformers
library. Tokenization and encoding are performed on Flipkart dataset, the reviews have
been preprocessed and stored in column ’processedreview’, which contains the cleaned
and tokenized reviews.

Fine-tune RoBERTa model
tokenizer = RobertaTokenizer.from_pretrained('roberta-base")
model = RobertaForSequenceClassification.from_pretrained('roberta-base’, num_labels=1label encoder.classes_.shape[8])

Tokenize and encode the training data

encoded_reviews = [tokenizer.encode(review, add_special_tokens=True, truncation=True, padding=True) for review in train_data['p
max_len = max(len(review) for review in encoded_reviews)

padded_reviews = [review + [B] * (max_len - len(review)) for review in encoded_reviews]

input_ids = torch.tensor(padded _reviews)

Encode the Labels
labels = torch.tensor(train_data['label’].values)

Create TensorDataset
train_dataset = TensorDataset(input_ids, labels)

Initialize Dataloader
train_dataloader = Dataloader(train_dataset, batch_size=4, shuffle=True)

Training loop
optimizer = AdamW(model.parameters(), lr=2e-5)

Fine-tune the model
for epoch in range(3): # Adjust the number of epochs based on your project
model.train()
for batch in train_dataloader:
optimizer.zero_grad()
input_ids, labels = batch
outputs = model(input_ids, labels=labels)
loss = outputs.loss
loss .backward()
optimizer.step()

Figure 9 Sentiment Analysis usin RoOBERTa

RoBERTa Sentiment Analysis Report:
precision recall fl-score support

8 .00 0.60 0.00 16

1 .00 0.00 0.00 16

2 8.75 1.00 0.86 95

accuracy 0.75 127
macro avg 0.25 0.33 0.29 127
weighted avg 0.56 0.75 0.64 127

Figure 10 Flipkart Sentiment Analysis Report

RoBERTa Sentiment Analysis Report:

precision recall fl-score support

<] 0.00 0.00 0.00 9

1 0.00 ©.00 0.00 2

2 9.80 9.95 0.87 83

3 9.17 9.089 9.12 11

accuracy 8.76 185
macro avg @.24 @.26 8.25 105
weighted avg 0.65 8.76 8.70 185

Figure 11 Amazon Sentiment Analysis Report

3.7 Topic Modeling using BERT

In this section we are using BERT embeddings and K-Means clustering to do topic
modeling on the Flipkart dataset. Tokenizing the preprocessed reviews using the BERT
tokenizer at the start of the procedure gives encoded sequences.

Tokenize the processed reviews using BERT tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
encoded_reviews = [tokenizer.encode(review, add_special tokens=True, truncation=True, padding=True) for review in amazon_data['pr

Find the maximum length among the encoded reviews
max_len = max(len(review) for review in encoded_reviews)

Pad all the sequences to the maximum Length
padded_reviews = [review + [B] * (max_len - len(review)) for review in encoded_reviews]

Convert the lists of lists to a PyTorch tensor
input_ids = torch.tensor(padded_reviews)

load the pre-trained BERT model
model = BertModel.from_pretrained('bert-base-uncased')

Get the embeddings for each review
with torch.no_grad():
model .eval()

embeddings = model(input_ids)[@][:, @, :]1.numpy() # Extract embeddings from the [CLS] token

Perform K-Means clustering for topic modeling

num_topics = 5 # Adjust based on your desired number of tepics
kmeans = KMeans(n_clusters=num_topics, random_state=42)

topics = kmeans.fit_predict(embeddings)

Display the reviews for each topic
amazon_data["topic'] = topics
for topic_idx in range(num_topics):
topic_reviews = amazon_data[amazon_data[‘topic’] == topic_idx]['processed_review"]
print(f"Topic #{topic_idx} Reviews:™)
print('\n'.join(topic_reviews))
print('\n' + '="*58 + '\n')

3.8 Topic Modeling using ROBERTa

Load the pre-trained RoBERTa model
model = RobertaModel.from_pretrained('roberta-base’)

Get the embeddings for each review
with torch.no_grad():

model.eval()

embeddings = model(input_ids)[@]

Flatten the embeddings
flattened_embeddings = embeddings.view(embeddings.size(®), -1)

Assuming flattened embeddings contains your BERT or RoBERTa embeddings
Ensure all values are non-negative by adding the absolute minimum value
min_val = flattened_embeddings.min()

flattened_embeddings -= min_val

Perform Latent Dirichlet Allocation (LDA) for topic modeling
lda = LatentDirichletAllocation(n_components=5, random_state=42)
topics = lda.fit_transform(flattened_embeddings)

Display the top words for each topic
feature_names = [f"feature_{i}" for i in range(len(flattened_embeddings[8]))]
for topic_idx, topic in enumerate(lda.components_):
top_features_idx = topic.argsort()[:-10 - 1:-1]
top_words = [tokenizer.decode([1]) for i in top_features_idx]
print(f"Topic #{topic idx}: {', '.join(top words}}")

Topic #@: 160, Watts, real, Disc, supremacist, consequence, statistics, Byrne, Cond, separatist
Topic #1: DA, United, estead, real, arrangement, ignorance, statistics, disorders, grad, Oaks
Topic #2: railways, United, Lash, supremacist, estead, warning, sounds, grad, surgeries, injury
Topic #3: MWatts, consequence, noting, separatist, ignorance, Lash, 5Sn, injury, sounds, Supreme
Topic #4: 0Oaks, semester, Patterson, arrangement, Lash, wheel, UG, disorders, stole, separatist

